**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**32918

##### Heat Transfer Dependent Vortex Shedding of Thermo-Viscous Shear-Thinning Fluids

**Authors:**
Markus Rütten,
Olaf Wünsch

**Abstract:**

**Keywords:**
Heat transfer,
thermo-viscous fluids,
shear thinning,
vortex shedding.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1131305

**References:**

[1] Andrade, E. N. D.: A theory of the viscosity of liquids. part 1. Philosophical Magazine, Vol. 17, pp. 497-511, 1934.

[2] CentaurSoftware, http://www.centaursoft.com.

[3] Bird, R. B.: Non-Newtonian behavior of polymeric liquids. Physica A: Statistical and Theoretical Physics, Vol. 118, No. 1-3, pp. 3-16, 1983.

[4] Bird, R. B., Curtiss, C. F.: Nonisothermal polymeric fluids. Rheol. Acta, 35:103109, 1983.

[5] Bird, R. B., Hassager, O.: Dynamics of Polymeric Liquids: Vol.1: Fluid Mechanics. Series: Dynamics of Polymeric Liquids, London, New York, John Wiley & Sons, 1987.

[6] Bogn´ar, G., Kov´acs, J.: Non-isothermal steady flow of power-law fluids between parallel plates. International Journal of Mathematical Models and Methods in Applied Science, 6(1), 2012.

[7] Carreau, P. J.: Rheological equations from molecular network theories. J. Rheol., Vol. 16, No. 1, pp. 99-127, 1972.

[8] Chabral, B.; Leedom, L. C.: Imaging Vector Fields Using Line Integral Convolution. In: Proceedings of SIGGRAPH 93. pp. 263-270, New York, 1993.

[9] Coelho, P. M.; Pinho, F. T. Vortex shedding in cylinder flow of shear-thinning fluids. II. Flow characteristics. J. Non-Newtonian Fluid Mech. Vol. 110, pp. 177-193, 2003.

[10] Eisenlohr, H., Eckelmann, H.: Vortex splitting and its consequences in the vortex street wake of cylinders at low Reynolds number. Phys. Fluids A 1 (2), pp. 189192, 1989.

[11] Ferry, J. D.: Viscoleastic Properties of Polymers. Third edition, New York; John Wiley & Sons, 1980.

[12] Fey, U., K¨onig, M., Eckelmann, H.: A new Strouhal Reynolds number relationship for the circular cylinder in the range 47 ¡ Re ¡ 2 105. Phys. Fluids 10, pp. 15471549, 1998.

[13] von Ka´rma´n, Th.: U¨ ber den Mechanismus des Widerstandes, den ein bewegter K¨orper in einer Fl¨ussigkeit erf¨ahrt. Nachrichten der K. Gesellschaft der Wissenschaften zu G¨ottingen, Mathematisch-physikalische Klasse, 1911.

[14] von Ka´rma´n, Th., Rubach. H.: U¨ ber den Mechanismus des Flu¨ssigkeitsund Luftwiderstandes. Physikalische Zeitschrift, 13, pp. 4959, 1911.

[15] Knopp, T., Zhang, X., Kessler, R. and Lube, G.: Enhancement of an industrial finite-volume code for large-eddy-type simulation of incompressible high Reynolds number flow using near-wall modelling. Journal of Computer Methods in Applied Mechanics and Engineering, Vol. 199, pp. 890-902, 2010.

[16] Monkewitz P. A., Williamson, C. H. K., Miller, G. D.: Phase dynamics of K´arm´an vortices in cylinder wakes, Phys. Fluids 8, pp. 9196, 1996.

[17] Ostwald, W.: Ueber die rechnerische Darstellung des Strukturgebietes der Viskosit¨at, Kolloid Zeitschrift 47 (2), pp. 176-187, 1929.

[18] Owens, R. G.,Phillips, T. N.: Computational Rheology. Computational Rheology. Imperial College Press, ISBN 9781860941863, 2002.

[19] Skelland, A. H. P.: Non-Newtonian flow and heat transfer. John Wiley & Sons, New York, 1967.

[20] Soares, A. A., Ferreira, J. M., Chhabra, R. P.: Flow and Forced Convection Heat Transfer in Crossflow of Non-Newtonian Fluids over a Circular Cylinder. Ind. Eng. Chem. Res. Vol. 44, pp. 5815-5827, 2003.

[21] V´ıt, T., Ren, M., Tr´avn´ıˇcek, Z.,: Marˇs´ık, F.: The influence of temperature gradient on the StrouhalReynolds number relationship for water and air. Experimental Thermal and Fluid Science, Vol. 31, pp. 751-760, 2007.

[22] Wang, A.-B. , Tr´avn´ıˇcek, Z., Chia, K.-C.: On the relationship of effective Reynolds number and Strouhal number for the laminar vortex shedding of a heated circular cylinder. Phys. Fluids 12 (6), pp. 1401-1410, 2000.

[23] Wendt, J. F. (Ed.): Computational Fluid Dynamics - An Introduction. Third edition, Berlin, Heidelberg; Springer, 2009.

[24] Williams, M. L., Landel, R. F., Ferry, J. D: The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. Journal of the American Chemical Society, Vol. 77, pp. 3701-3707, 1955.

[25] Williamson, C. H. K.: Vortex dynamics in the cylinder wake, Ann. Rev. Fluid. Mech. 28, pp. 477539, 1996.