Search results for: hybrid techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3133

Search results for: hybrid techniques

2713 Bearing Condition Monitoring with Acoustic Emission Techniques

Authors: Faisal AlShammari, Abdulmajid Addali

Abstract:

Monitoring the conditions of rotating machinery, such as bearings, is important in order to improve the stability of work. Acoustic Emission (AE) and vibration analysis are some of the most accomplished techniques used for this purpose. Acoustic emission has the ability to detect the initial phase of component degradation. Moreover, it has been observed that vibration analysis is not as successful at low rotational speeds (below 100 rpm). This because the energy generated within this speed region is not detectable using conventional vibration. From this perspective, this paper has presented a brief review of using acoustic emission techniques for monitoring bearing conditions.

Keywords: Condition monitoring, stress wave analysis, low-speed bearings, bearing defect diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3801
2712 Experimental Analysis and Numerical Simulation of Smart Sandwich Beams Behavior in Honeycomb Magnetorheological Elastomer

Authors: A. Khebli, S. Aguib, Y. Kateb, L. Guenfoud, N. Chikh, M. Tourab, T. Djedid, W. Dilmi, A. Hadidi, H. Meglouli

Abstract:

Composite structures based on magnetorheological elastomers (MREs) are widely used in many industrial sectors, such as automotive, naval, railway, aeronautical, aerospace, and building industries because of their adjustable mechanical properties by an external stimulus. In this work, experimental tests and numerical simulations carried out have shown that the use of these new structures, developed from honeycomb core, and MRE with aluminum skins, make it possible to improve particularly the overall rigidity and to reduce the vibration amplitudes. The results found showed that these hybrid structures have a very good mechanical resistance due mainly to the honeycomb core, and a very good shock absorber due mainly to the core of the MRE. The elaborated composite structure is intended to be used in industrial sectors subject to great efforts and a high amplitude of vibration such as helicopter wings and air turbines.

Keywords: Hybrid sandwich structures, magnetorheological elastomer, honeycomb, 3-point bending, mechanical strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 180
2711 Design and Sensitivity Analysis of Photovoltaic/Thermal Solar Collector

Authors: H. M. Farghally, N. M. Ahmed, H. T. El-Madany, D. M. Atia, F. H. Fahmy

Abstract:

Energy is required in almost every aspect of human activities and development of any nation in the world. Increasing fossil fuel price, energy security and climate change have important bearings on sustainable development of any nation. The renewable energy technology is considered one of the drastic approaches which taken over the world to reduce the energy problem. The preservation of vegetables by freezing is one of the most important methods of retaining quality in agricultural products over long-term storage periods. Freezing factories show high demand of energy for both heat and electricity; the hybrid Photovoltaic/Thermal (PV/T) systems could be used in order to meet this requirement. This paper presents PV/T system design for freezing factory. Also, the complete mathematical modeling and MATLAB SIMULINK of PV/T collector is introduced. The sensitivity analysis for the manufacturing parameters of PV/T collector is carried out to study their effect on both thermal and electrical efficiency.

Keywords: Renewable energy, Hybrid PV/T system, Sensitivity analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3894
2710 Tools and Techniques in Risk Assessment in Public Risk Management Organisations

Authors: Atousa Khodadadyan, Gabe Mythen, Hirbod Assa, Beverley Bishop

Abstract:

Risk assessment and the knowledge provided through this process is a crucial part of any decision-making process in the management of risks and uncertainties. Failure in assessment of risks can cause inadequacy in the entire process of risk management, which in turn can lead to failure in achieving organisational objectives as well as having significant damaging consequences on populations affected by the potential risks being assessed. The choice of tools and techniques in risk assessment can influence the degree and scope of decision-making and subsequently the risk response strategy. There are various available qualitative and quantitative tools and techniques that are deployed within the broad process of risk assessment. The sheer diversity of tools and techniques available to practitioners makes it difficult for organisations to consistently employ the most appropriate methods. This tools and techniques adaptation is rendered more difficult in public risk regulation organisations due to the sensitive and complex nature of their activities. This is particularly the case in areas relating to the environment, food, and human health and safety, when organisational goals are tied up with societal, political and individuals’ goals at national and international levels. Hence, recognising, analysing and evaluating different decision support tools and techniques employed in assessing risks in public risk management organisations was considered. This research is part of a mixed method study which aimed to examine the perception of risk assessment and the extent to which organisations practise risk assessment’ tools and techniques. The study adopted a semi-structured questionnaire with qualitative and quantitative data analysis to include a range of public risk regulation organisations from the UK, Germany, France, Belgium and the Netherlands. The results indicated the public risk management organisations mainly use diverse tools and techniques in the risk assessment process. The primary hazard analysis; brainstorming; hazard analysis and critical control points were described as the most practiced risk identification techniques. Within qualitative and quantitative risk analysis, the participants named the expert judgement, risk probability and impact assessment, sensitivity analysis and data gathering and representation as the most practised techniques.

