
Abstract—A two-dimensional moving mesh algorithm is 
developed to simulate the general motion of two rotating bodies with 
relative translational motion. The grid includes a background grid 
and two sets of grids around the moving bodies. With this grid 
arrangement rotational and translational motions of two bodies are 
handled separately, with no complications. Inter-grid boundaries are 
determined based on their distances from two bodies. In this method, 
the overset concept is applied to hybrid grid, and flow variables are 
interpolated using a simple stencil. To evaluate this moving mesh 
algorithm unsteady Euler flow is solved for different cases using 
dual-time method of Jameson. Numerical results show excellent 
agreement with experimental data and other numerical results. To 
demonstrate the capability of present algorithm for accurate solution 
of flow fields around moving bodies, some benchmark problems 
have been defined in this paper. 

Keywords— Moving mesh, Overset grid, Unsteady Euler, 
Relative motion. 

I. INTRODUCTION

HE number of algorithms developed for the solution of 
problems with complex geometries including problems 

with moving boundaries is substantially increased during the 
passed ten years. These include algorithms for the solution of 
flow fields around oscillating airfoils, oscillating objects, 
moving bodies such as trains passing by each other, store 
separation, and stage separation, and other problems such as 
aeroelastic analysis, or flow simulation within internal 
combustion engines [1-5]. Since the solution domain changes 
continuously in moving body problems, special care should be 
paid to retain the quality of grid 

Different methods have been developed for the simulation 
of flow fields with moving boundaries. The simplest approach 
is to generate a new grid after each time step of solution. 
Although this approach is desirable for structured grids [6], it 
cannot be counted as an efficient method, generally. Grid 
regeneration is a time consuming process, and is questionable 
in terms of solution accuracy since a great deal of 
interpolation is required. 
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The idea of local restructuring was proposed to prevent grid 
regeneration [7]. In this method the grid is restructured (and 
not regenerated) merely in regions close to the moving 
boundaries. However, after several time steps small grid 
elements will be formed in these regions which should be 
eliminated. To delay the costly process of element elimination, 
some researchers perform a smoothening process, such as the 
one used in dynamic mesh approach of Ref. 8. In this 
approach nodes are connected to each other with springs. 
After each step of boundary motion, a uniform grid is formed 
through the balance of spring forces. Different references have 
discussed spring factor, K, which is an important parameter in 
this approach [7, 9]. For the application of dynamic mesh also 
see Ref. 10. Note that for large motions by which the integrity 
of grid is destroyed, local re-meshing (or regeneration) still 
will be required [11]. 

Some researchers have tried to continuously maintain the 
quality of grid around the moving bodies. For this purpose the 
high-quality grid around the body will move with it and will 
not change during the body motion. In fact, it is the grid far 
from the body that will be affected by the body motion [12]. 

The method of overset-grid (Chimera) was initially 
proposed by Steger et al. [13] and Benek et al [14] to provide 
a powerful mean of handling the motion of complex 
geometries on structured grids. The overset-grid method was 
successfully applied to solve both steady and unsteady Navier-
Stokes equations for complex geometries [15-20]. In overset-
grid method each body has its own grid. Therefore on each 
grid, chimera holes are defined in regions where the grid 
overlaps solid bodies belonging to the other grids. Advantage 
of chimera grid is its capability to simulate several moving 
bodies while maintaining a high quality grid around each of 
them. The disadvantage of chimera grid however, is the large 
number of interpolations normally required in this method. 

Hybrid grids have been used in moving boundary problems 
[21-25]. In hybrid grid method of Ref. 22, solution domain is 
divided into three zones. As it will be explained in the next 
section, general motion of a single body can be simulated 
easily with these three zones. In this method, the number of 
node deletion/insertion process and nodal interpolations are 
minimized to almost nothing. Even in the case of large 
translational displacements where a node deletion/insertion 
process is normally required, only a few elements merge 
together or split. 

The objective of this paper is to extend the algorithm of 
Ref. 22 to the solution of flow field around two bodies in 
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general motion with respect to each other. 

II. GRID GENERATION APPROACH

The method of Chimera grid is a grid embedding technique 
which provides a simple method for the simulation of flow 
around moving bodies. In this method a background grid is 
generated around the main body. Around the other bodies 
independent grids are generated, called minor grids. These 
minor grids are then overset on the background grid. Between 
each minor grid and the background grid an overlapping layer 
is defined to provide means of transferring solution between 
grids using an interpolation stencil [14, 26, and 27]. When the 
flow field is being solved on the background grid the region 
inside the minor grid which is embedded by the overlapping 
layer is considered as a chimera hole. The region within this 
hole will not be a part of background solution. In short, 
Chimera method includes two major components, 1) 
generation of grids and determination of their overlapping 
layers, and 2) definition of interpolation functions. 

