Search results for: Heat transfer intensification
1492 Assessment of the Accuracy of Spalart-Allmaras Turbulence Model for Application in Turbulent Wall Jets
Authors: A. M. Tahsini
Abstract:
The Spalart and Allmaras turbulence model has been implemented in a numerical code to study the compressible turbulent flows, which the system of governing equations is solved with a finite volume approach using a structured grid. The AUSM+ scheme is used to calculate the inviscid fluxes. Different benchmark problems have been computed to validate the implementation and numerical results are shown. A special Attention is paid to wall jet applications. In this study, the jet is submitted to various wall boundary conditions (adiabatic or uniform heat flux) in forced convection regime and both two-dimensional and axisymmetric wall jets are considered. The comparison between the numerical results and experimental data has given the validity of this turbulence model to study the turbulent wall jets especially in engineering applications.Keywords: Wall Jet, Heat transfer, Numerical Simulation, Spalart-Allmaras Turbulence model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27701491 A Heat-Inducible Transgene Expression System for Gene Therapy
Authors: Masaki Yamaguchi, Akira Ito, Noriaki Okamoto, Yoshinori Kawabe, Masamichi Kamihira
Abstract:
Heat-inducible gene expression vectors are useful for hyperthermia-induced cancer gene therapy, because the combination of hyperthermia and gene therapy can considerably improve the therapeutic effects. In the present study, we developed an enhanced heat-inducible transgene expression system in which a heat-shock protein (HSP) promoter and tetracycline-responsive transactivator were combined. When the transactivator plasmid containing the tetracycline-responsive transactivator gene was co-transfected with the reporter gene expression plasmid, a high level of heat-induced gene expression was observed compared with that using the HSP promoter without the transactivator. In vitro evaluation of the therapeutic effect using HeLa cells showed that heat-induced therapeutic gene expression caused cell death in a high percentage of these cells, indicating that this strategy is promising for cancer gene therapy.Keywords: Inducible gene expression, Gene therapy, Hyperthermia, Heat shock protein, Tetracycline transactivator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21351490 Marangoni Convection in a Fluid Layer with Internal Heat Generation
Authors: Norfifah Bachok, Norihan Md. Arifin
Abstract:
In this paper we use classical linear stability theory to investigate the effects of uniform internal heat generation on the onset of Marangoni convection in a horizontal layer of fluid heated from below. We use a analytical technique to obtain the close form analytical expression for the onset of Marangoni convection when the lower boundary is conducting with free-slip condition. We show that the effect of increasing the internal heat generation is always to destabilize the layer.Keywords: Marangoni convection, heat generation, free-slip
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17861489 Magnetohydrodynamic Maxwell Nanofluids Flow over a Stretching Surface through a Porous Medium: Effects of Non-Linear Thermal Radiation, Convective Boundary Conditions and Heat Generation/Absorption
Authors: Sameh E. Ahmed, Ramadan A. Mohamed, Abd Elraheem M. Aly, Mahmoud S. Soliman
Abstract:
In this paper, an enhancement of the heat transfer using non-Newtonian nanofluids by magnetohydrodynamic (MHD) mixed convection along stretching sheets embedded in an isotropic porous medium is investigated. Case of the Maxwell nanofluids is studied using the two phase mathematical model of nanofluids and the Darcy model is applied for the porous medium. Important effects are taken into account, namely, non-linear thermal radiation, convective boundary conditions, electromagnetic force and presence of the heat source/sink. Suitable similarity transformations are used to convert the governing equations to a system of ordinary differential equations then it is solved numerically using a fourth order Runge-Kutta method with shooting technique. The main results of the study revealed that the velocity profiles are decreasing functions of the Darcy number, the Deborah number and the magnetic field parameter. Also, the increase in the non-linear radiation parameters causes an enhancement in the local Nusselt number.
