Search results for: Slurry Infiltrated Concrete (SIFCON)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 821

Search results for: Slurry Infiltrated Concrete (SIFCON)

371 Seismic Behavior of Self-Balancing Post-Tensioned Reinforced Concrete Spatial Structure

Authors: Mircea Pastrav, Horia Constantinescu

Abstract:

The construction industry is currently trying to develop sustainable reinforced concrete structures. In trying to aid in the effort, the research presented in this paper aims to prove the efficiency of modified special hybrid moment frames composed of discretely jointed precast and post-tensioned concrete members. This aim is due to the fact that current design standards do not cover the spatial design of moment frame structures assembled by post-tensioning with special hybrid joints. This lack of standardization is coupled with the fact that previous experimental programs, available in scientific literature, deal mainly with plane structures and offer little information regarding spatial behavior. A spatial model of a modified hybrid moment frame is experimentally analyzed. The experimental results of a natural scale model test of a corner column-beams sub-structure, cut from an actual multilevel building tested to seismic type loading are presented in order to highlight the behavior of this type of structure. The test is performed under alternative cycles of imposed lateral displacements, up to a storey drift ratio of 0.035. Seismic response of the spatial model is discussed considering the acceptance criteria for reinforced concrete frame structures designed based on experimental tests, as well as some of its major sustainability features. The results obtained show an overall excellent behavior of the system. The joint detailing allows for quick and cheap repairs after an accidental event and a self-balancing behavior of the system that ensures it can be used almost immediately after an accidental event it.

Keywords: Modified hybrid joint, seismic type loading response, self-balancing structure, acceptance criteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1158
370 Impact of Natural Period and Epicentral Distance on Storey Lateral Displacements

Authors: S. Dorbani, M. Badaoui, D. Benouar

Abstract:

The goal of the paper is to highlight the effect of the building design and epicentral distance on the storey lateral displacements, for several reinforced concrete buildings (6, 9 and 12 stories). These structures are subjected to seismic accelerations from the Boumerdes earthquake (Algeria, May 21st, Mw = 6.8). Using the response spectrum method (modal spectral approach), the analysis is performed in both longitudinal and transverse directions. The building design is expressed through the fundamental period and epicentral distance is used to represent the earthquake effect variation on storey lateral displacements and interstory drift for the considered buildings.

Keywords: Epicentral distance, interstory drift, lateral displacement, natural period, reinforced concrete buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
369 Mechanical Properties of Ultra High Performance Concrete

Authors: Prabhat Ranjan Prem, B.H.Bharatkumar, Nagesh R Iyer

Abstract:

A research program is conducted to evaluate the mechanical properties of Ultra High Performance Concrete, target compressive strength at the age of 28 days being more than 150 MPa. The methodology to develop such mix has been explained. The material properties, mix design and curing regime are determined. The material attributes are understood by studying the stress strain behaviour of UHPC cylinders under uniaxial compressive loading. The load –crack mouth opening displacement (cmod) of UHPC beams, flexural strength and fracture energy was evaluated using third point loading test. Compressive strength and Split tensile strength results are determined to find out the compressive and tensile behaviour. Residual strength parameters are presented vividly explaining the flexural performance, toughness of concrete.Durability studies were also done to compare the effect of fibre to that of a control mix For all the studies the Mechanical properties were evaluated by varying the percentage and aspect ratio of steel fibres The results reflected that higher aspect ratio and fibre volume produced drastic changes in the cube strength, cylinder strength, post peak response, load-cmod, fracture energy flexural strength, split tensile strength, residual strength and durability. In regards to null application of UHPC in India, an initiative is undertaken to comprehend the mechanical behaviour of UHPC, which will be vital for longer run in commercialization for structural applications.

