Search results for: disease mapping
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 820

Search results for: disease mapping

340 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning

Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam

Abstract:

Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.

Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587
339 Geovisualization of Tourist Activity Travel Patterns Using 3D GIS: An Empirical Study of Tamsui, Taiwan

Authors: Meng-Lung Lin, Chien-Min Chu, Chung-Hung Tsai, Chih-Cheng Chen, Chen-Yuan Chen

Abstract:

The study of tourist activities and the mapping of their routes in space and time has become an important issue in tourism management. Here we represent space-time paths for the tourism industry by visualizing individual tourist activities and the paths followed using a 3D Geographic Information System (GIS). Considerable attention has been devoted to the measurement of accessibility to shopping, eating, walking and other services at the tourist destination. I turns out that GIS is a useful tool for studying the spatial behaviors of tourists in the area. The value of GIS is especially advantageous for space-time potential path area measures, especially for the accurate visualization of possible paths through existing city road networks. This study seeks to apply space-time concepts with a detailed street network map obtained from Google Maps to measure tourist paths both spatially and temporally. These paths are further determined based on data obtained from map questionnaires regarding the trip activities of 40 individuals. The analysis of the data makes it possible to determining the locations of the more popular paths. The results can be visualized using 3D GIS to show the areas and potential activity opportunities accessible to tourists during their travel time.

Keywords: Tourist activity analysis, space-time path, GIS, geovisualization, activity-travel pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493
338 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine

Authors: Djamila Benhaddouche, Abdelkader Benyettou

Abstract:

In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.

Keywords: A classifier, Algorithms decision tree, knowledge extraction, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
337 Analysis of Impact Load Induced by Ultrasonic Cavitation Bubble Collapse Using Thin Film Pressure Sensors

Authors: Moiz S. Vohra, Nagalingam Arun Prasanth, Wei L. Tan, S. H. Yeo

Abstract:

The understanding of generation and collapse of acoustic cavitation bubbles are prerequisites for application of cavitation erosion. Microbubbles generated due to rapid fluctuation of pressure induced by propagation of ultrasonic wave lead to formation of high velocity microjets and or shock waves upon collapse. Due to vast application of ultrasonic, it is important to characterize and understand cavitation collapse pressure under the radiating surface at different conditions. A comparative investigation is carried out to determine impact load and dynamic pressure distribution exerted upon bubble collapse using thin film pressure sensors. Measurements were recorded at different input conditions such as amplitude, stand-off distance, insertion depth of the horn inside the liquid and pulse on-off time of acoustic vibrations. Impact force of 2.97 N is recorded at amplitude of 108 μm and stand-off distance of 1 mm from the sensor film, whereas impulsive force as low as 0.4 N is recorded at amplitude of 12 μm and stand-off distance of 5 mm from the sensor film. The results drawn from the investigation indicated that variety of impact loads can be achieved by controlling generation and collapse of bubbles, making it suitable to use for numerous application.

Keywords: Ultrasonic cavitation, bubble collapse, pressure mapping sensor, impact load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137
336 GIS-based Non-point Sources of Pollution Simulation in Cameron Highlands, Malaysia

Authors: M. Eisakhani, A. Pauzi, O. Karim, A. Malakahmad, S.R. Mohamed Kutty, M. H. Isa

Abstract:

Cameron Highlands is a mountainous area subjected to torrential tropical showers. It extracts 5.8 million liters of water per day for drinking supply from its rivers at several intake points. The water quality of rivers in Cameron Highlands, however, has deteriorated significantly due to land clearing for agriculture, excessive usage of pesticides and fertilizers as well as construction activities in rapidly developing urban areas. On the other hand, these pollution sources known as non-point pollution sources are diverse and hard to identify and therefore they are difficult to estimate. Hence, Geographical Information Systems (GIS) was used to provide an extensive approach to evaluate landuse and other mapping characteristics to explain the spatial distribution of non-point sources of contamination in Cameron Highlands. The method to assess pollution sources has been developed by using Cameron Highlands Master Plan (2006-2010) for integrating GIS, databases, as well as pollution loads in the area of study. The results show highest annual runoff is created by forest, 3.56 × 108 m3/yr followed by urban development, 1.46 × 108 m3/yr. Furthermore, urban development causes highest BOD load (1.31 × 106 kgBOD/yr) while agricultural activities and forest contribute the highest annual loads for phosphorus (6.91 × 104 kgP/yr) and nitrogen (2.50 × 105 kgN/yr), respectively. Therefore, best management practices (BMPs) are suggested to be applied to reduce pollution level in the area.