Keywords: Decision-making, public risk management organisations, risk assessment, tools and techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
2709 New EEM/BEM Hybrid Method for Electric Field Calculation in Cable Joints

Authors: Nebojsa B. Raicevic, Slavoljub R. Aleksic, Sasa S. Ilic

Abstract:

A power cable is widely used for power supply in power distributing networks and power transmission lines. Due to limitations in the production, delivery and setting up power cables, they are produced and delivered in several separate lengths. Cable itself, consists of two cable terminations and arbitrary number of cable joints, depending on the cable route length. Electrical stress control is needed to prevent a dielectric breakdown at the end of the insulation shield in both the air and cable insulation. Reliability of cable joint depends on its materials, design, installation and operating environment. The paper describes design and performance results for new modeled cable joints. Design concepts, based on numerical calculations, must be correct. An Equivalent Electrodes Method/Boundary Elements Method-hybrid approach that allows electromagnetic field calculations in multilayer dielectric media, including inhomogeneous regions, is presented.

Keywords: Cable joints, deflector's cones, equivalent electrodemethod, electric field distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210
2708 Performance Evaluation of Karanja Oil Based Biodiesel Engine Using Modified Genetic Algorithm

Authors: G. Bhushan, S. Dhingra, K. K. Dubey

Abstract:

This paper presents the evaluation of performance (BSFC and BTE), combustion (Pmax) and emission (CO, NOx, HC and smoke opacity) parameters of karanja biodiesel in a single cylinder, four stroke, direct injection diesel engine by considering significant engine input parameters (blending ratio, compression ratio and load torque). Multi-objective optimization of performance, combustion and emission parameters is also carried out in a karanja biodiesel engine using hybrid RSM-NSGA-II technique. The pareto optimum solutions are predicted by running the hybrid RSM-NSGA-II technique. Each pareto optimal solution is having its own importance. Confirmation tests are also conducted at randomly selected few pareto solutions to check the authenticity of the results.

Keywords: Karanja biodiesel, single cylinder direct injection diesel engine, response surface methodology, central composite rotatable design, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
2707 A Hybrid Approach for Quantification of Novelty in Rule Discovery

Authors: Vasudha Bhatnagar, Ahmed Sultan Al-Hegami, Naveen Kumar

Abstract:

Rule Discovery is an important technique for mining knowledge from large databases. Use of objective measures for discovering interesting rules lead to another data mining problem, although of reduced complexity. Data mining researchers have studied subjective measures of interestingness to reduce the volume of discovered rules to ultimately improve the overall efficiency of KDD process. In this paper we study novelty of the discovered rules as a subjective measure of interestingness. We propose a hybrid approach that uses objective and subjective measures to quantify novelty of the discovered rules in terms of their deviations from the known rules. We analyze the types of deviation that can arise between two rules and categorize the discovered rules according to the user specified threshold. We implement the proposed framework and experiment with some public datasets. The experimental results are quite promising.

Keywords: Knowledge Discovery in Databases (KDD), Data Mining, Rule Discovery, Interestingness, Subjective Measures, Novelty Measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
2706 Coverage and Connectivity Problem in Sensor Networks

Authors: Meenakshi Bansal, Iqbal Singh, Parvinder S. Sandhu

Abstract:

In over deployed sensor networks, one approach to Conserve energy is to keep only a small subset of sensors active at Any instant. For the coverage problems, the monitoring area in a set of points that require sensing, called demand points, and consider that the node coverage area is a circle of range R, where R is the sensing range, If the Distance between a demand point and a sensor node is less than R, the node is able to cover this point. We consider a wireless sensor network consisting of a set of sensors deployed randomly. A point in the monitored area is covered if it is within the sensing range of a sensor. In some applications, when the network is sufficiently dense, area coverage can be approximated by guaranteeing point coverage. In this case, all the points of wireless devices could be used to represent the whole area, and the working sensors are supposed to cover all the sensors. We also introduce Hybrid Algorithm and challenges related to coverage in sensor networks.