Keywords: Ultra High Performance Concrete, Reinforcement Index, Compressive Strength, Tensile Strength, Flexural Strength, Residual Strength, Fracture Energy, Stress-Strain Relationships, Load-Crack Mouth Opening Displacement and Durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10586
368 Influence of Slenderness Ratio on the Ductility of Reinforced Concrete Portal Structures

Authors: Kahil Amar, Nekmouche Aghiles, Titouche Billal, Hamizi Mohand, Hannachi Naceur Eddine

Abstract:

The ductility is an important parameter in the nonlinear behavior of portal structures reinforced concrete. It may be explained by the ability of the structure to deform in the plastic range, or the geometric characteristics in the map may influence the overall ductility. Our study is based on the influence of geometric slenderness (Lx / Ly) on the overall ductility of these structures, a study is made on a structure has 05 floors with varying the column section of 900 cm², 1600 cm² and 1225 cm². A slight variation in global ductility is noticed as (Lx/Ly) varies; however, column sections can control satisfactorily the plastic behavior of buildings.

Keywords: Ductility, nonlinear behavior, pushover analysis, geometric slenderness, structural behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
367 'Performance-Based' Seismic Methodology and Its Application in Seismic Design of Reinforced Concrete Structures

Authors: Jelena R. Pejović, Nina N. Serdar

Abstract:

This paper presents an analysis of the “Performance-Based” seismic design method, in order to overcome the perceived disadvantages and limitations of the existing seismic design approach based on force, in engineering practice. Bearing in mind, the specificity of the earthquake as a load and the fact that the seismic resistance of the structures solely depends on its behaviour in the nonlinear field, traditional seismic design approach based on force and linear analysis is not adequate. “Performance-Based” seismic design method is based on nonlinear analysis and can be used in everyday engineering practice. This paper presents the application of this method to eight-story high reinforced concrete building with combined structural system (reinforced concrete frame structural system in one direction and reinforced concrete ductile wall system in other direction). The nonlinear time-history analysis is performed on the spatial model of the structure using program Perform 3D, where the structure is exposed to forty real earthquake records. For considered building, large number of results were obtained. It was concluded that using this method we could, with a high degree of reliability, evaluate structural behavior under earthquake. It is obtained significant differences in the response of structures to various earthquake records. Also analysis showed that frame structural system had not performed well at the effect of earthquake records on soil like sand and gravel, while a ductile wall system had a satisfactory behavior on different types of soils.

Keywords: Ductile wall, frame system, nonlinear time-history analysis, performance-based methodology, RC building.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
366 Three-Dimensional Numerical Investigation for Reinforced Concrete Slabs with Opening

Authors: Abdelrahman Elsehsah, Hany Madkour, Khalid Farah

Abstract:

This article presents a 3-D modified non-linear elastic model in the strain space. The Helmholtz free energy function is introduced with the existence of a dissipation potential surface in the space of thermodynamic conjugate forces. The constitutive equation and the damage evolution were derived as well. The modified damage has been examined to model the nonlinear behavior of reinforced concrete (RC) slabs with an opening. A parametric study with RC was carried out to investigate the impact of different factors on the behavior of RC slabs. These factors are the opening area, the opening shape, the place of opening, and the thickness of the slabs. And the numerical results have been compared with the experimental data from literature. Finally, the model showed its ability to be applied to the structural analysis of RC slabs.

Keywords: 3-D numerical analysis, damage mechanics, RC slab with opening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897
365 On the Seismic Response of Collided Structures

Authors: George D. Hatzigeorgiou, Nikos G. Pnevmatikos

Abstract:

This study examines the inelastic behavior of adjacent planar reinforced concrete (R.C.) frames subjected to strong ground motions. The investigation focuses on the effects of vertical ground motion on the seismic pounding. The examined structures are modeled and analyzed by RUAUMOKO dynamic nonlinear analysis program using reliable hysteretic models for both structural members and contact elements. It is found that the vertical ground motion mildly affects the seismic response of adjacent buildings subjected to structural pounding and, for this reason, it can be ignored from the displacement and interstorey drifts assessment. However, the structural damage is moderately affected by the vertical component of earthquakes.

