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Abstract—Traditionally in sensor networks and recently in the
Internet of Things, numerous heterogeneous sensors are deployed
in distributed manner to monitor a phenomenon that often can be
model by an underlying stochastic process. The big time-series
data collected by the sensors must be analyzed to detect change
in the stochastic process as quickly as possible with tolerable
false alarm rate. However, sensors may have different accuracy
and sensitivity range, and they decay along time. As a result,
the big time-series data collected by the sensors will contain
uncertainties and sometimes they are conflicting. In this study, we
present a framework to take advantage of Evidence Theory (a.k.a.
Dempster-Shafer and Dezert-Smarandache Theories) capabilities of
representing and managing uncertainty and conflict to fast change
detection and effectively deal with complementary hypotheses.
Specifically, Kullback-Leibler divergence is used as the similarity
metric to calculate the distances between the estimated current
distribution with the pre- and post-change distributions. Then mass
functions are calculated and related combination rules are applied to
combine the mass values among all sensors. Furthermore, we applied
the method to estimate the minimum number of sensors needed to
combine, so computational efficiency could be improved. Cumulative
sum test is then applied on the ratio of pignistic probability to detect
and declare the change for decision making purpose. Simulation
results using both synthetic data and real data from experimental
setup demonstrate the effectiveness of the presented schemes.

Keywords—CUSUM, evidence theory, KL divergence, quickest
change detection, time series data.

I. INTRODUCTION

THE Internet of Things (IoT) is the internet-working

of many physical devices such as smart sensors and

vehicles, and providing them the capability of sending and

receiving data. As a result, big time-series data are collected

and exchanged. The collected data may be analyzed to detect

changes and anomalies in the physical world that can be

modeled as stochastic processes mathematically.

Change point detection is a well-developed method to

detect a change along a stochastic process [1]. Let us

assume a sequence of observation from one sensor with

known distribution. At unknown time an event happens and

distribution of observation changes. The goal of change point

detection is to detect and announce the true change with
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minimum delay subject to constraint that the rate of false alarm

be small. This is also called Quickest Detection (QD) [2]. The

early works of QD are done in quality control to detect a

failure in manufacturing systems [3], [4]. So after detection

of change, production line can stop to fix the problem and

prevent the loss.

There are many QD applications including intrusion

detection in computer networks and security systems [5],

[6], tracking, surveillance, health care (patient falling as an

example), spectrum sensing in cognitive radio [7] and so on.

These applications benefit from data fusion of multi sensors

[8], where observations from several sensors aggregated and

cooperated in different methods to detect an event.

In reality, sensors are not perfect. In the sensor field, where

the sensors installed to monitor an event, sensors provided by

several manufacturers have different specifications, accuracy

and sensitivity range. And their functionalities decay along

the years. So we may not be certain about the value measured

by those sensors. Finally besides all sensors related uncertainty

metrics, environmental interference and noise can affect their

accuracy and measurement.

Based on [3] for sequence of observation from single

sensor, cumulative sum test (CUSUM) can detect change in

distribution with minimum delay while keeping false alarm

rate low. Similarly for the multisensor applications that stream

of data generated by sensors, several works are done based on

QD to detect the change [9]–[11].

In this paper, we focus on stream of independent

observations from N sensors aggregated in data fusion center

as shown in Fig. 1. Maximum Likelihood Estimation (MLE)

method is applied to estimate the distribution parameters

of each sensor independently based on their most recent

W observations (W called the sliding window size). Then

Kullback-Leibler (KL) divergence method is used to find

the distance between estimated distribution with pre- and

post-change distributions. Following, related mass function

values are calculated based on those distance values for

each sensor and then to manage uncertainty, Dempster-Shafer

combination rule (DST) is applied to combine the mass values

among all N sensors [12]. In the case of high conflict value,

Dezert-Smarandache combination rule (DSmT) is applied for

more accuracy [13]. However, to improve the computational

efficiency, we applied the method to estimate the minimum

number of sensors needed to combine. In QD framework,

instead of likelihood ratio in computing CUSUM test, we used

ratio of related pignistic probabilities. These CUSUM values
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Fig. 1 Block diagram of presented multisensor change detection using DST/DSmT combination rules

are compared to the predefined threshold value and the result is

used as a metric to detect and announce the change point. We

show that the presented method outperforms the traditional QD

methods when uncertainties are high in practical situations.