Keywords: Wireless sensor networks, network coverage, Energy conservation, Hybrid Algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
2705 Modified Hybrid Genetic Algorithm-Based Artificial Neural Network Application on Wall Shear Stress Prediction

Authors: Zohreh Sheikh Khozani, Wan Hanna Melini Wan Mohtar, Mojtaba Porhemmat

Abstract:

Prediction of wall shear stress in a rectangular channel, with non-homogeneous roughness distribution, was studied. Estimation of shear stress is an important subject in hydraulic engineering, since it affects the flow structure directly. In this study, the Genetic Algorithm Artificial (GAA) neural network is introduced as a hybrid methodology of the Artificial Neural Network (ANN) and modified Genetic Algorithm (GA) combination. This GAA method was employed to predict the wall shear stress. Various input combinations and transfer functions were considered to find the most appropriate GAA model. The results show that the proposed GAA method could predict the wall shear stress of open channels with high accuracy, by Root Mean Square Error (RMSE) of 0.064 in the test dataset. Thus, using GAA provides an accurate and practical simple-to-use equation.

Keywords: Artificial neural network, genetic algorithm, genetic programming, rectangular channel, shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 672
2704 Comparative Performance Analysis of Nonlinearity Cancellation Techniques for MOS-C Realization in Integrator Circuits

Authors: Hasan Çiçekli, Ahmet Gökçen, Uğur Çam

Abstract:

In this paper, a comparative performance analysis of mostly used four nonlinearity cancellation techniques used to realize the passive resistor by MOS transistors, is presented. The comparison is done by using an integrator circuit which is employing sequentially Op-amp, OTRA and ICCII as active element. All of the circuits are implemented by MOS-C realization and simulated by PSPICE program using 0.35μm process TSMC MOSIS model parameters. With MOS-C realization, the circuits became electronically tunable and fully integrable which is very important in IC design. The output waveforms, frequency responses, THD analysis results and features of the nonlinearity cancellation techniques are also given.

Keywords: Integrator circuits, MOS-C realization, nonlinearity cancellation, tunable resistors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116
2703 Chemical Reaction Algorithm for Expectation Maximization Clustering

Authors: Li Ni, Pen ManMan, Li KenLi

Abstract:

Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.

Keywords: Chemical reaction optimization, expectation maximization, initial, objective function clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
2702 A Hybrid Overset Algorithm for Aerodynamic Problems with Moving Objects

Authors: S. M. H. Karimian, F. S. Salehi, H. Alisadeghi

Abstract:

A two-dimensional moving mesh algorithm is developed to simulate the general motion of two rotating bodies with relative translational motion. The grid includes a background grid and two sets of grids around the moving bodies. With this grid arrangement rotational and translational motions of two bodies are handled separately, with no complications. Inter-grid boundaries are determined based on their distances from two bodies. In this method, the overset concept is applied to hybrid grid, and flow variables are interpolated using a simple stencil. To evaluate this moving mesh algorithm unsteady Euler flow is solved for different cases using dual-time method of Jameson. Numerical results show excellent agreement with experimental data and other numerical results. To demonstrate the capability of present algorithm for accurate solution of flow fields around moving bodies, some benchmark problems have been defined in this paper.

Keywords: Moving mesh, Overset grid, Unsteady Euler, Relative motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
2701 Signature Recognition and Verification using Hybrid Features and Clustered Artificial Neural Network(ANN)s

Authors: Manasjyoti Bhuyan, Kandarpa Kumar Sarma, Hirendra Das

Abstract:

Signature represents an individual characteristic of a person which can be used for his / her validation. For such application proper modeling is essential. Here we propose an offline signature recognition and verification scheme which is based on extraction of several features including one hybrid set from the input signature and compare them with the already trained forms. Feature points are classified using statistical parameters like mean and variance. The scanned signature is normalized in slant using a very simple algorithm with an intention to make the system robust which is found to be very helpful. The slant correction is further aided by the use of an Artificial Neural Network (ANN). The suggested scheme discriminates between originals and forged signatures from simple and random forgeries. The primary objective is to reduce the two crucial parameters-False Acceptance Rate (FAR) and False Rejection Rate (FRR) with lesser training time with an intension to make the system dynamic using a cluster of ANNs forming a multiple classifier system.

