Search results for: Fast Face Detection
2352 X-Corner Detection for Camera Calibration Using Saddle Points
Authors: Abdulrahman S. Alturki, John S. Loomis
Abstract:
This paper discusses a corner detection algorithm for camera calibration. Calibration is a necessary step in many computer vision and image processing applications. Robust corner detection for an image of a checkerboard is required to determine intrinsic and extrinsic parameters. In this paper, an algorithm for fully automatic and robust X-corner detection is presented. Checkerboard corner points are automatically found in each image without user interaction or any prior information regarding the number of rows or columns. The approach represents each X-corner with a quadratic fitting function. Using the fact that the X-corners are saddle points, the coefficients in the fitting function are used to identify each corner location. The automation of this process greatly simplifies calibration. Our method is robust against noise and different camera orientations. Experimental analysis shows the accuracy of our method using actual images acquired at different camera locations and orientations.Keywords: Camera Calibration, Corner Detector, Saddle Points, X-Corners.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31522351 A Real-Time Image Change Detection System
Authors: Madina Hamiane, Amina Khunji
Abstract:
Detecting changes in multiple images of the same scene has recently seen increased interest due to the many contemporary applications including smart security systems, smart homes, remote sensing, surveillance, medical diagnosis, weather forecasting, speed and distance measurement, post-disaster forensics and much more. These applications differ in the scale, nature, and speed of change. This paper presents an application of image processing techniques to implement a real-time change detection system. Change is identified by comparing the RGB representation of two consecutive frames captured in real-time. The detection threshold can be controlled to account for various luminance levels. The comparison result is passed through a filter before decision making to reduce false positives, especially at lower luminance conditions. The system is implemented with a MATLAB Graphical User interface with several controls to manage its operation and performance.Keywords: Image change detection, Image processing, image filtering, thresholding, B/W quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25632350 A Novel Portable Device for Fast Analysis of Energetic Materials in the Environment
Authors: Jozef Šesták, Zbyněk Večeřa, Vladislav Kahle, Dana Moravcová, Pavel Mikuška, Josef Kellner, František Božek
Abstract:
Construction of portable device for fast analysis of energetic materials is described in this paper. The developed analytical system consists of two main parts: a miniaturized microcolumn liquid chromatograph of unique construction and original chemiluminescence detector. This novel portable device is able to determine selectively most of nitramine- and nitroester-based explosives as well as inorganic nitrates at trace concentrations in water or soil extracts in less than 8 minutes.
Keywords: Portable device, uLC, chemiluminescence, nitramines, nitroesters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15992349 Genetic-based Anomaly Detection in Logs of Process Aware Systems
Authors: Hanieh Jalali, Ahmad Baraani
Abstract:
Nowaday-s, many organizations use systems that support business process as a whole or partially. However, in some application domains, like software development and health care processes, a normative Process Aware System (PAS) is not suitable, because a flexible support is needed to respond rapidly to new process models. On the other hand, a flexible Process Aware System may be vulnerable to undesirable and fraudulent executions, which imposes a tradeoff between flexibility and security. In order to make this tradeoff available, a genetic-based anomaly detection model for logs of Process Aware Systems is presented in this paper. The detection of an anomalous trace is based on discovering an appropriate process model by using genetic process mining and detecting traces that do not fit the appropriate model as anomalous trace; therefore, when used in PAS, this model is an automated solution that can support coexistence of flexibility and security.Keywords: Anomaly Detection, Genetic Algorithm, ProcessAware Systems, Process Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19252348 Local Spectrum Feature Extraction for Face Recognition
Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd Zaizu Ilyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh
Abstract:
This paper presents two techniques, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapped on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non- Gaussian in the feature space and by using combination of several Gaussian functions that has different statistical properties, the best feature representation can be modelled using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculated GMM components. The method is tested using FERET datasets and is able to achieved 92% recognition rates.