Keywords: Nonlinear seismic behavior, reinforced concrete structures, structural pounding, vertical ground motions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092
364 Assessment of Using Wastage Steel as Welded Reinforcement

Authors: Muhammad Murtaza Nasir, Safdar Abbas Zaidi, Kamran Khan

Abstract:

This work is carried out to evaluate the possibility of using to-be-wasted steel as reinforcement after welding together pieces of reinforcing steel bars, left over during construction activities. Tests were performed on a total of nine samples. These were made by welding pieces of reinforcing steel bars purchased from the local scrap steel market. The samples were tested in uniaxial tension using a universal testing machine (UTM). It was found that the failure of the welded bars is governed by the thickness of the weld. It is concluded that suitable design of the weld is essential for achieving the desired level of ductility/elongation of these bars, if they are to be used as conventional reinforcement in reinforced concrete members.

Keywords: Ductility/elongation, low cost housing, reinforced concrete, welding, welded reinforcement, wastage steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789
363 Designing the Concrete-Framework Building and Examining its Behavior under the Explosion Load

Authors: Mehran Pourgholi , Amin Lotfi Eghlim

Abstract:

These Nowadays the explosion of bombs or explosive materials such as gas and oil near or inside the buildings cause some losses in installations and building components. This has made the engineers to make the buildings and their components resistance against the effects of explosion. These activities lead to provide regulations and different methods. The above regulations are mostly focused on the explosion effects resulting from the vehicles around the buildings. Therefore, the explosion resulting from the vehicles outside the buildings will be studied in this research. In the present study, the main goals are to investigate the explosion load effects on the structures located on the piles with the specific quantity of plasticity and observing the permissible response of these structures. The concentrated mass system and the spring with two degree of freedom will be used to study the structural system.

Keywords: Concrete-Framework Building, Explosion Load, piles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251
362 Experimental Testing of Statistical Size Effect in Civil Engineering Structures

Authors: Jana Kaděrová, Miroslav Vořechovský

Abstract:

The presented paper copes with an experimental evaluation of a model based on modified Weibull size effect theory. Classical statistical Weibull theory was modified by introducing a new parameter (correlation length lp) representing the spatial autocorrelation of a random mechanical properties of material. This size effect modification was observed on two different materials used in civil engineering: unreinforced (plain) concrete and multi-filament yarns made of alkaliresistant (AR) glass which are used for textile-reinforced concrete. The behavior under flexural, resp. tensile loading was investigated by laboratory experiments. A high number of specimens of different sizes was tested to obtain statistically significant data which were subsequently corrected and statistically processed. Due to a distortion of the measured displacements caused by the unstiff experiment device, only the maximal load values were statistically evaluated. Results of the experiments showed a decreasing strength with an increasing sample length. Size effect curves were obtained and the correlation length was fitted according to measured data. Results did not exclude the existence of the proposed new parameter lp.

Keywords: Statistical size effect, concrete, multi filaments yarns, experiment, autocorrelation length.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
361 Effect of the Accelerated Carbonation in Fibercement Composites Reinforced with Eucalyptus Pulp and Nanofibrillated Cellulose

Authors: Viviane C. Correia, Sergio F. Santos, Holmer Savastano Jr.

Abstract:

The main purpose of this work was verify the influence of the accelerated carbonation in the physical and mechanical properties of the hybrid composites, reinforced with micro and nanofibers and composites with microfibers. The composites were produced by the slurry vacuum dewatering method, followed by pressing. It was produced using two formulations: 8% of eucalyptus pulp + 1% of the nanofibrillated cellulose and 9% of eucalyptus pulp, both were subjected to accelerated carbonation. The results showed that the accelerated carbonation contributed to improve the physical and mechanical properties of the hybrid composites and of the composites reinforced with microfibers (eucalyptus pulp).