Keywords: MHD, nanofluids, stretching surface, non-linear thermal radiation, convective condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9621488 Heat Stress Monitor by Using Low-Cost Temperature and Humidity Sensors
Authors: Kiattisak Batsungnoen, Thanatchai Kulworawanichpong
Abstract:
The aim of this study is to develop a cost-effective WBGT heat stress monitor which provides precise heat stress measurement. The proposed device employs SHT15 and DS18B20 as a temperature and humidity sensors, respectively, incorporating with ATmega328 microcontroller. The developed heat stress monitor was calibrated and adjusted to that of the standard temperature and humidity sensors in the laboratory. The results of this study illustrated that the mean percentage error and the standard deviation from the measurement of the globe temperature was 2.33 and 2.71 respectively, while 0.94 and 1.02 were those of the dry bulb temperature, 0.79 and 0.48 were of the wet bulb temperature, and 4.46 and 1.60 were of the relative humidity sensor. This device is relatively low-cost and the measurement error is acceptable.
Keywords: Heat stress monitor, WBGT, Temperature and Humidity Sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25031487 Mass Transfer Modeling in a Packed Bed of Palm Kernels under Supercritical Conditions
Authors: I. Norhuda, A. K. Mohd Omar
Abstract:
Studies on gas solid mass transfer using Supercritical fluid CO2 (SC-CO2) in a packed bed of palm kernels was investigated at operating conditions of temperature 50 °C and 70 °C and pressures ranges from 27.6 MPa, 34.5 MPa, 41.4 MPa and 48.3 MPa. The development of mass transfer models requires knowledge of three properties: the diffusion coefficient of the solute, the viscosity and density of the Supercritical fluids (SCF). Matematical model with respect to the dimensionless number of Sherwood (Sh), Schmidt (Sc) and Reynolds (Re) was developed. It was found that the model developed was found to be in good agreement with the experimental data within the system studied.
Keywords: Mass Transfer, Palm Kernel, Supercritical fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18171486 Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation
Authors: M. A. Talha, M. Osman Gani, M. Ferdows
Abstract:
This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.
Keywords: Convection flow, internal heat generation, similarity, spectral method, numerical analysis, Williamson nanofluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9711485 Numerical Investigation of Hygrothermal Behavior on Porous Building Materials
Authors: Faiza Mnasri, Kamilia Abahri, Mohammed El Ganaoui, Slimane Gabsi
Abstract:
Most of the building materials are considered porous, and composed of solid matrix and pores. In the pores, the moisture can be existed in two phases: liquid and vapor. Thus, the mass balance equation is comprised of various moisture driving potentials that translate the movement of the different existing phases occupying pores and the hygroscopic behavior of a porous construction material. This study suggests to resolve a hygrothermal mathematical model of heat and mass transfers in different porous building materials by a numerical investigation. Thereby, the evolution of temperature and moisture content fields has been processed. So, numerous series of hygrothermal calculation on several cases of wall are exposed. Firstly, a case of monolayer wall of massive wood has been treated. In this part, we have compared the numerical solution of the model on one and two dimensions and the effect of dimensional space has been evaluated. In the second case, three building materials (concrete, wood fiberboard and wooden insulation) are tested separately with the same boundary conditions and their hygrothermal behavior are compared. The evaluation of the exchange of heat and air at the interface between the wall and the interior ambiance is carried.Keywords: Building materials, heat transfer, moisture diffusion, numerical solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15511484 Numerical Analysis of Laminar Mixed Convection within a Complex Geometry
Authors: Y. Lasbet, A. L. Boukhalkhal, K. Loubar
Abstract:
The study of mixed convection is, usually, focused on the straight channels in which the onset of the mixed convection is well defined as function of the ratio between Grashof number and Reynolds number, Gr/Re. This is not the case for a complex channel wherein the mixed convection is not sufficiently examined in the literature. Our paper focuses on the study of the mixed convection in a complex geometry in which our main contribution reveals that the critical value of the ratio Gr/Re for the onset of the mixed convection increases highly in the type of geometry contrary to the straight channel. Furthermore, the accentuated secondary flow in this geometry prevents the thermal stratification in the flow and consequently the buoyancy driven becomes negligible. To perform these objectives, a numerical study in complex geometry for several values of the ratio Gr/Re with prescribed wall heat flux (H2), was realized by using the CFD code.Keywords: Complex geometry, heat transfer, laminar flow, mixed convection, Nusselt number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17551483 Evaluation of Non-Staggered Body-Fitted Grid Based Solution Method in Application to Supercritical Fluid Flows
Authors: Suresh Sahu, Abhijeet M. Vaidya, Naresh K. Maheshwari
Abstract:
The efforts to understand the heat transfer behavior of supercritical water in supercritical water cooled reactor (SCWR) are ongoing worldwide to fulfill the future energy demand. The higher thermal efficiency of these reactors compared to a conventional nuclear reactor is one of the driving forces for attracting the attention of nuclear scientists. In this work, a solution procedure has been described for solving supercritical fluid flow problems in complex geometries. The solution procedure is based on non-staggered grid. All governing equations are discretized by finite volume method (FVM) in curvilinear coordinate system. Convective terms are discretized by first-order upwind scheme and central difference approximation has been used to discretize the diffusive parts. k-ε turbulence model with standard wall function has been employed. SIMPLE solution procedure has been implemented for the curvilinear coordinate system. Based on this solution method, 3-D Computational Fluid Dynamics (CFD) code has been developed. In order to demonstrate the capability of this CFD code in supercritical fluid flows, heat transfer to supercritical water in circular tubes has been considered as a test problem. Results obtained by code have been compared with experimental results reported in literature.