We start at Section II with presenting our model, including

all the assumptions. In Section III, we give background

information about KL divergence, Dempster-Shafer theory of

evidence and Dezert-Smarandache theory (DSmT) of plausible

and paradoxical reasoning. Then, we explain their related

combination rules, belief, plausibility and pignistic probability.

Following, we present the modified version of CUSUM test

and estimation of minimum number of sensors needed to

combine. Section IV shows simulation results for different

models and compare their performance. For real data analysis

section, Section V explains spectrum sensing application. At

the end, Section VI concludes the paper and explains some of

our ongoing researches to extend this work.

II. MODEL

In this work, it is assumed that there are N sensors

monitoring an underlying stochastic process and they generate

streams of data in parallel. It is also assumed that the

observations from each sensor are independent and identically

distributed (i.i.d.) with Gaussian distribution. Furthermore, we

assume that the observations between different sensors are

mutually independent as well.

In this paper, we consider two cases with “ideal sensors” and

“practical sensors”, respectively. For the first case with “ideal

sensors”, we assume that sensor readings are accurate and all

sensors have large sensitivity range and they are affected by

the change [9]. As in most of the works of change detection

in the literature [9]–[11], the distributions before change (p0)

and after change (p1) are assumed to be known. Without loss

of generality, p0 is Gaussian distribution with zero mean and

unit variance, p0 ∼ N(0, 1), and p1 has the same variance

but different mean, p1 ∼ N(1, 1). This case will serve as the

benchmark to gauge the performance of the presented method

for the “practical sensors” case. Although here we assumed

that the variance does not change, but as we will explain in

Section III, KL divergence considers change in both mean and

variance as it is the case in practical applications.

For the “practical sensors”, we assume that the sensors

are heterogeneous and their readings are inaccurate. Because

the empirical data are available and the sensor readings can

be calibrated, it is reasonable to assume that the distribution

before change (p0) is known, p0 ∼ N(0, 1). However, due

Fig. 2 Hypotheses distributions including null, alternative and uncertainty

to the heterogeneity of the sensors and the uncertainties in

sensors’ measurements, it is assumed that each sensor n
after change may have different mean p1 ∼ N(μn, 1) [11]

(and generally different variance), although all the sensors

are within their sensitivity range and the mean value μn is

bounded.

The null hypothesis (H0) is defined as no change in

the distribution of the underlying random process, while

the alternative hypothesis H1 denotes that change happens.

The corresponding distributions are p0(x) ∼ N(μ0, σ
2
0) and

p1(x) ∼ N(μ1, σ
2
1), respectively. In order to facilitate the

uncertainties due to “practical sensors”, we define p1/2(x) ∼
N(μ1/2, σ

2
1/2) where μ1/2 = (μ0 + μ1)/2 and σ2

1/2 =

(σ2
0+σ2

1)/4. This new proposed hypothesis is a union between

the two hypotheses H0 and H1 (H0 ∪H1). According to Fig.

2, p1/2(x) maximizes when p0(x) and p1(x) are equal and it

diminishes when one of p0(x) or p1(x) dominates the other

one.

III. PROPOSED ALGORITHM AND ANALYTICAL STUDY

In this section, the detailed procedures of the framework are

illustrated and the corresponding analysis are given.

A. Proposed Algorithm

Fig. 1 shows the data flow from sensor field to data

fusion center. In the sensor field, N sensors monitor an

underlying random process independently and send their

observations/readings to the fusion center. In the fusion

center, firstly MLE method is applied to estimate mean and

variance values. Then distance values are calculated based on
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Fig. 3 Sample readings from five sensors and sliding window

KL divergence. These distance values are used to compute

mass functions. Based on the level of conflict, one of the

Dempster-Shafer combination rule or PCR5 (Proportional

Conflict Redistribution Rule 5, one of the combination rules

in DSmT framework) will be chosen to combine the related

masses among all N sensors [13]. Following, pignistic

probabilities are calculated and finally CUSMU test is applied

on the ratio of pignistic probabilities to detect and announce

the change.

B. KL Divergence

In information theory domain, relative entropy or

Kullback-Leibler divergence (KL divergence) is defined as the

distance between two distributions p and q:

D(p||q) =
∫

p(x)log
p(x)

q(x)
dx (1)

Here p(x) and q(x) are probability density functions (pdf).