Keywords: Carbonation, cement composites, nanofibrillated cellulose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2739
360 The Effect of Reducing Superimposed Dead Load on the Lateral Seismic Deformations of Structures

Authors: H. Alnajajra, A. Touqan, M. Dwaikat

Abstract:

The vast majority of the Middle East countries are prone to earthquakes. Despite that and from a seismic hazard point of view, the higher values of the superimposed dead load intensity of partitions and wearing materials of the constructed reinforced concrete slabs in these countries can increase the earthquake vulnerability of the structures. The primary objective of this paper is to investigate the effect of reducing superimposed dead load on the lateral seismic deformations of structures, the inter-story drifts and the seismic pounding damages. The study utilizes a group of three reinforced concrete structures at three different site conditions. These structures are assumed to be constructed in Nablus city of Palestine, and having superimposed dead load value as 1 kN/m2, 3 kN/m2, and 5 kN/m2, respectively. SAP2000 program, Version 18.1.1, is used to perform the response spectrum analysis to obtain the potential lateral seismic deformations of the studied models. Amazingly, the study points that, at the same site, superimposed dead load has a minor effect on the lateral deflections of the models. This, however, promotes the hypothesis that buildings failed during earthquakes mainly because they were not designed appropriately against gravity loads.

Keywords: Gravity loads, inter-story drifts, lateral seismic deformations, reinforced concrete slabs, response spectrum method, SAP2000, seismic design, seismic pounding, superimposed dead load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
359 Developing of Fragility Curve for Two-Span Simply Supported Concrete Bridge in Near-Fault Area

Authors: S. Shirazian, M.R. Ghayamghamian, G.R. Nouri

Abstract:

Bridges are one of the main components of transportation networks. They should be functional before and after earthquake for emergency services. Therefore we need to assess seismic performance of bridges under different seismic loadings. Fragility curve is one of the popular tools in seismic evaluations. The fragility curves are conditional probability statements, which give the probability of a bridge reaching or exceeding a particular damage level for a given intensity level. In this study, the seismic performance of a two-span simply supported concrete bridge is assessed. Due to usual lack of empirical data, the analytical fragility curve was developed by results of the dynamic analysis of bridge subjected to the different time histories in near-fault area.

Keywords: Fragility curve, Seismic behavior, Time historyanalysis, Transportation Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2796
358 Secondary Effects on Water Vapor Transport Properties Measured by Cup Method

Authors: Z. Pavlík, J. Fořt, J. Žumár, M. Pavlíková, R. Černý

Abstract:

The cup method is applied for the measurement of water vapor transport properties of porous materials worldwide. However, in practical applications the experimental results are often used without taking into account some secondary effects which can play an important role under specific conditions. In this paper, the effect of temperature on water vapor transport properties of cellular concrete is studied, together with the influence of sample thickness. At first, the bulk density, matrix density, total open porosity and sorption and desorption isotherms are measured for material characterization purposes. Then, the steady state cup method is used for determination of water vapor transport properties, whereas the measurements are performed at several temperatures and for three different sample thicknesses.

Keywords: Water vapor transport, cellular concrete, cup method, temperature, sample thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
357 Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model

Authors: Manal Bouasria, Mohammed-Hichem Benzaama, Valérie Pralong, Yassine El Mendili

Abstract:

Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. Byproducts such as ferronickel slags (FNS), fly ash (FA), and waste as Crepidula fornicata shells (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 days to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype were utilized to build an artificial neural network.

Keywords: Artificial neural network, cement, circular economy, concrete, byproducts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 352
356 Prediction of Nonlinear Torsional Behavior of High Strength RC Beams

Authors: Woo-Young Jung, Minho Kwon

Abstract:

Seismic design criteria based on performance of structures have recently been adopted by practicing engineers in response to destructive earthquakes. A simple but efficient structural-analysis tool capable of predicting both the strength and ductility is needed to analyze reinforced concrete (RC) structures under such event. A three-dimensional lattice model is developed in this study to analyze torsions in high-strength RC members. Optimization techniques for determining optimal variables in each lattice model are introduced. Pure torsion tests of RC members are performed to validate the proposed model. Correlation studies between the numerical and experimental results confirm that the proposed model is well capable of representing salient features of the experimental results.