Keywords: offline, algorithm, FAR, FRR, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
2700 Probabilistic Bayesian Framework for Infrared Face Recognition

Authors: Moulay A. Akhloufi, Abdelhakim Bendada

Abstract:

Face recognition in the infrared spectrum has attracted a lot of interest in recent years. Many of the techniques used in infrared are based on their visible counterpart, especially linear techniques like PCA and LDA. In this work, we introduce a probabilistic Bayesian framework for face recognition in the infrared spectrum. In the infrared spectrum, variations can occur between face images of the same individual due to pose, metabolic, time changes, etc. Bayesian approaches permit to reduce intrapersonal variation, thus making them very interesting for infrared face recognition. This framework is compared with classical linear techniques. Non linear techniques we developed recently for infrared face recognition are also presented and compared to the Bayesian face recognition framework. A new approach for infrared face extraction based on SVM is introduced. Experimental results show that the Bayesian technique is promising and lead to interesting results in the infrared spectrum when a sufficient number of face images is used in an intrapersonal learning process.

Keywords: Face recognition, biometrics, probabilistic imageprocessing, infrared imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
2699 FEA-Based Calculation of Performances of IPM Machines with Five Topologies for Hybrid- Electric Vehicle Traction

Authors: Aimeng Wang, Dejun Ma, Hui Wang

Abstract:

The paper presents a detailed calculation of characteristic of five different topology permanent magnet machines for high performance traction including hybrid -electric vehicles using finite element analysis (FEA) method. These machines include V-shape single layer interior PM, W-shape single-layer interior PM, Segment interior PM and surface PM on the rotor and with distributed winding on the stator. The performance characteristics which include the back-emf voltage and its harmonic, magnet mass, iron loss and ripple torque are compared and analyzed. One of a 7.5kW IPM prototype was tested and verified finite-element analysis results. The aim of the paper is given some guidance and reference for machine designer which are interested in IPM machine selection for high performance traction application.

Keywords: Interior permanent magnet machine, finite-element analysis (FEA), five topologies, electric vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3925
2698 A Hybrid Gene Selection Technique Using Improved Mutual Information and Fisher Score for Cancer Classification Using Microarrays

Authors: M. Anidha, K. Premalatha

Abstract:

Feature Selection is significant in order to perform constructive classification in the area of cancer diagnosis. However, a large number of features compared to the number of samples makes the task of classification computationally very hard and prone to errors in microarray gene expression datasets. In this paper, we present an innovative method for selecting highly informative gene subsets of gene expression data that effectively classifies the cancer data into tumorous and non-tumorous. The hybrid gene selection technique comprises of combined Mutual Information and Fisher score to select informative genes. The gene selection is validated by classification using Support Vector Machine (SVM) which is a supervised learning algorithm capable of solving complex classification problems. The results obtained from improved Mutual Information and F-Score with SVM as a classifier has produced efficient results.

Keywords: Gene selection, mutual information, Fisher score, classification, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
2697 Iron(III)-Tosylate Doped PEDOT and PEG: A Nanoscale Conductivity Study of an Electrochemical System with Biosensing Applications

Authors: Giulio Rosati, Luciano Sappia, Rossana Madrid, Noemi Rozlòsnik

Abstract:

The addition of PEG of different molecular weights has important effects on the physical, electrical and electrochemical properties of iron(III)-tosylate doped PEDOT. This particular polymer can be easily spin coated over plastic discs, optimizing thickness and uniformity of the PEDOT-PEG films. The conductivity and morphological analysis of the hybrid PEDOT-PEG polymer by 4-point probe (4PP), 12-point probe (12PP), and conductive AFM (C-AFM) show strong effects of the PEG doping. Moreover, the conductive films kinetics at the nanoscale, in response to different bias voltages, change radically depending on the PEG molecular weight. The hybrid conductive films show also interesting electrochemical properties, making the PEDOT PEG doping appealing for biosensing applications both for EIS-based and amperometric affinity/catalytic biosensors.