Keywords: Cameron Highlands, Land use, Non-point Sources of Pollution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2876
335 A Model Driven Based Method for Scheduling Analysis and HW/SW Partitioning

Authors: Yessine Hadj Kacem, Adel Mahfoudhi, Hedi Tmar, Mohamed Abid

Abstract:

Unified Modeling Language (UML) extensions for real time embedded systems (RTES) co-design, are taking a growing interest by a great number of industrial and research communities. The extension mechanism is provided by UML profiles for RTES. It aims at improving an easily-understood method of system design for non-experts. On the other hand, one of the key items of the co- design methods is the Hardware/Software partitioning and scheduling tasks. Indeed, it is mandatory to define where and when tasks are implemented and run. Unfortunately the main goals of co-design are not included in the usual practice of UML profiles. So, there exists a need for mapping used models to an execution platform for both schedulability test and HW/SW partitioning. In the present work, test schedulability and design space exploration are performed at an early stage. The proposed approach adopts Model Driven Engineering MDE. It starts from UML specification annotated with the recent profile for the Modeling and Analysis of Real Time Embedded systems MARTE. Following refinement strategy, transformation rules allow to find a feasible schedule that satisfies timing constraints and to define where tasks will be implemented. The overall approach is experimented for the design of a football player robot application.

Keywords: MDE, UML profile, scheduling analysis, HW/SW partitioning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
334 Robot Navigation and Localization Based on the Rat’s Brain Signals

Authors: Endri Rama, Genci Capi, Shigenori Kawahara

Abstract:

The mobile robot ability to navigate autonomously in its environment is very important. Even though the advances in technology, robot self-localization and goal directed navigation in complex environments are still challenging tasks. In this article, we propose a novel method for robot navigation based on rat’s brain signals (Local Field Potentials). It has been well known that rats accurately and rapidly navigate in a complex space by localizing themselves in reference to the surrounding environmental cues. As the first step to incorporate the rat’s navigation strategy into the robot control, we analyzed the rats’ strategies while it navigates in a multiple Y-maze, and recorded Local Field Potentials (LFPs) simultaneously from three brain regions. Next, we processed the LFPs, and the extracted features were used as an input in the artificial neural network to predict the rat’s next location, especially in the decision-making moment, in Y-junctions. We developed an algorithm by which the robot learned to imitate the rat’s decision-making by mapping the rat’s brain signals into its own actions. Finally, the robot learned to integrate the internal states as well as external sensors in order to localize and navigate in the complex environment.

Keywords: Brain machine interface, decision-making, local field potentials, mobile robot, navigation, neural network, rat, signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
333 Investigating Crime Hotspot Places and their Implication to Urban Environmental Design: A Geographic Visualization and Data Mining Approach

Authors: Donna R. Tabangin, Jacqueline C. Flores, Nelson F. Emperador

Abstract:

Information is power. Geographical information is an emerging science that is advancing the development of knowledge to further help in the understanding of the relationship of “place" with other disciplines such as crime. The researchers used crime data for the years 2004 to 2007 from the Baguio City Police Office to determine the incidence and actual locations of crime hotspots. Combined qualitative and quantitative research methodology was employed through extensive fieldwork and observation, geographic visualization with Geographic Information Systems (GIS) and Global Positioning Systems (GPS), and data mining. The paper discusses emerging geographic visualization and data mining tools and methodologies that can be used to generate baseline data for environmental initiatives such as urban renewal and rejuvenation. The study was able to demonstrate that crime hotspots can be computed and were seen to be occurring to some select places in the Central Business District (CBD) of Baguio City. It was observed that some characteristics of the hotspot places- physical design and milieu may play an important role in creating opportunities for crime. A list of these environmental attributes was generated. This derived information may be used to guide the design or redesign of the urban environment of the City to be able to reduce crime and at the same time improve it physically.