Keywords: Curvilinear coordinate, body-fitted mesh, momentum interpolation, non-staggered grid, supercritical fluids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6711482 An Improved Transfer Logic of the Two-Path Algorithm for Acoustic Echo Cancellation
Abstract:
Adaptive echo cancellers with two-path algorithm are applied to avoid the false adaptation during the double-talk situation. In the two-path algorithm, several transfer logic solutions have been proposed to control the filter update. This paper presents an improved transfer logic solution. It improves the convergence speed of the two-path algorithm, and allows the reduction of the memory elements and computational complexity. Results of simulations show the improved performance of the proposed solution.Keywords: Acoustic echo cancellation, Echo return lossenhancement (ERLE), Two-path algorithm, Transfer logic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17711481 Heat Treatment and Rest-Inserted Exercise Enhances EMG Activity of the Lower Limb
Authors: Jae Kyun Bang, Sung Jae Hwang, Chang Yong Ko, Chi Hyun Kim
Abstract:
Prolonged immobilization leads to significant weakness and atrophy of the skeletal muscle and can also impair the recovery of muscle strength following injury. Therefore, it is important to minimize the period under immobilization and accelerate the return to normal activity. This study examined the effects of heat treatment and rest-inserted exercise on the muscle activity of the lower limb during knee flexion/extension. Twelve healthy subjects were assigned to 4 groups that included: (1) heat treatment + rest-inserted exercise; (2) heat + continuous exercise; (3) no heat + rest-inserted exercise; and (4) no heat + continuous exercise. Heat treatment was applied for 15 mins prior to exercise. Continuous exercise groups performed knee flexion/extension at 0.5 Hz for 300 cycles without rest whereas rest-inserted exercise groups performed the same exercise but with 2 mins rest inserted every 60 cycles of continuous exercise. Changes in the rectus femoris and hamstring muscle activities were assessed at 0, 1, and 2 weeks of treatment by measuring the electromyography signals of isokinetic maximum voluntary contraction. Significant increases in both the rectus femoris and hamstring muscles were observed after 2 weeks of treatment only when both heat treatment and rest-inserted exercise were performed. These results suggest that combination of various treatment techniques, such as heat treatment and rest-inserted exercise, may expedite the recovery of muscle strength following immobilization.Keywords: Electromyography, Heat Treatment, Muscle, Rest-Inserted Exercise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18761480 Performance Improvement of a Supersonic External Compression Inlet by Heat Source Addition
Authors: Mohammad Reza Soltani, Mohammad Farahani, Javad Sepahi Younsi
Abstract:
Heat source addition to the axisymmetric supersonic inlet may improve the performance parameters, which will increase the inlet efficiency. In this investigation the heat has been added to the flow field at some distance ahead of an axisymmetric inlet by adding an imaginary thermal source upstream of cowl lip. The effect of heat addition on the drag coefficient, mass flow rate and the overall efficiency of the inlet have been investigated. The results show that heat addition causes flow separation, hence to prevent this phenomena, roughness has been added on the spike surface. However, heat addition reduces the drag coefficient and the inlet mass flow rate considerably. Furthermore, the effects of position, size, and shape on the inlet performance were studied. It is found that the thermal source deflects the flow streamlines. By improper location of the thermal source, the optimum condition has been obtained. For the optimum condition, the drag coefficient is considerably reduced and the inlet mass flow rate and its efficiency have been increased slightly. The optimum shape of the heat source is obtained too.Keywords: Drag coefficient, heat source, performanceparameters, supersonic inlet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22901479 Efficiency Enhancement of Photovoltaic Panels Using an Optimised Air Cooled Heat Sink
Authors: Wisam K. Hussam, Ali Alfeeli, Gergory J. Sheard
Abstract:
Solar panels that use photovoltaic (PV) cells are popular for converting solar radiation into electricity. One of the major problems impacting the performance of PV panels is the overheating caused by excessive solar radiation and high ambient temperatures, which degrades the efficiency of the PV panels remarkably. To overcome this issue, an aluminum heat sink was used to dissipate unwanted heat from PV cells. The dimensions of the heat sink were determined considering the optimal fin spacing that fulfils hot climatic conditions. In this study, the effects of cooling on the efficiency and power output of a PV panel were studied experimentally. Two PV modules were used: one without and one with a heat sink. The experiments ran for 11 hours from 6:00 a.m. to 5:30 p.m. where temperature readings in the rear and front of both PV modules were recorded at an interval of 15 minutes using sensors and an Arduino microprocessor. Results are recorded for both panels simultaneously for analysis, temperate comparison, and for power and efficiency calculations. A maximum increase in the solar to electrical conversion efficiency of 35% and almost 55% in the power output were achieved with the use of a heat sink, while temperatures at the front and back of the panel were reduced by 9% and 11%, respectively.Keywords: Photovoltaic cell, natural convection, heat sink, efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7241478 Optimization of Heat Treatment Due to Austenising Temperature, Time and Quenching Solution in Hadfield Steels
Authors: Sh. Hosseini, M. B. Limooei, M. Hossein Zade, E. Askarnia, Z. Asadi
Abstract:
Manganese steel (Hadfield) is one of the important alloys in industry due to its special properties. High work hardening ability with appropriate toughness and ductility are the properties that caused this alloy to be used in wear resistance parts and in high strength condition. Heat treatment is the main process through which the desired mechanical properties and microstructures are obtained in Hadfield steel. In this study various heat treatment cycles, differing in austenising temperature, time and quenching solution are applied. For this purpose, the same samples of manganese steel was heat treated in 9 different cycles, and then the mechanical properties and microstructures were investigated. Based on the results of the study, the optimum heat treatment cycle was obtained.
Keywords: Manganese steel (Hadfield), heat treatment, austenising temperature, austenising time, quenching solution, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44941477 Available Transmission Transfer Efficiency (ATTE) as an Index Measurement for Power Transmission Grid Performance
Authors: Ahmad Abubakar Sadiq, Mark N. Nwohu, Jacob Tsado, Ahmad A. Ashraf, Agbachi E. Okenna, Enesi E. Yahaya, Ambafi James Garba
Abstract:
Transmission system performance analysis is vital to proper planning and operations of power systems in the presence of deregulation. Key performance indicators (KPIs) are often used as measure of degree of performance. This paper gives a novel method to determine the transmission efficiency by evaluating the ratio of real power losses incurred from a specified transfer direction. Available Transmission Transfer Efficiency (ATTE) expresses the percentage of real power received resulting from inter-area available power transfer. The Tie line (Rated system path) performance is seen to differ from system wide (Network response) performance and ATTE values obtained are transfer direction specific. The required sending end quantities with specified receiving end ATC and the receiving end power circle diagram are obtained for the tie line analysis. The amount of real power loss load relative to the available transfer capability gives a measure of the transmission grid efficiency.Keywords: Available transfer capability, efficiency performance, real power, transmission system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19781476 Evaluation Performance of PID, LQR, Pole Placement Controllers for Heat Exchanger
Authors: Mohamed Essahafi, Mustapha Ait Lafkih
Abstract:
In industrial environments, the heat exchanger is a necessary component to any strategy of energy conversion. Much of thermal energy used in industrial processes passes at least one times by a heat exchanger, and methods systems recovering thermal energy. This survey paper tries to presents in a systemic way an sample control of a heat exchanger by comparison between three controllers LQR (linear quadratic regulator), PID (proportional, integrator and derivate) and Pole Placement. All of these controllers are used mainly in industrial sectors (chemicals, petrochemicals, steel, food processing, energy production, etc…) of transportation (automotive, aeronautics), but also in the residential sector and tertiary (heating, air conditioning, etc...) The choice of a heat exchanger, for a given application depends on many parameters: field temperature and pressure of fluids, and physical properties of aggressive fluids, maintenance and space. It is clear that the fact of having an exchanger appropriate, well-sized, well made and well used allows gain efficiency and energy processes.