Keywords: Local features modelling, face recognition system, Gaussian mixture models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22532347 Key Issues and Challenges of Intrusion Detection and Prevention System: Developing Proactive Protection in Wireless Network Environment
Authors: M. Salman, B. Budiardjo, K. Ramli
Abstract:
Nowadays wireless technology plays an important role in public and personal communication. However, the growth of wireless networking has confused the traditional boundaries between trusted and untrusted networks. Wireless networks are subject to a variety of threats and attacks at present. An attacker has the ability to listen to all network traffic which becoming a potential intrusion. Intrusion of any kind may lead to a chaotic condition. In addition, improperly configured access points also contribute the risk to wireless network. To overcome this issue, a security solution that includes an intrusion detection and prevention system need to be implemented. In this paper, first the security drawbacks of wireless network will be analyzed then investigate the characteristics and also the limitations on current wireless intrusion detection and prevention system. Finally, the requirement of next wireless intrusion prevention system will be identified including some key issues which should be focused on in the future to overcomes those limitations.Keywords: intrusion detection, intrusion prevention, wireless networks, proactive protection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39382346 Influence of the Seat Arrangement in Public Reading Spaces on Individual Subjective Perceptions
Authors: Jo-Han Chang, Chung-Jung Wu
Abstract:
This study involves a design proposal. The objective of is to create a seat arrangement model for public reading spaces that enable free arrangement without disturbing the users. Through a subjective perception scale, this study explored whether distance between seats and direction of seats influence individual subjective perceptions in a public reading space. This study also involves analysis of user subjective perceptions when reading in the settings on 3 seats at different directions and with 5 distances between seats. The results may be applied to public chair design. This study investigated that (a) whether different directions of seats and distances between seats influence individual subjective perceptions and (b) the acceptable personal space between 2 strangers in a public reading space. The results are shown as follows: (a) the directions of seats and distances between seats influenced individual subjective perceptions. (b) subjective evaluation scores were higher for back-to-back seat directions with Distances A (10cm) and B (62cm) compared with face-to-face and side-by-side seat directions; however, when the seat distance exceeded 114cm (Distance C), no difference existed among the directions of seats. (c) regarding reading in public spaces, when the distance between seats is 10cm only, we recommend arranging the seats in a back-to-back fashion to increase user comfort and arrangement of face-to-face and side- by-side seat directions should be avoided. When the seatarrangement is limited to face-to-face design, the distance between seats should be increased to at least 62cm. Moreover, the distance between seats should be increased to at least 114cm for side- by-side seats to elevate user comfort.
Keywords: Individual Subjective Perceptions, Personal Space, Seat Arrangement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19232345 Hydrodynamic Characteristics of Dry Beneficiation of Iron Ore and Coal in a Fast Fluidized Bed
Authors: M. Das, R. K. Saha, B. C. Meikap
Abstract:
Iron ore and coal are the two major important raw materials being used in Iron making industries. Usually ore fines containing around 5% Alumina are rejected due to higher proportion of alumina. Therefore, a technology or process which may reduce the alumina content by 2% by beneficiation process will be highly attractive . In addition fine coals with ash content is used nearly 12% is directly injected in blast furnace. Fast fluidization is a technology by using dry beneficiation of coal and iron ore can be done. During the fluidization process the iron ore band coal is fluidized at high velocity in the riser of a fast fluidized bed, the heavier and coarse particles is generally settled at the bottom in a dense zone of the riser while the finer and lighter particle are entrained to the top dilute zone and then via a cyclone is fed back to the bottom of the riser column. Most of the alumina and low ash fine size coals being lighter are expected to move up to the riser and by a natural beneficiation of ores is expected to take place in the riser. Therefore in this study an attempt has been made for dry beneficiation of iron ore and coal in a fluidized bed and its hydrodynamic characterization.Keywords: beneficiation, fluidization, gas-solid fluidization, riser .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21902344 Fast 2.5D Model Reconstruction of Assembled Parts with High Occlusion for Completeness Inspection
Authors: Matteo Munaro, Stefano Michieletto, Edmond So, Daniele Alberton, Emanuele Menegatti
Abstract:
In this work a dual laser triangulation system is presented for fast building of 2.5D textured models of objects within a production line. This scanner is designed to produce data suitable for 3D completeness inspection algorithms. For this purpose two laser projectors have been used in order to considerably reduce the problem of occlusions in the camera movement direction. Results of reconstruction of electronic boards are presented, together with a comparison with a commercial system.
