{"title":"Available Transmission Transfer Efficiency (ATTE) as an Index Measurement for Power Transmission Grid Performance","authors":"Ahmad Abubakar Sadiq, Mark N. Nwohu, Jacob Tsado, Ahmad A. Ashraf, Agbachi E. Okenna, Enesi E. Yahaya, Ambafi James Garba","volume":101,"journal":"International Journal of Electrical and Computer Engineering","pagesStart":1130,"pagesEnd":1136,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10001332","abstract":"Transmission system performance analysis is vital to\r\nproper planning and operations of power systems in the presence of\r\nderegulation. Key performance indicators (KPIs) are often used as\r\nmeasure of degree of performance. This paper gives a novel method\r\nto determine the transmission efficiency by evaluating the ratio of\r\nreal power losses incurred from a specified transfer direction.\r\nAvailable Transmission Transfer Efficiency (ATTE) expresses the\r\npercentage of real power received resulting from inter-area available\r\npower transfer. The Tie line (Rated system path) performance is seen\r\nto differ from system wide (Network response) performance and\r\nATTE values obtained are transfer direction specific. The required\r\nsending end quantities with specified receiving end ATC and the\r\nreceiving end power circle diagram are obtained for the tie line\r\nanalysis. The amount of real power loss load relative to the available\r\ntransfer capability gives a measure of the transmission grid\r\nefficiency.","references":"[1] Marannino, P., Bresesti, P., Garavaglia, A., Zanellini, F., &Vailati, R.\r\n(2002). Assessing the Transmission Transfer Capability Sensitivity to\r\nPower System Parameters. 14th PSCC, (pp. 1-7). Sevilla.\r\n[2] NERC. (1996). Available Transfer Capability Definitions and\r\nDetermination. NewYork: North American Electric Reliability Council.\r\n[3] Omar, H. A., Masoud, A.-T., Mohammed, A.-w., Khalfan, A.-Q., Saqar,\r\nA.-F., Ibrahim, A.-B., et al. (2009). Key Performance Indicatorsof a\r\nTransmission System. Sultanate of Oman: Oman Electricity\r\nTransmission Company.\r\n[4] Arthit, S.-Y. (2009). System and Network Performance Indicators for\r\nthe Electricity Generating Authority of Thailand:Current and Future\r\nones. Journal of Practical Electrical Engineering, 1 (1), 8-20.\r\n[5] Abu Dhabi Transmission and Dispatch Company TRANSCO. (2011).\r\nElectricity Networks Annual Technical Report. Abu Dhabi.\r\n[6] Labo, H. S. (2010). Investors Forum forthePrivatisationof PHCN\r\nSuccessor Companies. Abuja: Transmission Company of Nigeria.\r\n[7] Onahaebe, O., &Apeh, S. (2007). Voltage Instability in Electrical\r\nNetwork: A case study of Nigerian 330kV Transmission Grid. Research\r\nJournal of Applied Sciences 2 (8), 865 - 874.\r\n[8] Sadiq, A., &Nwohu, M. (2013). Evaluation of Inter- Area Transfer\r\nCapability of Nigerian 330kV Network. International Journal\r\nEngineering and Technology Vol. 3 No. 2, 148-158.\r\n[9] Hamoud, G. (2000). Feasibility Assessment of simultaneous bilateral\r\ntransaction in a deregulated environment. IEEE Transaction on power\r\nsystem, 15 (1):22-6.\r\n[10] Liu, C.-C., & Li, G. (2004). Available Transfer Capability\r\nDetermination. Abuja: Third NSF Workshop on US-Africa Research and\r\nEducation Collaboration.\r\n[11] Yan, O., &Chanan, S. (2002). Assessment of Available Transfer\r\nCapability and Margins. IEEE Transaction on Power systems, vol. 17,\r\nno. 2, 463-468.\r\n[12] Mark, H. G., & Chika, N. (1999). Available Transfer Capability and\r\nFirst order Sensitivity. IEEE Transaction on Power System, 512-518.\r\n[13] Babulal, C., &Kannan, P. (2006). A Novel Approach for ATC\r\nComputation in Deregulated Environment. J. Electrical Systems 2-3,\r\n146-161.\r\n[14] Venkataramana, A., & Colin, C. (1992). The Continuation Power Flow:\r\nA Tool for Steady State Voltage Stability Analysis. IEEE Transactions\r\nPower System, 416-423.\r\n[15] Ejebe, G., Tong, J., Waight, J., Frame, J., Wang, X., &Tinney, W.\r\n(1998). Available Transfer Capability Calculations. IEEE Transaction on\r\nPower Systems, Vol.13, No.4, 1521-1527.\r\n[16] Hsiao-Dong, C., Alexander, J. F., Kirit, S. S., & Neal, B. (1995).\r\nCPFLOW: A Practical Tool for Tracing Power System Steady-State\r\nStationary Behavior Due to Load and Generation Variations. IEEE\r\nTransaction on Power Systems, Vol.10, No. 2, 623-633.\r\n[17] Liang, M., & Ali, A. (2006). Total Transfer Capability Computation for\r\nMulti - Area Power Systems. IEEE Transactions on Power Systems, vol.\r\n21, no. 3, 1141-1147.\r\n[18] Yuan-Kang, W. (2007). A novel algorithm for ATC calculations and\r\napplications in deregulated electricity markets. Electrical Power and\r\nEnergy Systems, 810-821.\r\n[19] Saadat, H. (1999). Power System Analysis. In H. Saadat, Line Model\r\nand Performance New Delhi: Tata McGraw-Hill. pp. 142-16\r\n[20] Ahmad, S. A., Mark, N. N., &Okenna, E. A. (2014). Available Transfer\r\nCapability as index for Transmission Network Performance-A case\r\nstudy of Nigerian 330kV Transmission Grid. International Journal on\r\nElectrical Engineering and Informatics, 6 (3), pp 479-496","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 101, 2015"}