Keywords: Torsion, non-linear analysis, three-dimensional lattice, high-strength concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2275
355 Ductility, Rμ, and Overstrength Factors for V Braced Reinforced Concrete Buildings

Authors: Birendra Kumar Bohara

Abstract:

Steel bracings are used to improve the seismic behaviors of the structures. In this study, 8, 12 and 16 story reinforced concrete (RC) buildings with steel bracings are used in three base shear contributions (25%, 50% and 75%) in the columns. With the help of pushover analysis and capacity curves, the overstrength factors, ductility factors and ductility reduction factors are investigated for braced RC buildings. It is observed that when the base shear contribution in the columns increases the ductility reduction factor also increases. The results show that when the time period of the structures increases, the ductility reduction factors of the structures decrease.

Keywords: Steel bracing, overstrength factor, ductility, ductility reduction factors, base shear contributions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 386
354 Introduction of the Harmfulness of the Seismic Signal in the Assessment of the Performance of Reinforced Concrete Frame Structures

Authors: Kahil Amar, Boukais Said, Kezmane Ali, Hamizi Mohand, Hannachi Naceur Eddine

Abstract:

The principle of the seismic performance evaluation methods is to provide a measure of capability for a building or set of buildings to be damaged by an earthquake. The common objective of many of these methods is to supply classification criteria. The purpose of this study is to present a method for assessing the seismic performance of structures, based on Pushover method; we are particularly interested in reinforced concrete frame structures, which represent a significant percentage of damaged structures after a seismic event. The work is based on the characterization of seismic movement of the various earthquake zones in terms of PGA and PGD that is obtained by means of SIMQK_GR and PRISM software and the correlation between the points of performance and the scalar characterizing the earthquakes will developed.

Keywords: Seismic performance, Pushover method, characterization of seismic motion, harmfulness of the seismic signal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
353 Prestressed Concrete Girder Bridges Using Large 0.7 Inch Strands

Authors: Amin Akhnoukh

Abstract:

The National Bridge Inventory (NBI) includes more than 600,000 bridges within the United States of America. Prestressed concrete girder bridges represent one of the most widely used bridge systems. The majority of these girder bridges were constructed using 0.5 and 0.6 inch diameter strands. The main impediments to using larger strand diameters are: 1) lack of prestress bed capacities, 2) lack of structural knowledge regarding the transfer and development length of larger strands, and 3) the possibility of developing wider end zone cracks upon strand release. This paper presents a study about using 0.7 inch strands in girder fabrication. Transfer and development length were evaluated, and girders were fabricated using 0.7 inch strands at different spacings. Results showed that 0.7 inch strands can be used at 2.0 inch spacing without violating the AASHTO LRFD Specifications, while attaining superior performance in shear and flexure.

Keywords: 0.7 inch strands, prestress, I-girders, bridges

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3053
352 Polymer Modification of Fine Grained Concretes Used in Textile Reinforced Cementitious Composites

Authors: Esma Gizem Daskiran, Mehmet Mustafa Daskiran, Mustafa Gencoglu

Abstract:

Textile reinforced cementitious composite (TRCC) is a development of a composite material where textile and fine-grained concrete (matrix) materials are used in combination. These matrices offer high performance properties in many aspects. To achieve high performance, polymer modified fine-grained concretes were used as matrix material which have high flexural strength. In this study, ten latex polymers and ten powder polymers were added to fine-grained concrete mixtures. These latex and powder polymers were added to the mixtures at different rates related to binder weight. Mechanical properties such as compressive and flexural strength were studied. Results showed that latex polymer and redispersible polymer modified fine-grained concretes showed different mechanical performance. A wide range of both latex and redispersible powder polymers were studied. As the addition rate increased compressive strength decreased for all mixtures. Flexural strength increased as the addition rate increased but significant enhancement was not observed through all mixtures.