Keywords: 3D quality inspection, 2.5D reconstruction, laser triangulation, occlusions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15102343 An Energy Detection-Based Algorithm for Cooperative Spectrum Sensing in Rayleigh Fading Channel
Authors: H. Bakhshi, E. Khayyamian
Abstract:
Cognitive radios have been recognized as one of the most promising technologies dealing with the scarcity of the radio spectrum. In cognitive radio systems, secondary users are allowed to utilize the frequency bands of primary users when the bands are idle. Hence, how to accurately detect the idle frequency bands has attracted many researchers’ interest. Detection performance is sensitive toward noise power and gain fluctuation. Since signal to noise ratio (SNR) between primary user and secondary users are not the same and change over the time, SNR and noise power estimation is essential. In this paper, we present a cooperative spectrum sensing algorithm using SNR estimation to improve detection performance in the real situation.Keywords: Cognitive radio, cooperative spectrum sensing, energy detection, SNR estimation, spectrum sensing, Rayleigh fading channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14072342 Integrated Method for Detection of Unknown Steganographic Content
Authors: Magdalena Pejas
Abstract:
This article concerns the presentation of an integrated method for detection of steganographic content embedded by new unknown programs. The method is based on data mining and aggregated hypothesis testing. The article contains the theoretical basics used to deploy the proposed detection system and the description of improvement proposed for the basic system idea. Further main results of experiments and implementation details are collected and described. Finally example results of the tests are presented.Keywords: Steganography, steganalysis, data embedding, data mining, feature extraction, knowledge base, system learning, hypothesis testing, error estimation, black box program, file structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15642341 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network
Authors: Abdulaziz Alsadhan, Naveed Khan
Abstract:
In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion detection system (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw dataset for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle component analysis (PCA), Linear Discriminant Analysis (LDA) and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. This optimal feature subset is used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) are used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.
Keywords: Particle Swarm Optimization (PSO), Principle component analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27642340 A Convolutional Neural Network-Based Vehicle Theft Detection, Location, and Reporting System
Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala
Abstract:
One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets, especially in the motorist sector, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of Python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. 60 vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes that the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.
Keywords: Convolutional Neural Network, CNN, location identification, tracking, GPS, GSM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4142339 Decoupled, Reduced Order Model for Double Output Induction Generator Using Integral Manifolds and Iterative Separation Theory
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
In this paper presents a technique for developing the computational efficiency in simulating double output induction generators (DOIG) with two rotor circuits where stator transients are to be included. Iterative decomposition is used to separate the flux– Linkage equations into decoupled fast and slow subsystems, after which the model order of the fast subsystems is reduced by neglecting the heavily damped fast transients caused by the second rotor circuit using integral manifolds theory. The two decoupled subsystems along with the equation for the very slowly changing slip constitute a three time-scale model for the machine which resulted in increasing computational speed. Finally, the proposed method of reduced order in this paper is compared with the other conventional methods in linear and nonlinear modes and it is shown that this method is better than the other methods regarding simulation accuracy and speed.Keywords: DOIG, Iterative separation, Integral manifolds, Reduced order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12602338 Application of Computational Intelligence for Sensor Fault Detection and Isolation
Authors: A. Jabbari, R. Jedermann, W. Lang
Abstract:
The new idea of this research is application of a new fault detection and isolation (FDI) technique for supervision of sensor networks in transportation system. In measurement systems, it is necessary to detect all types of faults and failures, based on predefined algorithm. Last improvements in artificial neural network studies (ANN) led to using them for some FDI purposes. In this paper, application of new probabilistic neural network features for data approximation and data classification are considered for plausibility check in temperature measurement. For this purpose, two-phase FDI mechanism was considered for residual generation and evaluation.