Keywords: LQR linear-quadratic regulator, PID control, Pole Placement, Heat exchanger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43951475 Characterising the Effects of Heat Treatment on 3CR12 and AISI 316 Stainless Steels
Authors: Esther T. Akinlabi, Stephen A. Akinlabi
Abstract:
This paper reports on the effects of heat treatment on 3CR12 and AISI 316 stainless steel grades. Heat treatment was conducted on the steel grades and cooled using two different media; air and water in order to study the effect of each medium on the evolving properties of the samples. The heat treated samples were characterized through the evolving microstructure and hardness. It was found that there was a significant grain size reduction in both the heat treated stainless steel specimens compared to the parent materials. The finer grain sizes were achieved as a result of impediment to growth of one phase by the other. The Vickers microhardness values of the heat treated samples were higher compared to the parent materials due to the fact that each of the steel grades had a proportion of martensitic structures in their microstructures thereby improving the integrity of the material.
Keywords: Austenite, Ferrite, Grain size, Hardness, Martensite, Microstructure and stainless steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44221474 Influence of Orientation in Complex Building Architecture in Various Climatic Regions in Winter
Authors: M. Alwetaishi, Giulia Sonetti
Abstract:
It is architecturally accepted that building form and design is considered as one of the most important aspects in affecting indoor temperature. The total area of building plan might be identical, but the design will have a major influence on the total area of external walls. This will have a clear impact on the amount of heat exchange with outdoor. Moreover, it will affect the position and area of glazing system. This has not received enough consideration in research by the specialists, since most of the publications are highlighting the impact of building envelope in terms of physical heat transfer in buildings. This research will investigate the impact of orientation of various building forms in various climatic regions. It will be concluded that orientation and glazing to wall ratio were recognized to be the most effective variables despite the shape of the building. However, linear ad radial forms were found more appropriate shapes almost across the continent.
Keywords: Architectural building design, building form, indoor air temperature, building design in different climate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11431473 Separation of Hazardous Brominated Plastics from Waste Plastics by Froth Flotation after Surface Modification with Mild Heat-Treatment
Authors: Nguyen Thi Thanh Truc, Chi-Hyeon Lee, Byeong-Kyu Lee, Srinivasa Reddy Mallampati
Abstract:
This study evaluated to facilitate separation of ABS plastics from other waste plastics by froth flotation after surface hydrophilization of ABS with heat treatment. The mild heat treatment at 100oC for 60s could selectively increase the hydrophilicity of the ABS plastics surface (i.e., ABS contact angle decreased from 79o to 65.8o) among other plastics mixture. The SEM and XPS results of plastic samples sufficiently supported the increase in hydrophilic functional groups and decrease contact angle on ABS surface, after heat treatment. As a result of the froth flotation (at mixing speed 150 rpm and airflow rate 0.3 L/min) after heat treatment, about 85% of ABS was selectively separated from other heavy plastics with 100% of purity. The effect of optimum treatment condition and detailed mechanism onto separation efficiency in the froth floatation was also investigated. This research is successful in giving a simple, effective, and inexpensive method for ABS separation from waste plastics.Keywords: ABS, hydrophilic, heat treatment, froth flotation, contact angle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23061472 Double-Diffusive Natural Convection with Marangoni and Cooling Effects
Authors: Norazam Arbin, Ishak Hashim
Abstract:
Double-diffusive natural convection in an open top square cavity and heated from the side is studied numerically. Constant temperatures and concentration are imposed along the right and left walls while the heat balance at the surface is assumed to obey Newton-s law of cooling. The finite difference method is used to solve the dimensionless governing equations. The numerical results are reported for the effect of Marangoni number, Biot number and Prandtl number on the contours of streamlines, temperature and concentration. The predicted results for the average Nusselt number and Sherwood number are presented for various parametric conditions. The parameters involved are as follows; the thermal Marangoni number, 0 ≤ MaT ≤1000 , the solutal Marangoni number, 0 1000 c ≤ Ma ≤ , the Biot number, 0 ≤ Bi ≤ 6 , Grashof number, 5 Gr = 10 and aspect ratio 1. The study focused on both flows; thermal dominated, N = 0.8 , and compositional dominated, N = 1.3 .Keywords: Double-diffusive, Marangoni effects, heat and mass transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18701471 Entropy Generation and Heat Transfer of Cu–Water Nanofluid Mixed Convection in a Cavity