Keywords: Atomic force microscopy, biosensors, four-point probe, nano-films, PEDOT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383
2696 Improving Students’ Participation in Group Tasks: Case Study of Adama Science and Technology University

Authors: Fiseha M. Guangul, Annissa Muhammed, Aja O. Chikere

Abstract:

Group task is one method to create the conducive environment for the active teaching-learning process. Performing group task with active involvement of students will benefit the students in many ways. However, in most cases all students do not participate actively in the group task, and hence the intended benefits are not acquired. This paper presents the improvements of students’ participation in the group task and learning from the group task by introducing different techniques to enhance students’ participation. For the purpose of this research Carpentry and Joinery II (WT-392) course from Wood Technology Department at Adama Science and Technology University was selected, and five groups were formed. Ten group tasks were prepared and the first five group tasks were distributed to the five groups in the first day without introducing the techniques that are used to enhance participation of students in the group task. On another day, the other five group tasks were distributed to the same groups and various techniques were introduced to enhance students’ participation in the group task. The improvements of students’ learning from the group task after the implementation of the techniques. After implementing the techniques the evaluation showed that significant improvements were obtained in the students’ participation and learning from the group task.

Keywords: Active learning, evaluation method, group task, students participation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 748
2695 Critical Analysis of Different Actuation Techniques for a Micro Cantilever

Authors: B. G. Sheeparamatti, Prashant Hanasi, Vanita Abbigeri

Abstract:

The objective of this work is to carryout critical comparison of different actuation mechanisms like electrostatic, thermal, piezoelectric, and magnetic with reference to a micro cantilever. The relevant parameters like force generated, displacement are compared in actuation methods. With these results, helps in choosing the best actuation method for a particular application. In this study, Comsol/Multiphysics software is used. Modeling and simulation is done by considering the micro cantilever of same dimensions as an actuator using all the above mentioned actuation techniques. In addition to their small size, micro actuators consume very little power and are capable of accurate results. In this work, a comparison of actuation mechanisms is done to decide the efficient system in micro domain.

Keywords: Actuation techniques, microswitch, micro actuator, microsystems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
2694 Electric Load Forecasting Using Genetic Based Algorithm, Optimal Filter Estimator and Least Error Squares Technique: Comparative Study

Authors: Khaled M. EL-Naggar, Khaled A. AL-Rumaih

Abstract:

This paper presents performance comparison of three estimation techniques used for peak load forecasting in power systems. The three optimum estimation techniques are, genetic algorithms (GA), least error squares (LS) and, least absolute value filtering (LAVF). The problem is formulated as an estimation problem. Different forecasting models are considered. Actual recorded data is used to perform the study. The performance of the above three optimal estimation techniques is examined. Advantages of each algorithms are reported and discussed.

Keywords: Forecasting, Least error squares, Least absolute Value, Genetic algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2723
2693 Development of a Project Selection Method on Information System Using ANP and Fuzzy Logic

Authors: Ingu Kim, Shangmun Shin, Yongsun Choi, Nguyen Manh Thang, Edwin R. Ramos, Won-Joo Hwang

Abstract:

Project selection problems on management information system (MIS) are often considered a multi-criteria decision-making (MCDM) for a solving method. These problems contain two aspects, such as interdependencies among criteria and candidate projects and qualitative and quantitative factors of projects. However, most existing methods reported in literature consider these aspects separately even though these two aspects are simultaneously incorporated. For this reason, we proposed a hybrid method using analytic network process (ANP) and fuzzy logic in order to represent both aspects. We then propose a goal programming model to conduct an optimization for the project selection problems interpreted by a hybrid concept. Finally, a numerical example is conducted as verification purposes.

Keywords: Analytic Network Process (ANP), Multi-Criteria Decision-Making (MCDM), Fuzzy Logic, Information System Project Selection, Goal Programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
2692 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model

Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li

Abstract:

Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.