Keywords: Fault detection and Isolation, Neural network, Temperature measurement, measurement approximation and classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20702337 Collaborative Tracking Control of UAV-UGV
Authors: Jae-Young Choi, Sung-Gaun Kim
Abstract:
This paper suggests a fast and stable Target Tracking system in collaborative control of UAV and UGV. Wi-Fi communication range is limited in collaborative control of UAV and UGV. Thus, to secure a stable communications, UAV and UGV have to be kept within a certain distance from each other. But existing method which uses UAV Vertical Camera to follow the motion of UGV is likely to lose a target with a sudden movement change. Eventually, UGV has disadvantages that it could only move at a low speed and not make any sudden change of direction in order to keep track of the target. Therefore, we suggest utilizing AR Drone UAV front camera to track fast-moving and Omnidirectional Mecanum Wheel UGV.Keywords: Collaborative control, UAV, UGV, Target Tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29432336 An Improved Switching Median filter for Uniformly Distributed Impulse Noise Removal
Authors: Rajoo Pandey
Abstract:
The performance of an image filtering system depends on its ability to detect the presence of noisy pixels in the image. Most of the impulse detection schemes assume the presence of salt and pepper noise in the images and do not work satisfactorily in case of uniformly distributed impulse noise. In this paper, a new algorithm is presented to improve the performance of switching median filter in detection of uniformly distributed impulse noise. The performance of the proposed scheme is demonstrated by the results obtained from computer simulations on various images.Keywords: Switching median filter, Impulse noise, Imagefiltering, Impulse detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19562335 A Novel Approach to Iris Localization for Iris Biometric Processing
Authors: Somnath Dey, Debasis Samanta
Abstract:
Iris-based biometric system is gaining its importance in several applications. However, processing of iris biometric is a challenging and time consuming task. Detection of iris part in an eye image poses a number of challenges such as, inferior image quality, occlusion of eyelids and eyelashes etc. Due to these problems it is not possible to achieve 100% accuracy rate in any iris-based biometric authentication systems. Further, iris detection is a computationally intensive task in the overall iris biometric processing. In this paper, we address these two problems and propose a technique to localize iris part efficiently and accurately. We propose scaling and color level transform followed by thresholding, finding pupil boundary points for pupil boundary detection and dilation, thresholding, vertical edge detection and removal of unnecessary edges present in the eye images for iris boundary detection. Scaling reduces the search space significantly and intensity level transform is helpful for image thresholding. Experimental results show that our approach is comparable with the existing approaches. Following our approach it is possible to detect iris part with 95-99% accuracy as substantiated by our experiments on CASIA Ver-3.0, ICE 2005, UBIRIS, Bath and MMU iris image databases.
Keywords: Iris recognition, iris localization, biometrics, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31912334 Similarity Detection in Collaborative Development of Object-Oriented Formal Specifications
Authors: Fathi Taibi, Fouad Mohammed Abbou, Md. Jahangir Alam
Abstract:
The complexity of today-s software systems makes collaborative development necessary to accomplish tasks. Frameworks are necessary to allow developers perform their tasks independently yet collaboratively. Similarity detection is one of the major issues to consider when developing such frameworks. It allows developers to mine existing repositories when developing their own views of a software artifact, and it is necessary for identifying the correspondences between the views to allow merging them and checking their consistency. Due to the importance of the requirements specification stage in software development, this paper proposes a framework for collaborative development of Object- Oriented formal specifications along with a similarity detection approach to support the creation, merging and consistency checking of specifications. The paper also explores the impact of using additional concepts on improving the matching results. Finally, the proposed approach is empirically evaluated.Keywords: Collaborative Development, Formal methods, Object-Oriented, Similarity detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14692333 Actuator Fault Detection and Fault Tolerant Control of a Nonlinear System Using Sliding Mode Observer
Authors: R. Loukil, M. Chtourou, T. Damak
Abstract:
In this work, we use the Fault detection and isolation and the Fault tolerant control based on sliding mode observer in order to introduce the well diagnosis of a nonlinear system. The robustness of the proposed observer for the two techniques is tested through a physical example. The results in this paper show the interaction between the Fault tolerant control and the Diagnosis procedure.Keywords: Fault detection and isolation “FDI”, Fault tolerant control “FTC”, sliding mode observer, nonlinear system, robustness, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16532332 On the Construction of m-Sequences via Primitive Polynomials with a Fast Identification Method