Keywords: Crime mapping, data mining, environmental design, geographic visualization, GIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2623
332 The Quality of Fishery Product on the Moldovan Market, Regulations, National Institutions, Controls and Non-Compliant Products

Authors: Mihaela Munteanu (Pila), Silvius Stanciu

Abstract:

This paper presents the aspects of the official control of fishery in the Republic of Moldova. Currently, the regulations and the activity of national institutions with responsibilities in the field of food quality are in a process of harmonization with the European rules, aiming at European integration, quality improvement and providing a higher level of food safety. The National Agency for Food Safety is the main national body with responsibilities in the field of food safety. In the field of fishery products, the Agency carries out an intensive activity of informing the citizen and controlling the products marketed. The paper presents the dangers related to the consumption of fish and fishery products traded on the national market, the sanitary-veterinary inspections conducted by the profile institution and the improper situations identified. The national market of fishery products depends largely on imports, mainly focused on ocean fish. The research carried out has shown that during the period 2011-2018, following the inspections carried out on fishery products traded on the national market, a number of inconsistencies have been identified. Thus, indigenous products were frequently detected with sensory characteristics unfit for consumption, and being commercialized in inappropriate locations or contaminated with chemical pollutants. On import products controlled, the most frequent inconsistent situations have been represented by inconsistent sensory aspects and by parasite contamination. Taking into account the specific aspects of aquatic products, including the high level of alterability, special conditions of growth, marketing, culinary preparation and consumption are necessary in order to decrease the risk of disease over the population. Certificates, attestations and other documents certifying the quality of batches, completed by additional laboratory examinations, are necessary in order to increase the level of confidence on the quality of products marketed in the Republic. The implementation of various control procedures and mechanisms at national level, correlated with the focused activity of the specialized institutions, can decrease the risk of contamination and avoid cases of disease on the population due to the consumption of fishery products.

Keywords: Fishery products, food safety, insurance, inspection, Republic of Moldova.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 907
331 On the Combination of Patient-Generated Data with Data from a Secure Clinical Network Environment – A Practical Example

Authors: Jeroen S. de Bruin, Karin Schindler, Christian Schuh

Abstract:

With increasingly more mobile health applications appearing due to the popularity of smartphones, the possibility arises that these data can be used to improve the medical diagnostic process, as well as the overall quality of healthcare, while at the same time lowering costs. However, as of yet there have been no reports of a successful combination of patient-generated data from smartphones with data from clinical routine. In this paper we describe how these two types of data can be combined in a secure way without modification to hospital information systems, and how they can together be used in a medical expert system for automatic nutritional classification and triage.

Keywords: Data integration, disease-related malnutrition, expert systems, mobile health.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
330 Identification of COVID-SARS Variants Based on Lactate Test Results

Authors: Zoltan Horvath, Dora Nagy

Abstract:

In this research, it was examined whether individual COVID variants cause differences in the lactate curve of cyclists. After all, the virus variants attacked different organs in our body during the infections. During our tests, we used a traditional lactate step test, the results of which were compared with the values before the infection. In the tests, it has been proven that different virus variants show unique lactate curves. In this way, based on the lactate curve, it is possible to identify which variant caused the disease. Thanks to this, the return time has been shorten, because we can apply the best return protocol after infection to the competitors.

Keywords: SARS-CoV-2, lactate step test, virus mutation, lactate profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 92
329 Effect of a Multiple Stenosis on Blood Flow through a Tube

Authors: Vipin Kumar Verma, Praveen Saraswat

Abstract:

The development of double stenosis in an artery can have serious consequences and can disrupt the normal functioning of the circulatory system. It has been realized that various hydrodynamics effects (i.e. wall shear, pressure distribution etc.) play important role in the development of this disease. Generally in the literature, the cross-section of the artery is assumed to be uniform with a single stenosis. However, in real situation the multiple stenosis develops in series along the length of artery whose cross-section varies slowly. Therefore, the flow of blood is laminar through a small diameter artery with axisymmetric identical double stenosis in series.