The value of KL divergence is non-negative. It will equal to

zero when the two distributions are the same. As an example,

the KL divergence between two normal distributions with pdf

of p(x) ∼ N(μp, σ
2
p) and q(x) ∼ N(μq, σ

2
q ) is:

D(p||q) = 1

2

[
log

σ2
q

σ2
p

− 1 +
σ2
p + (μp − μq)

2

σ2
q

]
(2)

Although KL divergence is asymmetric function (D(p||q) �=
D(q||p)), we use symmetric version defined by DKL(p||q):

DKL(p||q) = D(p||q) +D(q||p)

=
1

2

[
σ4
p + σ4

q + (μp − μq)
2.(σ2

p + σ2
q )

σ2
p.σ

2
q

]
− 1 (3)

Sample readings from five sensors out of N sensors and

the sliding window are shown in Fig. 3. At each time t, for

each sensor i, MLE method is used to estimate the parameters

of the observation distribution based on the most recent W
data samples between t − W + 1 and t, where W is the

sliding window size. W plays a major role and must be chosen

carefully to address the tradeoff between estimation accuracy

and detection delay. The estimated mean and variance based

on W data samples y can be shown as:

μ̂q =
1

W
.

W∑
w=1

yw (4)

σ̂2
q =

1

W − 1
.

W∑
w=1

(yw − μ̂q)
2 (5)

C. Combination of Data

As stated in Section II, we consider two hypotheses H0,

H1, and their union H0∪H1. The union hypothesis, H0∪H1,

is called ignorance and it represents uncertainty. In order

to handle uncertainties, we used combination rules among

sensors belief values. Basic belief assignment (bba) or mass

functions will be calculated based on the symmetric KL

divergence values.

Let us define d
lj
i as a distance between sensor i and class lj

where j = 0, 1/2, 1 and l1/2 = l0∪l1 . Here class lj represents

the hypothesis Hj . Then for sensor i, the set of distance values

is:

Di = {dl0i , dl1i , dl0∪l1
i } (6)

Small value of distance d
lj
i indicates the probability that the

class of sensor i is lj is higher. Then mass functions can be

calculated based on distance values:

mi(lj) =
1�d

lj
i∑m

j=1(1�d
lj
i )

(7)

The mass functions for each sensor node i related to

hypothesis H0, H1 and their union H0 ∪ H1 can be shown

as:

mi = {mi(l0),mi(l1),mi(l0 ∪ l1)} (8)

In data fusion applications, different data aggregated from

multiple sensors are considered as different evidences. Thus,

data processing requires combination among the all evidences

based on some combination rules. The hypotheses H0 and H1

are mutually exclusive and exhaustive, so Dempster-Shafer

model can be applied. In D-S framework set of singleton

classes called “frame of discernment”, Θ = {l0, l1}. And

power set, 2Θ, define as the set of all subset of frame of

discernment including the empty set, 2Θ = {∅, l0, l1, l0 ∪ l1}.

Combined mass function can be calculated based on the

Dempster combination rule [14]:

m(lj) = m1 ⊕m2 ⊕ ...⊕mN (9)

m(lj) =

⎧⎪⎪⎨
⎪⎪⎩
0 lj = ∅∑
⋂N

k=1 lk=lj

m1(l1).m2(l2)...mN (lN )

1−K lj �= ∅
(10)

K =
∑

⋂N
k=1 lk=∅

m1(l1).m2(l2)...mN (lN ) (11)
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Here K is called conflict among all the sources of data. It is

used as a normalization factor, K ∈ [0, 1]. The higher value of

K indicates more conflicting among data sources. In the case

of high conflict, we apply Dezert-Smarandache (DSmT) rules

instead of Dempster-Shafer combination rule. For instance,

PCR5 [13] is one of the most accurate combination rules in

the DSmT framework that we used in our simulations. For

two sensors, PCR5 has the following form:

mPCR5(lj) = m12(lj) (12)

+
∑

lk∈DΘ\{lj}
,lj

⋂
lk=∅

[
m1(lj)

2.m2(lk)

m1(lj) +m2(lk)
+

m2(lj)
2.m1(lk)

m2(lj) +m1(lk)

]

Here, m12 refers to conjunctive consensus:

m12(lj) =
∑

lm,ln∈DΘ,lm
⋂

ln=lj

m1(lm).m2(ln) (13)

Hyper power set, DΘ, is defined as the set include power set

and intersection among classes in the frame of discernment,

DΘ = {∅, l0, l1, l0 ∪ l1, l0 ∩ l1}. In DSmT framework,

exclusivity between classes are not essential.