In the present study the method of Ref. 22 which is based 
on the concept of Chimera grid, is applied for the solution of 
the flow field around two bodies moving with respect to each 
other. As shown in Fig. 1. background Cartesian grid is 
generated within the solution domain. Around the body A, 
two zones of grids are generated in addition to the background 
grid. First zone contains the moving body and the surrounding 
grid, which is fixed to the body and moves with it, and the 
second zone which has a squared boundary, includes the grid 
surrounding the first zone. For translational motion of body A 
first and second zones will move with the body. For rotational 
motion, however, only the first zone will rotate with the body 
A. Therefore the general motion of the body A will be 
simulated with the least node deletion/insertion and 
interpolation. In the following discussion, the background grid 
and the two surrounding grids are called grid A. 

Grid B

Grid A

Second Zone

First Zone

Background Grid
Intergrid Boundary
of Grid A

Intergrid Boundary
of Grid B

Fig. 1 Grid configuration surrounding body A and B 

As about the body B, which will have only rotational 
motion, any type of grid (structured, unstructured or hybrid 
grid) can be generated around it. As shown in Fig. 1, a 

triangular unstructured gird is generated within a circular 
boundary in the present work; this grid is called grid B. This 
grid is overset on the background grid. In the present work, 
solution strategy is to solve the flow field on two sets of grids 
A and B, separately. When the flow is solved on grid A, the 
region within the intergrid boundary of grid A is excluded 
from the solution domain. In this case the boundary values on 
the intergrid boundary of grid A are interpolated from the 
solution previously calculated on grid B. On the other hand, 
when the flow is solved on grid B, the boundary values on the 
intergrid boundary of grid B are interpolated from the solution 
previously calculated on grid A. To determine intergrid 
boundaries, the following procedure is conducted at each step. 

On grid A: 
1) All of the nodes of grid A, which have a donor cell, are 

identified. A donor cell is a cell of grid B within which 
a node of grid A lies. 

2) If the distance of these nodes from body A, is less than 
the average distance of their donor cell vertices from 
body B, these nodes will be tagged as active nodes for 
grid A [17]. 

3) Those cells which all of their vertices are active, are 
considered active cells. Whereas those cells which 
none of their vertices are active, will be considered 
non-active cells. The remaining cells of grid A will be 
called intergrid-boundary cells. 

Similar procedure is applied to Grid B to identify intergrid 
boundary of grid B. 

To clarify the above procedure, consider Fig. 2. Solid and 
dashed lines denote grid A and grid B, respectively. The 
donor cell of node I which belongs to grid A is indicated by 
abc. If dI, the shortest distance of this node from body A, is 
smaller than dave, the average of shortest distances of node a, b
and c from body B, then the node I will be an active node. If 
dI is larger than dave, then the node I will be a nonactive node. 

The overlapping region is shown in Fig. 3. The uppercase 
and lowercase letters, indicate cells and nodes of grid A. The 
array IBLANKN is defined for all nodes; its value is 1 for 
active nodes and 0 for nonactive nods. Similarly, IBLANKC 
array is defined for all cells as, 

0 For nonactive cells
1 For active cells
2 For intergrid-boundary cells

IBLANKC

Therefore the value of these two arrays in Fig.3 would be: 
( ) 0
( ) 0 ( ) 0
( ) 0 ( ) 0
( ) 0 ( ) 2
( ) 1 ( ) 2
( ) 1 ( ) 1
( ) 1

IBLANKN a
IBLANKN b IBLANKC A
IBLANKN c IBLANKC B
IBLANKN d IBLANKC C
IBLANKN e IBLANKC D
IBLANKN f IBLANKC E
IBLANKN g

Now, it is clear that based on these values cells A and B
would be nonactive, cell E would be active, and cells C and D
would be an intergrid-boundary cell. 
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Body B