Authors: Mliki Bouchmel, Belgacem Nabil, Abbassi Mohamed Ammar, Geudri Kamel, Omri Ahmed
Abstract:
In this numerical work, mixed convection and entropy generation of Cu–water nanofluid in a lid-driven square cavity have been investigated numerically using the Lattice Boltzmann Method. Horizontal walls of the cavity are adiabatic and vertical walls have constant temperature but different values. The top wall has been considered as moving from left to right at a constant speed, U0. The effects of different parameters such as nanoparticle volume concentration (0–0.05), Rayleigh number (104–106) and Reynolds numbers (1, 10 and 100) on the entropy generation, flow and temperature fields are studied. The results have shown that addition of nanoparticles to the base fluid affects the entropy generation, flow pattern and thermal behavior especially at higher Rayleigh and low Reynolds numbers. For pure fluid as well as nanofluid, the increase of Reynolds number increases the average Nusselt number and the total entropy generation, linearly. The maximum entropy generation occurs in nanofluid at low Rayleigh number and at high Reynolds number. The minimum entropy generation occurs in pure fluid at low Rayleigh and Reynolds numbers. Also at higher Reynolds number, the effect of Cu nanoparticles on enhancement of heat transfer was decreased because the effect of lid-driven cavity was increased. The present results are validated by favorable comparisons with previously published results. The results of the problem are presented in graphical and tabular forms and discussed.Keywords: Entropy generation, mixed convection, nanofluid, lattice Boltzmann method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19511470 Analytic and Finite Element Solutions for Temperature Profiles in Welding using Varied Heat Source Models
Authors: Djarot B. Darmadi, John Norrish, Anh Kiet Tieu
Abstract:
Solutions for the temperature profile around a moving heat source are obtained using both analytic and finite element (FEM) methods. Analytic and FEM solutions are applied to study the temperature profile in welding. A moving heat source is represented using both point heat source and uniform distributed disc heat source models. Analytic solutions are obtained by solving the partial differential equation for energy conservation in a solid, and FEM results are provided by simulating welding using the ANSYS software. Comparison is made for quasi steady state conditions. The results provided by the analytic solutions are in good agreement with results obtained by FEM.Keywords: Analytic solution, FEM, Temperature profile, HeatSource Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22201469 Membrane Distillation Process Modeling: Dynamical Approach
Authors: Fadi Eleiwi, Taous Meriem Laleg-Kirati
Abstract:
This paper presents a complete dynamic modeling of a membrane distillation process. The model contains two consistent dynamic models. A 2D advection-diffusion equation for modeling the whole process and a modified heat equation for modeling the membrane itself. The complete model describes the temperature diffusion phenomenon across the feed, membrane, permeate containers and boundary layers of the membrane. It gives an online and complete temperature profile for each point in the domain. It explains heat conduction and convection mechanisms that take place inside the process in terms of mathematical parameters, and justify process behavior during transient and steady state phases. The process is monitored for any sudden change in the performance at any instance of time. In addition, it assists maintaining production rates as desired, and gives recommendations during membrane fabrication stages. System performance and parameters can be optimized and controlled using this complete dynamic model. Evolution of membrane boundary temperature with time, vapor mass transfer along the process, and temperature difference between membrane boundary layers are depicted and included. Simulations were performed over the complete model with real membrane specifications. The plots show consistency between 2D advection-diffusion model and the expected behavior of the systems as well as literature. Evolution of heat inside the membrane starting from transient response till reaching steady state response for fixed and varying times is illustrated.