Authors: Abhijit Mitra
Abstract:
The paper provides an in-depth tutorial of mathematical construction of maximal length sequences (m-sequences) via primitive polynomials and how to map the same when implemented in shift registers. It is equally important to check whether a polynomial is primitive or not so as to get proper m-sequences. A fast method to identify primitive polynomials over binary fields is proposed where the complexity is considerably less in comparison with the standard procedures for the same purpose.Keywords: Finite field, irreducible polynomial, primitive polynomial, maximal length sequence, additive shift register, multiplicative shift register.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39392331 Multi-Scale Gabor Feature Based Eye Localization
Authors: Sanghoon Kim, Sun-Tae Chung, Souhwan Jung, Dusik Oh, Jaemin Kim, Seongwon Cho
Abstract:
Eye localization is necessary for face recognition and related application areas. Most of eye localization algorithms reported so far still need to be improved about precision and computational time for successful applications. In this paper, we propose an eye location method based on multi-scale Gabor feature vectors, which is more robust with respect to initial points. The eye localization based on Gabor feature vectors first needs to constructs an Eye Model Bunch for each eye (left or right eye) which consists of n Gabor jets and average eye coordinates of each eyes obtained from n model face images, and then tries to localize eyes in an incoming face image by utilizing the fact that the true eye coordinates is most likely to be very close to the position where the Gabor jet will have the best Gabor jet similarity matching with a Gabor jet in the Eye Model Bunch. Similar ideas have been already proposed in such as EBGM (Elastic Bunch Graph Matching). However, the method used in EBGM is known to be not robust with respect to initial values and may need extensive search range for achieving the required performance, but extensive search ranges will cause much more computational burden. In this paper, we propose a multi-scale approach with a little increased computational burden where one first tries to localize eyes based on Gabor feature vectors in a coarse face image obtained from down sampling of the original face image, and then localize eyes based on Gabor feature vectors in the original resolution face image by using the eye coordinates localized in the coarse scaled image as initial points. Several experiments and comparisons with other eye localization methods reported in the other papers show the efficiency of our proposed method.Keywords: Eye Localization, Gabor features, Multi-scale, Gabor wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18212330 An Exploratory Study of the Student’s Learning Experience by Applying Different Tools for e-Learning and e-Teaching
Authors: Angel Daniel Muñoz Guzmán
Abstract:
E-learning is becoming more and more common every day. For online, hybrid or traditional face-to-face programs, there are some e-teaching platforms like Google classroom, Blackboard, Moodle and Canvas, and there are platforms for full e-learning like Coursera, edX or Udemy. These tools are changing the way students acquire knowledge at schools; however, in today’s changing world that is not enough. As students’ needs and skills change and become more complex, new tools will need to be added to keep them engaged and potentialize their learning. This is especially important in the current global situation that is changing everything: the Covid-19 pandemic. Due to Covid-19, education had to make an unexpected switch from face-to-face courses to digital courses. In this study, the students’ learning experience is analyzed by applying different e-tools and following the Tec21 Model and a flexible and digital model, both developed by the Tecnologico de Monterrey University. The evaluation of the students’ learning experience has been made by the quantitative PrEmo method of emotions. Findings suggest that the quantity of e-tools used during a course does not affect the students’ learning experience as much as how a teacher links every available tool and makes them work as one in order to keep the student engaged and motivated.Keywords: Student, experience, e-learning, e-teaching, e-tools, technology, education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7562329 Optical Road Monitoring of the Future Smart Roads – Preliminary Results
Authors: Maria Jokela, Matti Kutila, Jukka Laitinen, Florian Ahlers, Nicolas Hautière, TobiasSchendzielorz
Abstract:
It has been shown that in most accidents the driver is responsible due to being distracted or misjudging the situation. In order to solve such problems research has been dedicated to developing driver assistance systems that are able to monitor the traffic situation around the vehicle. This paper presents methods for recognizing several circumstances on a road. The methods use both the in-vehicle warning systems and the roadside infrastructure. Preliminary evaluation results for fog and ice-on-road detection are presented. The ice detection results are based on data recorded in a test track dedicated to tyre friction testing. The achieved results anticipate that ice detection could work at a performance of 70% detection with the right setup, which is a good foundation for implementation. However, the full benefit of the presented cooperative system is achieved by fusing the outputs of multiple data sources, which is the key point of discussion behind this publication.