Body A

I

Grid A
Grid B

di
cb

a

Fig. 2 Determination of intergrid-boundary

E

A

DC

B

g

b

e
f

d

a

c

Grid A
Grid B

Fig. 3 Determination of active or nonactive nodes and cells 

In the present method the two grids are generated 
independently. This allows us to produce high quality grids. 
As was mentioned before, body A can have both translational 
and rotational motions. Due to the grid zones defined around 
the body A, i.e. a squared zone and a circular zone, both of 
these motions can be handled very easily with the least node 
deletion/insertion and interpolation processes. For details 
about this approach see Ref. 22-24. Body B however, only can 
have rotational motion. This is not a limitation since the 
relative translational motion of two bodies is simulated 
through grid A. Note that all of the elements within the grid B 
rotate with the body B, and the shape of cells will not change. 
Figure 4 is presented to clarify this approach of algorithm and 
the overlapping layers of it. In this figure both airfoils 
oscillate, however one of them moves in both x and y 
directions, as well. As seen, depending on the position of 
airfoils with respect to each other different overlapping grid 
layers occur. The algorithm is able to correctly determine the 
overlapping grid layers for complex situation. 

Fig. 4 Some possible grid configurations and their overlapping 
regions for of two airfoils in motion; a & b) overlapping between two 
circular grids, c) overlapping out of square region, d) overlapping in 

square region
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If the distance between grid B and second zone of grid A 
(i.e. the squared boundary region) is not less than a predefined 
distance, then the rotational or translational motion of body A 
will not affect the intergrid boundary of grid A. This will 
obviously lead to ease the solution procedure. Note that this is 
the case if the body B does not rotate or oscillate by itself. 
Depending on the number of grid lines on background grid 
affected by translational motion of body A, the predefined 
distance can be estimated. While in Ref. 22, always the first 
grid line of background grid around the second zone is 
affected by the translational motion of body A, in Ref. 24 it is 
the first 4 lines that are affected by this motion. This was done 
by Ref. 24 to effectively prevent the generation of distorted 
cells.

III. SOLUTION ALGORITHM

The integral form of two dimensional unsteady Euler 
equations for compressible flow in the Cartesian coordinate 
system is given by, 

0dxGdyFWdA
dt
d  (1) 

where W, F and G are defined as, 

t t

U V
uU p uVu

W F G
vU vV pv

E p U x p E p V y pE

 (2) 

and , p, u, v and E denote density, pressure, velocity 
components and total energy, respectively. Contravariant 
velocities U and V are defined as U=u-xt and V=v-yt

and yt and xt are the velocity components of control-volume 
boundary. In addition to these, equation of state for a perfect 
gas is used to complete the set of equations. Equation (1) is 
applied to each of the control volumes with area of  and 
boundary of . This results in the following equation 

0)()()( wDwRw
dt
d

iiii
 (3) 

Ri(w) is the convective flux over the surface of control 
volume i , which is calculated by the Jameson method, and 
Di(w) is the numerical dissipative term which is introduced to 
prevent odd and even point oscillations, and oscillations in the 
neighborhood of shock waves [28].  

A second order accurate Dual Time Stepping scheme is 
used to calculate unsteady solution. A fully implicit time 
discretization (in real time) is used to integrate equations (3). 
In each real time step, then, nonlinear equations are solved 
using explicit Runge-Kutta multistage scheme or any time-
marching method designed to solve steady state problems.  

At the far field, non-reflecting boundary conditions are used 
based on the characteristic analysis. At the solid wall 
boundary, the normal velocity is set equal to zero, since no 
mass or other convective fluxes can penetrate the solid body. 
The pressure value at the solid wall is calculated by 
extrapolating between its nodal values on the adjacent nodes. 

IV. OVERSET IMPLEMENTATION

As mentioned before Euler equations are solved on two sets 
of grids with their own intergrid boundaries. The solution 
procedure at each time step is as follows, 

1) On the intergrid boundary edges of grid A, flux values 
are calculated using flow variables at the neighbor 
cells. Note that if a cell is nonactive then its flow 
variable will be interpolated from grid B.  

2) Euler equations are solved on grid A, having excluded 
its nonactive cells from the solution domain. 

3) On the intergrid boundary edges of grid B, flux values 
are calculated using flow variables at the neighbor 
cells. Note that if a cell is nonactive then its flow 
variable will be interpolated from grid A.  

4) Euler equations are solved on grid B, having excluded 
its nonactive cells from the solution domain. 

5) Again, on the intergrid boundary edges of grid A, flux 
values are calculated using flow variables at the 
neighbor cells. An error between these values and 
those of step 1, called ErA, is calculated. 

6) After exclusion of nonactive cells of Grid A from the 
solution domain, Euler equations are solved.  

7) Again, on the intergrid boundary edges of grid B, flux 
values are calculated using flow variables at the 
neighbor cells. An error between these values and 
those of step 3, called ErB, is calculated. 