Keywords: Wall shear, multiple stenosis, artery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900
328 A Novel Fuzzy-Neural Based Medical Diagnosis System

Authors: S. Moein, S. A. Monadjemi, P. Moallem

Abstract:

In this paper, application of artificial neural networks in typical disease diagnosis has been investigated. The real procedure of medical diagnosis which usually is employed by physicians was analyzed and converted to a machine implementable format. Then after selecting some symptoms of eight different diseases, a data set contains the information of a few hundreds cases was configured and applied to a MLP neural network. The results of the experiments and also the advantages of using a fuzzy approach were discussed as well. Outcomes suggest the role of effective symptoms selection and the advantages of data fuzzificaton on a neural networks-based automatic medical diagnosis system.

Keywords: Artificial Neural Networks, Fuzzy Logic, MedicalDiagnosis, Symptoms, Fuzzification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
327 Imputation Technique for Feature Selection in Microarray Data Set

Authors: Younies Mahmoud, Mai Mabrouk, Elsayed Sallam

Abstract:

Analyzing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.

Keywords: DNA microarray, feature selection, missing data, bioinformatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2791
326 A Web Service Platform for Support Multiple Programming Language to Access Biomedical Image Databases

Authors: Mohd Kamir Yusof, Suhailan Dato' Safei

Abstract:

Images are important in disease research, education, and clinical medicine. This paper presents a Web Service Platform (WSP) for support multiple programming languages to access image from biomedical databases. The main function WSP is to allow web users access image from biomedical databases. The WSP will receive web user-s queries. After that, it will send to Querying Server (QS) and the QS will search and retrieve data from biomedical databases. Finally, the information will display to the web users. Simple application is developed and tested for experiment purpose. Result from experiment indicated WSP can be used in biomedical environment.

Keywords: Biomedical, Image, Web Service Platform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
325 Anaplasmosis among Camels in Iran and Observation of Abnormalities in Infected Blood Films

Authors: Khosro Ghazvinian, Touba Khodaiean

Abstract:

Anaplasma organisms are obligatory intracellular bacteria belonging to the order Rickettsiales, family Anaplasmataceae. This disease is distributed around the globe and infected ticks are the most important vectors in anaplasmosis transmission. There is a little information about anaplasmosis in camels. This research investigated the blood films of 35 (20 male, 15 female) camels randomly selected from a flock of 150 camels. Samples were stained with Giemsa and Anaplasma sp. organisms were observed in six out of 35 (17.14 %) blood films. There were also some changes in Diff-Quick and morphology of leukocytes. No significant difference between male and female camels was observed (P>0.05). According to the results anaplasmosis is presented among camels in Iran.

Keywords: Anaplasma, camel, anaplasmosis, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038
324 Embedded Semi-Fragile Signature Based Scheme for Ownership Identification and Color Image Authentication with Recovery

Authors: M. Hamad Hassan, S.A.M. Gilani

Abstract:

In this paper, a novel scheme is proposed for Ownership Identification and Color Image Authentication by deploying Cryptography & Digital Watermarking. The color image is first transformed from RGB to YST color space exclusively designed for watermarking. Followed by color space transformation, each channel is divided into 4×4 non-overlapping blocks with selection of central 2×2 sub-blocks. Depending upon the channel selected two to three LSBs of each central 2×2 sub-block are set to zero to hold the ownership, authentication and recovery information. The size & position of sub-block is important for correct localization, enhanced security & fast computation. As YS ÔèÑ T so it is suitable to embed the recovery information apart from the ownership and authentication information, therefore 4×4 block of T channel along with ownership information is then deployed by SHA160 to compute the content based hash that is unique and invulnerable to birthday attack or hash collision instead of using MD5 that may raise the condition i.e. H(m)=H(m'). For recovery, intensity mean of 4x4 block of each channel is computed and encoded upto eight bits. For watermark embedding, key based mapping of blocks is performed using 2DTorus Automorphism. Our scheme is oblivious, generates highly imperceptible images with correct localization of tampering within reasonable time and has the ability to recover the original work with probability of near one.