Keywords: Textile reinforced composite, cement, fine grained concrete, latex, redispersible powder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 922
351 Photocatalytic Degradation of Produced Water Hydrocarbon of an Oil Field by Using Ag-Doped TiO2 Nanoparticles

Authors: Hamed Bazrafshan, Saeideh Dabirnia, Zahra Alipour Tesieh, Samaneh Alavi, Bahram Dabir

Abstract:

In this study, the removal of pollutants of a real produced water sample from an oil reservoir (a light oil reservoir), using a photocatalytic degradation process in a cylindrical glass reactor, was investigated. Using TiO2 and Ag-TiO2 in slurry form, the photocatalytic degradation was studied by measuring the Chemical Oxygen Demand (COD) parameter, qualitative analysis, and GC-MS. At first, optimization of the parameters on photocatalytic degradation of hydrocarbon pollutants in real produced water, using TiO2 nanoparticles as photocatalysts under UV light, was carried out applying response surface methodology. The results of the design of the experiment showed that the optimum conditions were at a catalyst concentration of 1.14 g/lit and pH of 2.67, and the percentage of COD removal was 72.65%.

Keywords: Photocatalyst, Ag-doped, TiO2, produced water, nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 516
350 Gasoline and Diesel Production via Fischer- Tropsch Synthesis over Cobalt Based Catalyst

Authors: N. Choosri, N. Swadchaipong, T. Utistham, U. W. Hartley

Abstract:

Performance of a cobalt doped sol-gel derived silica (Co/SiO2) catalyst for Fischer–Tropsch synthesis (FTS) in slurryphase reactor was studied using paraffin wax as initial liquid media. The reactive mixed gas, hydrogen (H2) and carbon monoxide (CO) in a molar ratio of 2:1, was flowed at 50 ml/min. Braunauer-Emmett- Teller (BET) surface area and X-ray diffraction (XRD) techniques were employed to characterize both the specific surface area and crystallinity of the catalyst, respectively. The reduction behavior of Co/SiO2 catalyst was investigated using the Temperature Programmmed Reduction (TPR) method. Operating temperatures were varied from 493 to 533K to find the optimum conditions to maximize liquid fuels production, gasoline and diesel.

Keywords: Fischer Tropsch synthesis, slurry phase, Co/SiO2, operating temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4117
349 Outsourcing the Front End of Innovation

Authors: B. Likar, K. Širok

Abstract:

The paper presents a new method for efficient innovation process management. Even though the innovation management methods, tools and knowledge are well established and documented in literature, most of the companies still do not manage it efficiently. Especially in SMEs the front end of innovation - problem identification, idea creation and selection - is often not optimally performed. Our eMIPS methodology represents a sort of "umbrella methodology" - a well-defined set of procedures, which can be dynamically adapted to the concrete case in a company. In daily practice, various methods (e.g. for problem identification and idea creation) can be applied, depending on the company's needs. It is based on the proactive involvement of the company's employees supported by the appropriate methodology and external experts. The presented phases are performed via a mixture of face-to-face activities (workshops) and online (eLearning) activities taking place in eLearning Moodle environment and using other e-communication channels. One part of the outcomes is an identified set of opportunities and concrete solutions ready for implementation. The other also very important result is connected to innovation competences for the participating employees related with concrete tools and methods for idea management. In addition, the employees get a strong experience for dynamic, efficient and solution oriented managing of the invention process. The eMIPS also represents a way of establishing or improving the innovation culture in the organization. The first results in a pilot company showed excellent results regarding the motivation of participants and also as to the results achieved.