8) If ErA and ErB are less then a defined value, then 
solution can be preceded to the next time step. 
Otherwise the above steps should be repeated.  

As mentioned above flux values should be calculated on the 
intergrid boundaries. To clarify the method of this 
interpolation, consider edge bc of grid A, in Fig 5. Figures 5a 
and 5b show grid configuration before and after removal of 
nonactive cells of grid A, respectively. To calculate fluxes on 
this edge, flow variables at cell centers p and q are required. 
Flow variables at cell center p are obtained from the flow 
solution on grid A. But, since cell center q belongs to a 
nonactive cell, flow variables at this cell must be interpolated 
from their values on grid B; i.e. from their values in donor cell 
ijk. As seen, simple interpolation is used. This means that flow 
variable on the center of a nonactive cell would be equal to the 
value of its donor cell. 

World Academy of Science, Engineering and Technology
International Journal of Aerospace and Mechanical Engineering

 Vol:3, No:10, 2009 

1293International Scholarly and Scientific Research & Innovation 3(10) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
er

os
pa

ce
 a

nd
 M

ec
ha

ni
ca

l E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
10

, 2
00

9 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/5
98

1.
pd

f



Fig. 5 Overlapping region: a) before and b) after removal of 
nonactive cells

V. RESULT AND DISCUSSION

In this section the capability of the present method for the 
simulation of fluid flow over moving bodies are evaluated. 
The method is validated by comparison of its results with 
experimental data and numerical results. 

First case includes steady state flow of Mach 0.755 at 0.016 
degrees angle of attack over a dual airfoil configuration, 
staggered from each other. The objective of this test is to 
demonstrate the correctness of solution strategy employed on 
grids A and B, and the interpolation stencil used in the grid-
overlapping region. This is a challenging test case since the 
strong shock wave between two airfoils crosses the 
overlapping region. Note that figure 6 shows the overlapping 
grid layer for the dual NACA0012 airfoils. The existence of 
shock wave is demonstrated by the pressure contours in Fig. 
7. Calculated results clearly show smooth transition of contour 
lines between two bodies. Figure 8 illustrates the comparison 

of pressure coefficient distribution on the surfaces of both 
airfoils with the numerical results of Ref. 20, where Jameson 
algorithm was used. As seen, present results agree with the 
results of Ref. 20 excellently. 

Fig. 6 Grid configuration of 1st case including dual NACA0012 
airfoils; a) Overlapping region b) enlarged view of intergrid 

boundaries

Fig. 7 Pressure contours of flow over dual NACA0012 airfoils; 
Mach=0.755 and 0.016
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C
p
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0.5

1

Present (front airfoil)
Present (rear airfoil)
Ref. 20 (front airfoil)
Ref. 20 (rear airfoil)

Fig. 8 CP distribution on the surfaces of the dual NACA0012 airfoils; 
Mach=0.755 and 0.016

As the second test case, we would like to solve the unsteady 
flow over the oscillatory pitching airfoil of NACA 0012, 
defined in AGARD CT5 test case [29], which has been widely 
studied in the literature. Consider the harmonic pitching 
motion of airfoil about the quarter chord of it with the 
following time dependent varying angle of attack, 

tm sin0

where m is the mean angle of attack, 0 is the amplitude of 
its oscillation, and  is the angular frequency of the motion, 
related to reduced frequency, k, by  

U
ck

2

In this relation, U is the free stream velocity and C is the 
chord length of the airfoil. Flow conditions are 

00.755, 0.016 , 2.51 ,and 0.0814mM k
In order to demonstrate the correct performance of moving 

grid algorithm on grids A and B, and the accuracy of 
interpolation stencil used in the grid overlapping layer for 
unsteady flow over a rotating body, the above problem is 
solved on two different grids. As shown in Fig. 9a, flow 
direction is from left to right and the oscillating airfoil is 
modeled by grid B; grid A does not contain any body. As 
about Fig. 9b however, flow is stationary and the oscillating 
airfoil, modeled by grid A, moves from right to left with the 
same speed of Mach 0.755. In this case grid B does not 
contain any body. Therefore, the same flow field is solved on 
both grids and their results will be compared with each other. 
Numerical calculation of unsteady flow is started from the 
steady state solution of Mach 0.755 flow over NACA 0012 
airfoil at 0.016 degrees angle of attack on both grids. The 
variation of normal force coefficient obtained from the present 
method on both grids is compared with each other and also 
with the experimental data in Fig. 10. Results obtained on 
both grids are in excellent agreement with each other. In 
addition to this, results of the present study agree very well 
with the results of experiment [29]. The difference between 

numerical results and experimental data observed here has 
been reported by other researchers in the literature, as well 
[10, 22]. This difference can be eliminated if m is changed 
slightly. 