Keywords: Hash Collision, LSB, MD5, PSNR, SHA160

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
323 A Family Cars- Life Cycle Cost (LCC)-Oriented Hybrid Modelling Approach Combining ANN and CBR

Authors: Xiaochuan Chen, Jianguo Yang, Beizhi Li

Abstract:

Design for cost (DFC) is a method that reduces life cycle cost (LCC) from the angle of designers. Multiple domain features mapping (MDFM) methodology was given in DFC. Using MDFM, we can use design features to estimate the LCC. From the angle of DFC, the design features of family cars were obtained, such as all dimensions, engine power and emission volume. At the conceptual design stage, cars- LCC were estimated using back propagation (BP) artificial neural networks (ANN) method and case-based reasoning (CBR). Hamming space was used to measure the similarity among cases in CBR method. Levenberg-Marquardt (LM) algorithm and genetic algorithm (GA) were used in ANN. The differences of LCC estimation model between CBR and artificial neural networks (ANN) were provided. ANN and CBR separately each method has its shortcomings. By combining ANN and CBR improved results accuracy was obtained. Firstly, using ANN selected some design features that affect LCC. Then using LCC estimation results of ANN could raise the accuracy of LCC estimation in CBR method. Thirdly, using ANN estimate LCC errors and correct errors in CBR-s estimation results if the accuracy is not enough accurate. Finally, economically family cars and sport utility vehicle (SUV) was given as LCC estimation cases using this hybrid approach combining ANN and CBR.

Keywords: case-based reasoning, life cycle cost (LCC), artificialneural networks (ANN), family cars

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
322 Clustering-Based Detection of Alzheimer's Disease Using Brain MR Images

Authors: Sofia Matoug, Amr Abdel-Dayem

Abstract:

This paper presents a comprehensive survey of recent research studies to segment and classify brain MR (magnetic resonance) images in order to detect significant changes to brain ventricles. The paper also presents a general framework for detecting regions that atrophy, which can help neurologists in detecting and staging Alzheimer. Furthermore, a prototype was implemented to segment brain MR images in order to extract the region of interest (ROI) and then, a classifier was employed to differentiate between normal and abnormal brain tissues. Experimental results show that the proposed scheme can provide a reliable second opinion that neurologists can benefit from.

Keywords: Alzheimer, brain images, classification techniques, Magnetic Resonance Images, MRI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
321 Maximum Entropy Based Image Segmentation of Human Skin Lesion

Authors: Sheema Shuja Khattak, Gule Saman, Imran Khan, Abdus Salam

Abstract:

Image segmentation plays an important role in medical imaging applications. Therefore, accurate methods are needed for the successful segmentation of medical images for diagnosis and detection of various diseases. In this paper, we have used maximum entropy to achieve image segmentation. Maximum entropy has been calculated using Shannon, Renyi and Tsallis entropies. This work has novelty based on the detection of skin lesion caused by the bite of a parasite called Sand Fly causing the disease is called Cutaneous Leishmaniasis.

Keywords: Shannon, Maximum entropy, Renyi, Tsallis entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2395
320 Rock Slope Stabilization and Protection for Roads and Multi-Storey Structures in Jabal Omar, Saudi Arabia

Authors: Ibrahim Abdel Gadir Malik, Dafalla Siddig Dafalla, Abdelazim Ibrahim

Abstract:

Jabal Omar is located in the western side of Makkah city in Saudi Arabia. The proposed Jabal Omar Development project includes several multi-storey buildings, roads, bridges and below ground structures founded at various depths. In this study, geological mapping and site inspection which covered pre-selected areas were carried out within the easily accessed parts. Geological features; including rock types, structures, degree of weathering, and geotechnical hazards were observed and analyzed with specified software and also were documented in form of photographs. The presence of joints and fractures in the area made the rock blocks small and weak. The site is full of jointing; it was observed that, the northern side consists of 3 to 4 jointing systems with 2 random fractures associated with dykes. The southern part is affected by 2 to 3 jointing systems with minor fault and shear zones. From the field measurements and observations, it was concluded that, the Jabal Omar intruded by andesitic and basaltic dykes of different thickness and orientation. These dykes made the outcrop weak, highly deformed and made the rock masses sensitive to weathering.