For both DST and DSmT frameworks, the associated belief

function is:

Bel(lj) =
∑

lk∈2Θ/DΘ,lk⊆lj

m(lk) (14)

The plausibility function can be calculated:

Pl(lj) =
∑

lk∈2Θ/DΘ,lk
⋂

lj �=∅
m(lk) = 1−Bel(l̄j) (15)

where x̄ is the complement set of x, x̄ = Θ − x. It is clear

that Bel(lj) ≤ Pl(lj). The belief interval, [Bel(lj), P l(lj)],
refers to the imprecision on the true probability, where belief

function is considered as a lower probability and plausibility

function as an upper probability.

Finally, the pignistic probability [15] can be obtained:

betP (lj) =
∑

lk∈2Θ/DΘ,lk �=∅

|lj ∩ lk|
|lk| m(lk) (16)

where |x| is the cardinality of x.

D. Probabilistic Information Content (PIC)

Shannon entropy of a probability P (.) over a discrete finite

set Θ = {θ1, θ2, ..., θn} is defined by:

H(P ) = −
n∑

i=1

P (θi).log2(P (θi)) (17)

It measures the uncertainty and randomness contained by

P (.) and its normalized version is shown in Fig. 4. For the

uniform probability distribution with P (θi) = 1/n as a worst

case, H(P ) = Hmax = log2(n). In the case of totally

deterministic probability, such that P (θi) = 1 and P (θj) = 0
for j �= i, H(P ) will be zero.

Probabilistic information content (PIC) is the criterion that

can be used as a metric for depicting the strength of a critical

decision by a specific probability distribution [16]. It is an

Fig. 4 Entropy and Probabilistic information content

essential measure in any threshold-driven automated decision

making system. The PIC is the dual of the normalized Shannon

entropy and is defined by [16]:

PIC(P ) = 1 +
1

Hmax
.

n∑
i=1

P (θi).log2(P (θi)) (18)

PIC(P ) = 1− H(P )

Hmax
(19)

According to PIC plot in Fig. 4 while the maximum PIC

value of one (zero entropy) indicates the total knowledge to

make a correct decision, the minimum PIC value of zero

(maximum entropy of one) denotes that the knowledge to make

a correct decision does not exist.
We applied the PIC as a metric to find the minimum

number of combination needed at each time. Here, the PIC

value can be interpreted as a level of reliability or confidence

in decision making. Advantage of applying DST-DSmT

combination rules in managing uncertainty, our simulations

and experiment results show that regardless of the number of

sensors, after several combination, the result converges. So it

is not necessary to apply DS-DSmT combination rules among

all sensors at each time. Instead, minimum number of sensors

needed to combine at each time can be estimated prior to

combination start. Moreover, combination process could be

continuing recursively and it stops whenever the PIC value

reaches to predefined threshold value. In this part to simplify

our notations instead of pignistic probabilities betP (l0) and

betP (l1), we will use P0 and P1, respectively. So to guarantee

the result of decision with PIC(P0, P1) = α, following

conditions need to be satisfied: For before change P0 >
PIC−1(α) or P1 < 1−PIC−1(α). Similarly for after change,

it is necessary that P1 > PIC−1(α) or P0 < 1−PIC−1(α).
Furthermore, for the predefined PIC = α, the minimum

number of sensors needed to combine for after change can

be estimated by:

n∗ = argmin
n

{P1|P1 > PIC−1(α)} (20)

Here 2 ≤ n∗ ≤ N . Similarly for before change:

n∗ = argmin
n

{P0|P0 > PIC−1(α)} (21)
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With substituting distance values based on KL-divergence

in pignistic probabilities equation, pignistic probabilities can

be calculated directly based on distance values without

calculating mass functions:

P1 =
A

A+B
=

1

1 +B/A
(22)

and

P0 = 1− P1 =
B

A+B
=

1

1 +A/B
(23)

where:

A =
n∏

i=1

di0 ×
[∑( n∏

i=1
,j={1,x}

dij

)
+ 0.5×

n∏
i=1

di1

]
(24)