Fig. 9 Illustration of overset grids for 2nd case, i.e. AGARD CT5 
case; a) body B and clean grid A, and b) Body A and clean grid B 

Incidence

C
N

-2 -1 0 1 2

-0.2

0

0.2

Present (body A)
Present (Body B)
Experiment

Fig. 10 Comparison of normal-force coefficient loop in 2nd case; 
including NACA 0012 airfoil at Mach 0.755; present results and 

experimental data 

To validate the algorithm for unsteady flow simulation of 
translational-rotational motion, the third case is defined here. 
Again two problems with the same physics of flow field are 
solved here. As shown in Fig.11, consider two NACA0012 
airfoils located at a distance equal to 75 chords from each 

BA

a)

BA

b)
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other. In the first problem, the left airfoil is stationary and the 
oscillating airfoil at the right moves toward the left with the 
speed of Mach 0.5 in a stationary air. In the second problem, 
the airfoil at the left together with the air move with the speed 
of Mach 0.5 toward the oscillating airfoil at the right which is 
stationary. Figure 12 shows the grid structure of this test case 
when the two airfoils have reached to each other. Parameters 
governing the oscillating airfoil are

00.016 , 2.51, 0.0814m k
Lift coefficient history of right airfoil obtained from the 

present method in both problems are compared with each 
other in Fig. 13. The excellent agreement shows the accuracy 
of the algorithm for simulation of unsteady problems. Based 
on the above tests it can be concluded that the present 
algorithm is well capable of simulating 2-D fluid flow 
problems with moving bodies. 

Fig. 11 Illustration of two tests performed for rotational-translational 
motion of two bodies with respect to each other in 3rd case 

Fig. 12 Grid oversetting at the end of rotational-translational motion 
of two airfoils when they get close to each other 

t(s)

C
L

0 20 40 60 80 100 120

-0.2

-0.1

0

0.1

0.2

0.3

Test 1
Test 2

Fig. 13 Lift coefficient history of NACA0012 airfoil for rotational-
translational motion, tests 1 and 2 of 3rd case 

This forth case is defined to demonstrate the capability of 
the present method in solving unsteady flows past moving 
bodies. In this case two oscillating NACA0012 airfoils are 
positioned in line at a distance of 2.5 chords from each other. 
Both airfoils are oscillating around their quarter chord in 
phase. Flow and oscillation conditions are mentioned in 
second case. 

Grid structure around these two airfoils, when zero angle of 
attack is reached, is illustrated in Fig. 14. Figure 14a and 14b 
show the coarse and fine grids, respectively. The variation of 
lift coefficient obtained from the solution of problem on both 
coarse and fine grids is compared with each other in Fig. 15. 
Excellent agreement between the results displays accuracy of 
the present method to simulate unsteady flow around 
oscillating bodies close to each other. The results show the 
gird independency 

Stationary Airfoil

Test 1

V: 0.5 of Speed of Sound

Moving Airfoil
(Oscillation & translation)

75 C

Stationary Flow (M=0.0)

Moving Airfoil
(Translation)

Test 2

V: 0.5 of Speed of Sound

Moving Airfoil
(Oscillation)

75 C

Moving Flow (M=0.5)
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Fig. 14 Grid configuration for two NACA0012 airfoils in 4th case; a) 
coarse b) fine grids 
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0.4
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Front Airfoil

Fig. 15 Instantaneous variation of lift coefficient for two NACA0012 
airfoils positioned in line and oscillating in phase 

VI. CONCLUSION

In this paper, a new moving mesh algorithm is developed to 
simulate the general motion of two bodies with respect to each 

other. In this method, the overset concept is applied on hybrid 
grid. This method is based on the algorithm of Ref. 22 which 
was introduced for the simulation of a rigid body motion. A 
simple interpolation stencil is used while retaining solution 
accuracy. The overlapping layer of two grids is determined 
based on their distances from two bodies. Based on this 
algorithm, flow field around two bodies in rotation that are in 
relative translational motion can be simulated. A number of 
test cases have been solved to prove the capability of present 
method for accurate solution of flow field around moving 
bodies. Numerical results agree with experimental data very 
well. Also to demonstrate correct performance of the present 
algorithm different benchmark problems have been defined in 
this paper. In all of the cases present algorithm has resulted in 
excellent results.  
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