Keywords: Rock, slope, stabilization, protection, Makkah.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
319 Tool Wear of Aluminum/Chromium/Tungsten-Based-Coated Cemented Carbide Tools in Cutting Sintered Steel

Authors: Tadahiro Wada, Hiroyuki Hanyu

Abstract:

In this study, to clarify the effectiveness of an aluminum/chromium/tungsten-based-coated tool for cutting sintered steel, tool wear was experimentally investigated. The sintered steel was turned with the (Al60,Cr25,W15)N-, (Al60,Cr25,W15)(C,N)- and (Al64,Cr28,W8)(C,N)-coated cemented carbide tools according to the physical vapor deposition (PVD) method. Moreover, the tool wear of the aluminum/chromium/tungsten-based-coated item was compared with that of the (Al,Cr)N coated tool. Furthermore, to clarify the tool wear mechanism of the aluminum/chromium/tungsten-coating film for cutting sintered steel, Scanning Electron Microscope observation and Energy Dispersive x-ray Spectroscopy mapping analysis were conducted on the abraded surface. The following results were obtained: (1) The wear progress of the (Al64,Cr28,W8)(C,N)-coated tool was the slowest among that of the five coated tools. (2) Adding carbon (C) to the aluminum/chromium/tungsten-based-coating film was effective for improving the wear-resistance. (3) The main wear mechanism of the (Al60,Cr25,W15)N-, the (Al60,Cr25,W15)(C,N)- and the (Al64,Cr28,W8)(C,N)-coating films was abrasive wear.

Keywords: Cutting, physical vapor deposition coating method, tool wear, tool wear mechanism, sintered steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
318 Highly Sensitive Label Free Biosensor for Tumor Necrosis Factor

Authors: Tze Sian Pui, Tushar Bansal, Patthara Kongsuphol, Sunil K. Arya

Abstract:

We present a label-free biosensor based on electrochemical impedance spectroscopy for the detection of proinflammatory cytokine Tumor Necrosis Factor (TNF-α). Secretion of TNF-α has been correlated to the onset of various diseases including rheumatoid arthritis, Crohn-s disease etc. Gold electrodes were patterned on a silicon substrate and self assembled monolayer of dithiobis-succinimidyl propionate was used to develop the biosensor which achieved a detection limit of ~57fM. A linear relationship was also observed between increasing TNF-α concentrations and chargetransfer resistance within a dynamic range of 1pg/ml – 1ng/ml.

Keywords: Tumor necrosis factor, electrochemical impedance spectroscopy, label free, self assembled monolayer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
317 Some Immunological Characteristics of Tick- Borne Encephalitis in Perm Region

Authors: Some Immunological Characteristics of Tick- Borne Encephalitis in Perm Region

Abstract:

It is shown that the relationship of tick-borne encephalitis virus with the human body comes in two ways, the development of acute infection with the outcome in convalescence and long stay by the virus in the body, its persistence in the nervous tissue with periodic reactivation and prolonged circulating immunoglobulin M. In spite of the fact that tick-borne encephalitis virus has a tropism for nerve tissue, involvement in the process of blood cells is an integral component of the infection. Comprehensive study of the relation of factors of innate and adaptive immunity in the tick-borne encephalitis providing insight into the features of chronic disease.