Keywords: Creativity, distance learning, front end, innovation, problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208
348 Pushover Analysis of Reinforced Concrete Buildings Using Full Jacket Technics: A Case Study on an Existing Old Building in Madinah

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

The retrofitting of existing buildings to resist the seismic loads is very important to avoid losing lives or financial disasters. The aim at retrofitting processes is increasing total structure strength by increasing stiffness or ductility ratio. In addition, the response modification factors (R) have to satisfy the code requirements for suggested retrofitting types. In this study, two types of jackets are used, i.e. full reinforced concrete jackets and surrounding steel plate jackets. The study is carried out on an existing building in Madinah by performing static pushover analysis before and after retrofitting the columns. The selected model building represents nearly all-typical structure lacks structure built before 30 years ago in Madina City, KSA. The comparison of the results indicates a good enhancement of the structure respect to the applied seismic forces. Also, the response modification factor of the RC building is evaluated for the studied cases before and after retrofitting. The design of all vertical elements (columns) is given. The results show that the design of retrofitted columns satisfied the code's design stress requirements. However, for some retrofitting types, the ductility requirements represented by response modification factor do not satisfy KSA design code (SBC- 301).

Keywords: Concrete jackets, steel jackets, RC buildings pushover analysis, non-linear analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
347 CFD Simulation of Solid-Liquid Stirred Tank with Rushton Turbine and Propeller Impeller

Authors: M. H. Pour, V. M. Nansa, M. Saberi, A. M. Ghanadi, A. Aghayari, M. Mirzajanzadeh

Abstract:

Stirred tanks have applications in many chemical processes where mixing is important for the overall performance of the system. In present work 5%v of the tank is filled by solid particles with diameter of 700 m that Rushton Turbine and Propeller impeller is used for stirring. An Eulerian-Eulerian Multi Fluid Model coupled and for modeling rotating of impeller, moving reference frame (MRF) technique was used and standard-k- model was selected for turbulency. Flow field, radial velocity and axial distribution of solid for both of impellers was investigation and comparison. Comparisons of simulation results between Rushton Turbine and propeller impeller shows that final quality of solid-liquid slurry in different rotating speed for propeller impeller is better than the Rushton Turbine.

Keywords: CFD, Particle Velocity, Propeller Impeller, Rushton Turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2760
346 Steel–CFRP Composite (CFRP Laminate Sandwiched between Mild Steel Strips) and It-s Behavior as Stirrup in Beams

Authors: Faris Abbas Jawad Uriayer, Mehtab Alam

Abstract:

In this present study, experimental work was conducted to study the effectiveness of newly innovated steel-CFRP composite (CFRP laminates sandwiched between two steel strips) as stirrups. A total numbers of eight concrete beams were tested under four point loads. Each beam measured 1600 mm long, 160mm width and 240 mm depth. The beams were reinforced with different shear reinforcements; one without stirrups, one with steel stirrups and six with different types and numbers of steel-CRFR stirrups. Test results indicated that the steel-CFRP stirrups had enhanced the shear strength capacity of beams. Moreover, the tests revealed that steel- CFRP stirrups reached to their ultimate tensile strength unlike FRP stirrups which rupture at much lower level than their ultimate strength as werereported in various researches.

Keywords: Steel-CFRP Composite, Stirrups, Concrete Beams, Shear Span.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
345 Embodied Energy in Concrete and Structural Masonry on Typical Brazilian Buildings

Authors: Marco A. S. González, Marlova P. Kulakowski, Luciano G. Breitenbach, Felipe Kirch

Abstract:

The AEC sector has an expressive environmental responsibility. Actually, most building materials have severe environmental impacts along their production cycle. Professionals enrolled in building design may choice the materials and techniques with less impact among the viable options. This work presents a study about embodied energy in materials of two typical Brazilian constructive alternatives. The construction options considered are reinforced concrete structure and structural masonry. The study was developed for the region of São Leopoldo, southern Brazil. Results indicated that the energy embodied in these two constructive systems is approximately 1.72 GJ·m-2 and 1.26 GJ·m-2, respectively. It may be concluded that the embodied energy is lower in the structural masonry system, with a reduction around to 1/4 in relation to the traditional option. The results can be used to help design decisions.