B =
n∏

i=1

di1 ×
[∑( n∏

i=1
,j={0,x}

dij

)
+ 0.5×

n∏
i=1

di0

]
(25)

Here, dij is the KL distance related to sensor i from

distributions 0, 1, and x is related to H0, H1, and H0 ∪ H1,

respectively. For the simplest case without uncertainty, they

simplify to:

P+
1 =

n∏
i=1

di0

n∏
i=1

di0 +

n∏
i=1

di1

=
1

1 +

n∏
i=1

di1

/ n∏
i=1

di0

(26)

The lower bound for number of sensors needed to combine

subject to PIC = α can be calculated based on P+
1 for after

change region by:

n+ = argmin
n

{P+
1 |P+

1 > PIC−1(α)} (27)

The main goal in change detection is declaring a change

as quickly as possible. So it is not necessary to apply

DST combination rule among all N sensors at each time t.
Simulation results show that it can decrease computation time

tremendously.

E. Quickest Detection

In the formulation of quickest change detection (QD)

problem, a sequence of observations are generated by a

sensor based on underlying process with some distribution.

At some unknown time distribution of observations change

and the goal is to detect change as quickly as possible,

subject to false alarm constraint. If the change happens

at unknown time t = k, before change observations of

each sensor Si, yi(1), yi(2), ..., yi(k − 1), we will follow

pre-change distribution H0. While after change observations

of yi(k), yi(K + 1), ... follow post-change distribution H1.

QD technique detects and declares the change with

minimum delay at time t = τ (τ ≥ k), and tries to keep

false alarm rate low. So false alarm rate increases whenever

the change is announced before the real changes, τ < k.

Fig. 5 CUSUM results for test data when distributions are known

Fig. 6 CUSUM results for test data when distributions are unknown

Cumulative Sum (CUSUM), as an optimal method, could

be applied to solve QD problem [17]. For one sensor, CUSUM

is calculated recursively by:

CUSUMn(t) = max
{
0, CUSUMn(t− 1) + LLRn(t)

}
(28)

At each time t, the updated value of CUSUM is compared

to predefined probability of false alarm (PFA) as threshold

value. It declares the change based on the stopping time

rule: t∗ = min
{
t ≥ 1|CUSUMn(t) ≥ PFA = α

}
where

CUSUMn(0) = 0 and the log likelihood ratio (LLR) between

after change and before change hypotheses for tth observation

of sensor n is defined by:

LLRn(t) = log
(H1

H0

)
= log

(f1(xn(t))

f0(xn(t))

)
(29)

In distributed sensor network, a sequence of observations is

generated by multiple sensors and aggregated in fusion center.

For multiple sensor, CUSUM could be calculated in different

ways. In [9], CUSUM is applied on the sum of the likelihood

ratio of individual sensors to determine a change:

CUSUM(t) = max
{
0, CUSUM(t− 1) +

N∑
n=1

LLRn(t)
}

(30)

In [10], CUSUMs from individual sensors are added

together. As a mixture method, [11] used specific generalized
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Fig. 7 Minimum number of sensors needed to combine

likelihood ratio to detect a change. All these methods assume

Bayesian probability, which does not consider uncertainty or

conflict among the observations. We introduce the ratio of

pignistic probability to replace with LLR in CUSUM test.

IV. SIMULATION STUDY

We assumed N = 100 sensors with total observation

of 2000 samples per sensor. Observation of sensors before

change follows Gaussian distribution p0(x) ∼ N(0, 1) and

after change p1(x) ∼ N(1, 1) for the ideal-sensors. For

practical-sensor case, it is assumed that each sensor n after

change may have different mean p1 ∼ N(μn, 1) and μn

uniformly distributed in [0.5, 1.5].

Here we explain 5 methods and compare their simulation

results in Figs. 5-9. In ”DST” method, DST combination rule

is applied among all sensors and then CUSUM is applied

on the ratio of final pignistic probabilities values. In ”PCR5”

method, PCR5 combination rule is applied instead of DST

combination rule. ”LLR” method refers to the CUSUM result

of one sample sensor on its LLR [17]. In ”nLLR”, first LLR of

all N sensors is added and finally CUSUM is applied on it [9].