Keywords: Tick-borne encephalitis, phagocytic activity, a progressive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
316 An Overview of the Application of Fuzzy Inference System for the Automation of Breast Cancer Grading with Spectral Data

Authors: Shabbar Naqvi, Jonathan M. Garibaldi

Abstract:

Breast cancer is one of the most frequent occurring cancers in women throughout the world including U.K. The grading of this cancer plays a vital role in the prognosis of the disease. In this paper we present an overview of the use of advanced computational method of fuzzy inference system as a tool for the automation of breast cancer grading. A new spectral data set obtained from Fourier Transform Infrared Spectroscopy (FTIR) of cancer patients has been used for this study. The future work outlines the potential areas of fuzzy systems that can be used for the automation of breast cancer grading.

Keywords: Breast cancer, FTIR, fuzzy inference system, principal component analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
315 Clustering Approach to Unveiling Relationships between Gene Regulatory Networks

Authors: Hiba Hasan, Khalid Raza

Abstract:

Reverse engineering of genetic regulatory network involves the modeling of the given gene expression data into a form of the network. Computationally it is possible to have the relationships between genes, so called gene regulatory networks (GRNs), that can help to find the genomics and proteomics based diagnostic approach for any disease. In this paper, clustering based method has been used to reconstruct genetic regulatory network from time series gene expression data. Supercoiled data set from Escherichia coli has been taken to demonstrate the proposed method.

Keywords: Gene expression, gene regulatory networks (GRNs), clustering, data preprocessing, network visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
314 A Software Framework for Predicting Oil-Palm Yield from Climate Data

Authors: Mohd. Noor Md. Sap, A. Majid Awan

Abstract:

Intelligent systems based on machine learning techniques, such as classification, clustering, are gaining wide spread popularity in real world applications. This paper presents work on developing a software system for predicting crop yield, for example oil-palm yield, from climate and plantation data. At the core of our system is a method for unsupervised partitioning of data for finding spatio-temporal patterns in climate data using kernel methods which offer strength to deal with complex data. This work gets inspiration from the notion that a non-linear data transformation into some high dimensional feature space increases the possibility of linear separability of the patterns in the transformed space. Therefore, it simplifies exploration of the associated structure in the data. Kernel methods implicitly perform a non-linear mapping of the input data into a high dimensional feature space by replacing the inner products with an appropriate positive definite function. In this paper we present a robust weighted kernel k-means algorithm incorporating spatial constraints for clustering the data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data, and thus can be used for predicting oil-palm yield by analyzing various factors affecting the yield.

Keywords: Pattern analysis, clustering, kernel methods, spatial data, crop yield

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
313 Fuzzy Based Visual Texture Feature for Psoriasis Image Analysis

Authors: G. Murugeswari, A. Suruliandi

Abstract:

This paper proposes a rotational invariant texture feature based on the roughness property of the image for psoriasis image analysis. In this work, we have applied this feature for image classification and segmentation. The fuzzy concept is employed to overcome the imprecision of roughness. Since the psoriasis lesion is modeled by a rough surface, the feature is extended for calculating the Psoriasis Area Severity Index value. For classification and segmentation, the Nearest Neighbor algorithm is applied. We have obtained promising results for identifying affected lesions by using the roughness index and severity level estimation.

Keywords: Fuzzy texture feature, psoriasis, roughness feature, skin disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115
312 Single Valued Neutrosophic Hesitant Fuzzy Rough Set and Its Application

Authors: K. M. Alsager, N. O. Alshehri

Abstract:

In this paper, we proposed the notion of single valued neutrosophic hesitant fuzzy rough set, by combining single valued neutrosophic hesitant fuzzy set and rough set. The combination of single valued neutrosophic hesitant fuzzy set and rough set is a powerful tool for dealing with uncertainty, granularity and incompleteness of knowledge in information systems. We presented both definition and some basic properties of the proposed model. Finally, we gave a general approach which is applied to a decision making problem in disease diagnoses, and demonstrated the effectiveness of the approach by a numerical example.

Keywords: Single valued neutrosophic hesitant set, single valued neutrosophic hesitant relation, single valued neutrosophic hesitant fuzzy rough set, decision making method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286
311 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils

Authors: Muqdad Al-Juboori, Bithin Datta

Abstract:

Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.

Keywords: Artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376