Keywords: Civil construction, sustainability, embodied energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2754
344 Advanced Numerical and Analytical Methods for Assessing Concrete Sewers and Their Remaining Service Life

Authors: Amir Alani, Mojtaba Mahmoodian, Anna Romanova, Asaad Faramarzi

Abstract:

Pipelines are extensively used engineering structures which convey fluid from one place to another. Most of the time, pipelines are placed underground and are encumbered by soil weight and traffic loads. Corrosion of pipe material is the most common form of pipeline deterioration and should be considered in both the strength and serviceability analysis of pipes. The study in this research focuses on concrete pipes in sewage systems (concrete sewers). This research firstly investigates how to involve the effect of corrosion as a time dependent process of deterioration in the structural and failure analysis of this type of pipe. Then three probabilistic time dependent reliability analysis methods including the first passage probability theory, the gamma distributed degradation model and the Monte Carlo simulation technique are discussed and developed. Sensitivity analysis indexes which can be used to identify the most important parameters that affect pipe failure are also discussed. The reliability analysis methods developed in this paper contribute as rational tools for decision makers with regard to the strengthening and rehabilitation of existing pipelines. The results can be used to obtain a cost-effective strategy for the management of the sewer system.

Keywords: Reliability analysis, service life prediction, Monte Carlo simulation method, first passage probability theory, gamma distributed degradation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265
343 Microstructure, Compressive Strength and Transport Properties of High Strength Self-Compacting Concretes Containing Natural Pumice and Zeolite

Authors: Kianoosh Samimi, Siham Kamali-Bernard, Ali Akbar Maghsoudi

Abstract:

Due to the difficult placement and vibration between reinforcements of reinforced concrete and the defects that it may cause, the use of self-compacting concrete (SCC) is becoming more widespread. Ordinary Portland Cement (OPC) is the most widely used binder in the construction industry. However, the manufacture of this cement results in a significant amount of CO2 being released, which is detrimental to the environment. Thus, an alternative to reduce the cost of SCC is the use of more economical and environmental mineral additives in partial or total substitution of Portland cement. Our study is in this context and aims to develop SCCs both economic and ecological. Two natural pozzolans such as pumice and zeolite are chosen in this research. This research tries to answer questions including the microstructure of the two types of natural pozzolan and their influence on the mechanical properties as well as on the transport property of SCC. Based on the findings of this study, the studied zeolite is a clinoptilolite that presents higher pozzolan activity compared to pumice. However, the use of zeolite decreases the compressive strength of SCC composites. On the contrary, the compressive strength in SCC containing of pumice increases at both early and long term ages with a remarkable increase at long term. A correlation is obtained between the compressive strength with permeable pore and capillary absorption. Also, the results concerning compressive strength and transport property are well justified by evaporable and non-evaporable water content measurement. This paper shows that the substitution of Portland cement by 15% of pumice or 10% of zeolite in HSSCC is suitable in all aspects. 

Keywords: SCC, concrete, pumice, zeolite, durability, transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 884
342 Performance Based Design of Masonry Infilled Reinforced Concrete Frames for Near-Field Earthquakes Using Energy Methods

Authors: Alok Madan, Arshad K. Hashmi

Abstract:

Performance based design (PBD) is an iterative exercise in which a preliminary trial design of the building structure is selected and if the selected trial design of the building structure does not conform to the desired performance objective, the trial design is revised. In this context, development of a fundamental approach for performance based seismic design of masonry infilled frames with minimum number of trials is an important objective. The paper presents a plastic design procedure based on the energy balance concept for PBD of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames subjected to near-field earthquakes. The proposed energy based plastic design procedure was implemented for trial performance based seismic design of representative masonry infilled reinforced concrete frames with various practically relevant distributions of masonry infill panels over the frame elevation. Non-linear dynamic analyses of the trial PBD of masonry infilled R/C frames was performed under the action of near-field earthquake ground motions. The results of non-linear dynamic analyses demonstrate that the proposed energy method is effective for performance based design of masonry infilled R/C frames under near-field as well as far-field earthquakes.

Keywords: Masonry Infilled Frame, Energy Methods, Near-fault Ground Motions, Pushover Analysis, Nonlinear Dynamic Analysis, Seismic Demand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2790