Keywords: Spatial Information Network, Traffic prediction, Wavelet decomposition, Time series model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 637
2691 Comparison between Associative Classification and Decision Tree for HCV Treatment Response Prediction

Authors: Enas M. F. El Houby, Marwa S. Hassan

Abstract:

Combined therapy using Interferon and Ribavirin is the standard treatment in patients with chronic hepatitis C. However, the number of responders to this treatment is low, whereas its cost and side effects are high. Therefore, there is a clear need to predict patient’s response to the treatment based on clinical information to protect the patients from the bad drawbacks, Intolerable side effects and waste of money. Different machine learning techniques have been developed to fulfill this purpose. From these techniques are Associative Classification (AC) and Decision Tree (DT). The aim of this research is to compare the performance of these two techniques in the prediction of virological response to the standard treatment of HCV from clinical information. 200 patients treated with Interferon and Ribavirin; were analyzed using AC and DT. 150 cases had been used to train the classifiers and 50 cases had been used to test the classifiers. The experiment results showed that the two techniques had given acceptable results however the best accuracy for the AC reached 92% whereas for DT reached 80%.

Keywords: Associative Classification, Data mining, Decision tree, HCV, interferon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
2690 Design of the Miniature Maglev Using Hybrid Magnets in Magnetic Levitation System

Authors: Jeong-Min Jo, Young-Jae Han, Chang-Young Lee

Abstract:

Attracting ferromagnetic forces between magnet and reaction rail provide the supporting force in Electromagnetic Suspension. Miniature maglev using permanent magnets and electromagnets is based on the idea to generate the nominal magnetic force by permanent magnets and superimpose the variable magnetic field required for stabilization by currents flowing through control windings in electromagnets. Permanent magnets with a high energy density have lower power losses with regard to supporting force and magnet weight. So the advantage of the maglev using electromagnets and permanent magnets is partially reduced by the power required to feed the remaining onboard supply system so that the overall onboard power is diminished as compared to that of the electromagnet. In this paper we proposed the how to design and control the miniature maglev and confirmed the feasibility of the levitation system using electromagnets and permanent magnets through the manufacturing the miniature maglev

Keywords: Magnetic Levitation system, Maglev, Permanent Magnets, Hybrid Magnet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2516
2689 Treatment of Chrome Tannery Wastewater by Biological Process - A Mini Review

Authors: Supriyo Goswami, Debabrata Mazumder

Abstract:

Chrome tannery wastewater causes serious environmental hazard due to its high pollution potential. As a result, rigorous treatment is necessary for abatement of pollution from this type of wastewater. There are many research studies on chrome tannery wastewater treatment in the field of physical, chemical, and biological methods. In general, biological treatment process is found ineffective for direct application because of adverse effects by toxic chromium, sulphide, chloride etc. However, biological methods were employed mainly for a few sub processes generating significant amount of organic matter and without chromium, chlorides etc. In this context the present paper reviews the characteristics feature and pollution potential of wastewater generated from chrome tannery units and treatment of the same. The different biological processes used earlier and their chronological development for treatment of the chrome tannery wastewater are thoroughly reviewed in this paper. In this regard, the scope of hybrid bioreactor - an advanced technology option has also been explored, as this kind of treatment is well suited for the wastewater having inhibitory substances. 

Keywords: Composite tannery wastewater, biological treatment, Hybrid bioreactor, Organic removal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4224
2688 Slug Tracking Simulation of Severe Slugging Experiments

Authors: Tor Kindsbekken Kjeldby, Ruud Henkes, Ole Jørgen Nydal

Abstract:

Experimental data from an atmospheric air/water terrain slugging case has been made available by the Shell Amsterdam research center, and has been subject to numerical simulation and comparison with a one-dimensional two-phase slug tracking simulator under development at the Norwegian University of Science and Technology. The code is based on tracking of liquid slugs in pipelines by use of a Lagrangian grid formulation implemented in Cµ by use of object oriented techniques. An existing hybrid spatial discretization scheme is tested, in which the stratified regions are modelled by the two-fluid model. The slug regions are treated incompressible, thus requiring a single momentum balance over the whole slug. Upon comparison with the experimental data, the period of the simulated severe slugging cycle is observed to be sensitive to slug generation in the horizontal parts of the system. Two different slug initiation methods have been tested with the slug tracking code, and grid dependency has been investigated.