Keywords: Membrane distillation, Dynamical modeling, Advection-diffusion equation, Thermal equilibrium, Heat equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28531468 Hybrid Heat Pump for Micro Heat Network
Authors: J. M. Counsell, Y. Khalid, M. J. Stewart
Abstract:
Achieving nearly zero carbon heating continues to be identified by UK government analysis as an important feature of any lowest cost pathway to reducing greenhouse gas emissions. Heat currently accounts for 48% of UK energy consumption and approximately one third of UK’s greenhouse gas emissions. Heat Networks are being promoted by UK investment policies as one means of supporting hybrid heat pump based solutions. To this effect the RISE (Renewable Integrated and Sustainable Electric) heating system project is investigating how an all-electric heating sourceshybrid configuration could play a key role in long-term decarbonisation of heat. For the purposes of this study, hybrid systems are defined as systems combining the technologies of an electric driven air source heat pump, electric powered thermal storage, a thermal vessel and micro-heat network as an integrated system. This hybrid strategy allows for the system to store up energy during periods of low electricity demand from the national grid, turning it into a dynamic supply of low cost heat which is utilized only when required. Currently a prototype of such a system is being tested in a modern house integrated with advanced controls and sensors. This paper presents the virtual performance analysis of the system and its design for a micro heat network with multiple dwelling units. The results show that the RISE system is controllable and can reduce carbon emissions whilst being competitive in running costs with a conventional gas boiler heating system.
Keywords: Gas boilers, heat pumps, hybrid heating and thermal storage, renewable integrated& sustainable electric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13131467 Heat Transfer Dependent Vortex Shedding of Thermo-Viscous Shear-Thinning Fluids
Authors: Markus Rütten, Olaf Wünsch
Abstract:
Non-Newtonian fluid properties can change the flow behaviour significantly, its prediction is more difficult when thermal effects come into play. Hence, the focal point of this work is the wake flow behind a heated circular cylinder in the laminar vortex shedding regime for thermo-viscous shear thinning fluids. In the case of isothermal flows of Newtonian fluids the vortex shedding regime is characterised by a distinct Reynolds number and an associated Strouhal number. In the case of thermo-viscous shear thinning fluids the flow regime can significantly change in dependence of the temperature of the viscous wall of the cylinder. The Reynolds number alters locally and, consequentially, the Strouhal number globally. In the present CFD study the temperature dependence of the Reynolds and Strouhal number is investigated for the flow of a Carreau fluid around a heated cylinder. The temperature dependence of the fluid viscosity has been modelled by applying the standard Williams-Landel-Ferry (WLF) equation. In the present simulation campaign thermal boundary conditions have been varied over a wide range in order to derive a relation between dimensionless heat transfer, Reynolds and Strouhal number. Together with the shear thinning due to the high shear rates close to the cylinder wall this leads to a significant decrease of viscosity of three orders of magnitude in the nearfield of the cylinder and a reduction of two orders of magnitude in the wake field. Yet the shear thinning effect is able to change the flow topology: a complex K´arm´an vortex street occurs, also revealing distinct characteristic frequencies associated with the dominant and sub-dominant vortices. Heating up the cylinder wall leads to a delayed flow separation and narrower wake flow, giving lesser space for the sequence of counter-rotating vortices. This spatial limitation does not only reduce the amplitude of the oscillating wake flow it also shifts the dominant frequency to higher frequencies, furthermore it damps higher harmonics. Eventually the locally heated wake flow smears out. Eventually, the CFD simulation results of the systematically varied thermal flow parameter study have been used to describe a relation for the main characteristic order parameters.Keywords: Heat transfer, thermo-viscous fluids, shear thinning, vortex shedding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8381466 A Survey on Positive Real and Strictly Positive Real Scalar Transfer Functions
Authors: Mojtaba Hakimi-Moghaddam
Abstract:
Positive real and strictly positive real transfer functions are important concepts in the control theory. In this paper, the results of researches in these areas are summarized. Definitions together with their graphical interpretations are mentioned. The equivalent conditions in the frequency domain and state space representations are reviewed. Their equivalent electrical networks are explained. Also, a comprehensive discussion about a difference between behavior of real part of positive real and strictly positive real transfer functions in high frequencies is presented. Furthermore, several illustrative examples are given.Keywords: Real rational transfer functions, positive realness property, strictly positive realness property, equivalent conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23871465 Studying the Temperature Field of Hypersonic Vehicle Structure with Aero-Thermo-Elasticity Deformation
Authors: Geng Xiangren, Liu Lei, Gui Ye-Wei, Tang Wei, Wang An-ling
Abstract:
The malfunction of thermal protection system (TPS) caused by aerodynamic heating is a latent trouble to aircraft structure safety. Accurately predicting the structure temperature field is quite important for the TPS design of hypersonic vehicle. Since Thornton’s work in 1988, the coupled method of aerodynamic heating and heat transfer has developed rapidly. However, little attention has been paid to the influence of structural deformation on aerodynamic heating and structural temperature field. In the flight, especially the long-endurance flight, the structural deformation, caused by the aerodynamic heating and temperature rise, has a direct impact on the aerodynamic heating and structural temperature field. Thus, the coupled interaction cannot be neglected. In this paper, based on the method of static aero-thermo-elasticity, considering the influence of aero-thermo-elasticity deformation, the aerodynamic heating and heat transfer coupled results of hypersonic vehicle wing model were calculated. The results show that, for the low-curvature region, such as fuselage or center-section wing, structure deformation has little effect on temperature field. However, for the stagnation region with high curvature, the coupled effect is not negligible. Thus, it is quite important for the structure temperature prediction to take into account the effect of elastic deformation. This work has laid a solid foundation for improving the prediction accuracy of the temperature distribution of aircraft structures and the evaluation capacity of structural performance.
Keywords: Aero-thermo-elasticity, elastic deformation, structural temperature, multi-field coupling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8941464 Identifying Impact Factors in Technology Transfer with the Aim of Technology Localization
Authors: L.Tahmooresnejad, M.A.Shafia, R.Salami
Abstract:
Technology transfer is a common method for companies to acquire new technology and presents both challenges and substantial benefits. In some cases especially in developing countries, the mere possession of technology does not guarantee a competitive advantage if the appropriate infrastructure is not in place. In this paper, we identify the localization factors needed to provide a better understanding of the conditions necessary for localization in order to benefit from future technology developments. Our theoretical and empirical analyses allow us to identify several factors in the technology transfer process that affect localization and provide leverage in enhancing capabilities and absorptive capacity.The impact factors are categorized within different groups of government, firms, institutes and market, and are verified through the empirical survey of a technology transfer experience. Moreover, statistical analysis has allowed a deeper understanding of the importance of each factor and has enabled each group to prioritize their organizational policies to effectively localize their technology.Keywords: Absorption Capacity, Adaptation, Technology Transfer, Technology Localization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18141463 Multi-Linear Regression Based Prediction of Mass Transfer by Multiple Plunging Jets
Abstract:
The paper aims to compare the performance of vertical and inclined multiple plunging jets and to model and predict their mass transfer capacity by multi-linear regression based approach. The multiple vertical plunging jets have jet impact angle of θ = 90O; whereas, multiple inclined plunging jets have jet impact angle of θ = 60O. The results of the study suggests that mass transfer is higher for multiple jets, and inclined multiple plunging jets have up to 1.6 times higher mass transfer than vertical multiple plunging jets under similar conditions. The derived relationship, based on multi-linear regression approach, has successfully predicted the volumetric mass transfer coefficient (KLa) from operational parameters of multiple plunging jets with a correlation coefficient of 0.973, root mean square error of 0.002 and coefficient of determination of 0.946. The results suggests that predicted overall mass transfer coefficient is in good agreement with actual experimental values; thereby, suggesting the utility of derived relationship based on multi-linear regression based approach and can be successfully employed in modeling mass transfer by multiple plunging jets.
Keywords: Mass transfer, multiple plunging jets, multi-linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200