Keywords: Smart roads, traffic monitoring, traffic scenedetection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16272328 Modern Detection and Description Methods for Natural Plants Recognition
Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert
Abstract:
Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.
Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7292327 Apoptosis Inspired Intrusion Detection System
Authors: R. Sridevi, G. Jagajothi
Abstract:
Artificial Immune Systems (AIS), inspired by the human immune system, are algorithms and mechanisms which are self-adaptive and self-learning classifiers capable of recognizing and classifying by learning, long-term memory and association. Unlike other human system inspired techniques like genetic algorithms and neural networks, AIS includes a range of algorithms modeling on different immune mechanism of the body. In this paper, a mechanism of a human immune system based on apoptosis is adopted to build an Intrusion Detection System (IDS) to protect computer networks. Features are selected from network traffic using Fisher Score. Based on the selected features, the record/connection is classified as either an attack or normal traffic by the proposed methodology. Simulation results demonstrates that the proposed AIS based on apoptosis performs better than existing AIS for intrusion detection.
Keywords: Apoptosis, Artificial Immune System (AIS), Fisher Score, KDD dataset, Network intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21912326 Human Fall Detection by FMCW Radar Based on Time-Varying Range-Doppler Features
Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou
Abstract:
The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.
Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-Doppler features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5202325 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks
Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos
Abstract:
This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.Keywords: Metaphor detection, deep learning, representation learning, embeddings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5532324 Virtual Environment Design Guidelines for Elderly People in Early Detection of Dementia
Authors: Syadiah Nor Wan Shamsuddin, Valerie Lesk , Hassan Ugail
Abstract:
Early detection of dementia by testing the spatial memory can be applied using a virtual environment. This paper presents guidelines on how to design a virtual environment specifically for elderly in early detection of dementia. The specific design needs to be considered because the effectiveness of the technology relies on the ability of the end user to use it. The primary goal of these guidelines is to promote accessibility. Based on these guidelines, a virtual simulation was developed and evaluated. The results on usability of acceptance and satisfaction that are tested on young (control group) and elderly participants indicate that these guidelines are reliable and useful for use with elderly people.Keywords: Virtual Environment, spatial memory, design, guidelines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18482323 Visualization of Code Clone Detection Results and the Implementation with Structured Data
Authors: Kazuaki Maeda
Abstract:
This paper describes a code clone visualization method, called FC graph, and the implementation issues. Code clone detection tools usually show the results in a textual representation. If the results are large, it makes a problem to software maintainers with understanding them. One of the approaches to overcome the situation is visualization of code clone detection results. A scatter plot is a popular approach to the visualization. However, it represents only one-to-one correspondence and it is difficult to find correspondence of code clones over multiple files. FC graph represents correspondence among files, code clones and packages in Java. All nodes in FC graph are positioned using force-directed graph layout, which is dynami- cally calculated to adjust the distances of nodes until stabilizing them. We applied FC graph to some open source programs and visualized the results. In the author’s experience, FC graph is helpful to grasp correspondence of code clones over multiple files and also code clones with in a file.
Keywords: code clone detection, program comprehension, software maintenance, visualization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513