And ”SumCUSUM” adds CUSUM results from individual N
sensors [10]. According to the simulation setting as shown in

Fig. 3 for five sample sensors, the real change point happens

at time tc = 1000. CUSUM test results based on different

methods are shown in Fig. 5 for ideal-sensor case. Although

CUSUM is positive, because Fig. 5 is plotted in logarithmic

scale so the negative value in figure are related to CUSUM

in (0, 1). It is clear that ”nLLR” method as optimal solution

has the best performance in detecting change when the both

pre- and post-change distributions are known. Our method

with highest slope detects the change after fixed W/2 time.

Although other methods experience false alarm before real

change, our methods based on DST and PCR5 with managing

uncertainty guarantee smaller false alarm near zero. Similarly,

Fig. 6 shows the simulation result for practical-sensor case,

where the post-change distributions are unknown. According

TABLE I
SIZE OF PSD-IQ FILES BASED ON NO. OF USRP AND TIME

No. of USRP Duration IQ file size PSD file size Total size
1 10 min 5GB 2.5GB 7.5GB
1 1 hour 30GB 15GB 45GB
1 1 day 720GB 360GB 1.08TB
8 1 day 5.76TB 2.88TB 8.64TB

Fig. 8 Cooperative spectrum sensing setup

to Fig. 6 our methods, specifically PCR5, outperform others

with guaranteeing smaller false alarm.

Simulation results show that regardless of the number of

sensors, after several combination, the result converges. So

it is not necessary to apply DST-DSmT combination rules

among all sensors at each time. Instead, minimum number

of sensors needed to combine at each time can be estimated

prior to combination start. Moreover, combination process

could be continuing recursively and it stops whenever the

PIC value reaches to predefined threshold value. For the

practical-sensor case, Fig. 7 shows the simulation results to

estimate the minimum number of sensors needed to combine

subject to PIC=0.9. That means, the minimum sensors are

needed to combine so with 90 percent confidence, we make

a decision between H0 and H1. It includes the lower bound

marked with blue circle-line that considers the case without

uncertainty. The black asterisk with dash-dot line is related the

case with uncertainty. For both cases, the averages are shown

with dashed and dotted line, respectively.

V. EXPERIMENTAL DATA SET

Reliable detection of vacant spectrum of licensed bands

is critical and fundamental in cognitive radio networks

(CRNs) [18], [19]. Secondary users can use spectrum

during idle periods to improve the spectrum efficiency.

A single spectrum sensing node suffers from multi-path

fading, shadowing and hidden node problem. Thus cooperative

spectrum sensing is adopted to improve the probability

of detection and decrease the false alarm rate by using

distributed sensing nodes. In cooperative spectrum sensing,

based on different channel condition for each node they receive

transmitted signal from the licensed primary user with different

signal-to-noise ratio (SNR) [20].

For real data analysis we applied our method to RF

spectrum sensing data. We used 8 sets of Universal Software

Radio Peripheral (USRP-model 2932) devices from National

Instrument.USRP is a Software Defined Radio (SDR). Fig. 8
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Fig. 9 CUSUM results for USRP data

shows the setup for cooperative spectrum sensing using USRP

devices. Each set of 4 USRP is configured in receiver mode

(RX-USRP) and connected to aggregation point that runs the

receiver program written in NI-LabVIEW. The 9th USRP is

configured as a transmitter (TX-USRP) to send RF signal in

specific band and at specific times. Received power spectral

density (PSD) and IQ data from 8 USRPs are collected for

processing. Table I gives details about the generated data

sizes. Because the channel conditions are different for each

RX-USRPs due to their locations to the TX-USRP, each

receiver collected different data. Fig. 9 shows the CUSUM

results in logarithmic scale. PCR5 method outperforms other

methods while guaranteeing smaller false alarm rate. The

practicality of the presented method to handle real-world big

time-series data with uncertainty is also demonstrated.

VI. CONCLUSION

The ever increasing big time-series data demand new

data processing methods, especially when the data contain

high level of uncertainty. In this study, we presented a

detection framework to mitigate the effect of uncertainty using

Evidence Theory and KL divergence for distance measures.

An algorithm based on sliding window is designed to detect

change in the underlying stochastic process and the presented

method can pinpoint the real change time after detecting

it. Furthermore, to improve the computational complexity

we presented a method to estimate and use the minimum

number of combination needed. Simulations using synthetic

data and experiments using real data are carried out and

they demonstrated the practicality of the presented method to

handle real-world big time-series data with uncertainty.
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