Keywords: Hydrodynamic initiation, slug tracking, terrain slugging, two-fluid model, two-phase flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3222
2687 Human Motion Capture: New Innovations in the Field of Computer Vision

Authors: Najm Alotaibi

Abstract:

Human motion capture has become one of the major area of interest in the field of computer vision. Some of the major application areas that have been rapidly evolving include the advanced human interfaces, virtual reality and security/surveillance systems. This study provides a brief overview of the techniques and applications used for the markerless human motion capture, which deals with analyzing the human motion in the form of mathematical formulations. The major contribution of this research is that it classifies the computer vision based techniques of human motion capture based on the taxonomy, and then breaks its down into four systematically different categories of tracking, initialization, pose estimation and recognition. The detailed descriptions and the relationships descriptions are given for the techniques of tracking and pose estimation. The subcategories of each process are further described. Various hypotheses have been used by the researchers in this domain are surveyed and the evolution of these techniques have been explained. It has been concluded in the survey that most researchers have focused on using the mathematical body models for the markerless motion capture.

Keywords: Human Motion Capture, Computer Vision, Vision based, Tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
2686 Characterization of Aluminium Alloy 6063 Hybrid Metal Matrix Composite by Using Stir Casting Method

Authors: Balwinder Singh

Abstract:

The present research is a paper on the characterization of aluminum alloy-6063 hybrid metal matrix composites using three different reinforcement materials (SiC, red mud, and fly ash) through stir casting method. The red mud was used in solid form, and particle size range varies between 103-150 µm. During this investigation, fly ash is received from Guru Nanak Dev Thermal Plant (GNDTP), Bathinda. The study has been done by using Taguchi’s L9 orthogonal array by taking fraction wt.% (SiC 5%, 7.5%, and 10% and Red Mud and Fly Ash 2%, 4%, and 6%) as input parameters with their respective levels. The study of the mechanical properties (tensile strength, impact strength, and microhardness) has been done by using Analysis of Variance (ANOVA) with the help of MINITAB 17 software. It is revealed that silicon carbide is the most significant parameter followed by red mud and fly ash affecting the mechanical properties, respectively. The fractured surface morphology of the composites using Field Emission Scanning Electron Microscope (FESEM) shows that there is a good mixing of reinforcement particles in the matrix. Energy-dispersive X-ray spectroscopy (EDS) was performed to know the presence of the phases of the reinforced material.

Keywords: Reinforcement, silicon carbide, fly ash, red mud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
2685 Art Street as a Way for Reflective Thinking in the Field of Adult and Primary Education: Examples of Educational Techniques

Authors: Georgia H. Mega

Abstract:

Street art, a category of artwork displayed in public spaces, has been recognized as a potential tool for promoting reflective thinking in both adult and primary education. Educational techniques that encourage critical and creative thinking, as well as deeper reflection, have been developed and applied in educational curricula. This paper aims to explore the potential of art street in cultivating learners' reflective awareness towards multiculturalism. More specifically, two artworks displayed in public spaces have been selected: the artwork of Kleomenis Kostopoulos and the artwork of Rustam Obic. The reason of this selection is because of their strong symbolism towards multiculturalism. The street arts have been elaborated by adult (+18) and minor students (K-12) in educational settings, under the same educator’s guidance, following appropriate for each age learning techniques. Adults cultivate their reflection using Freire’s learning method, whereas minors cultivate critical thinking using visible thinking techniques from Project Zero. Through qualitative methodology (context analysis) the depth of reflection/critical thinking has been emphasized for both age groups. The case study shows that street art can play a significant role to the promotion/cultivation of deep thinking towards challenging contemporary phenomena like multiculturalism.

Keywords: Street art, observation of art works, reflective awareness, educational techniques, multiculturalism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 99
2684 Investigating the Effect of VR, Time Study and Ergonomics on the Design of Industrial Workstations

Authors: Aydin Azizi, Poorya Ghafoorpoor Yazdi

Abstract:

This paper presents the review of the studies on the ergonomics, virtual reality, and work measurement (time study) at the industrial workstations because each of these three individual techniques can be used to improve the design of workstations and task position. The objective of this paper is to give an overall literature review that if there is any relation between these three different techniques. Therefore, it is so important to review the scientific studies to find a better and effective way for improving design of workstations. On the other hand, manufacturers found that instead of using one of the approaches, utilizing the combination of these individual techniques are more effective to reduce the cost and production time.

Keywords: Ergonomics, time study, virtual reality, workplace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 838