Search results for: stiffness matrix
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1313

Search results for: stiffness matrix

923 Adaptive Rfid Positioning System Using Signal Level Matrix

Authors: Ching-Sheng Wang, Xin-Mao Huang, Ming-Yu Hung

Abstract:

In this paper, we present a method named Signal Level Matrix (SLM) which can improve the accuracy and stability of active RFID indoor positioning system. Considering the accuracy and cost, we use uniform distribution mode to set up and separate the overlapped signal covering areas, in order to achieve preliminary location setting. Then, based on the proposed SLM concept and the characteristic of the signal strength value that attenuates as the distance increases, this system cross-examines the distribution of adjacent signals to locate the users more accurately. The experimental results indicate that the adaptive positioning method proposed in this paper could improve the accuracy and stability of the positioning system effectively and satisfyingly.

Keywords: RFID positioning, localization, indoor, location-aware.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2652
922 Comparative Study of Seismic Isolation as Retrofit Method for Historical Constructions

Authors: Carlos H. Cuadra

Abstract:

Seismic isolation can be used as a retrofit method for historical buildings with the advantage that minimum intervention on super-structure is required. However, selection of isolation devices depends on weight and stiffness of upper structure. In this study, two buildings are considered for analyses to evaluate the applicability of this retrofitting methodology. Both buildings are located at Akita prefecture in the north part of Japan. One building is a wooden structure that corresponds to the old council meeting hall of Noshiro city. The second building is a brick masonry structure that was used as house of a foreign mining engineer and it is located at Ani town. Ambient vibration measurements were performed on both buildings to estimate their dynamic characteristics. Then, target period of vibration of isolated systems is selected as 3 seconds is selected to estimate required stiffness of isolation devices. For wooden structure, which is a light construction, it was found that natural rubber isolators in combination with friction bearings are suitable for seismic isolation. In case of masonry building elastomeric isolator can be used for its seismic isolation. Lumped mass systems are used for seismic response analysis and it is verified in both cases that seismic isolation can be used as retrofitting method of historical construction. However, in the case of the light building, most of the weight corresponds to the reinforced concrete slab that is required to install isolation devices.

Keywords: Historical building, finite element method, masonry structure, seismic isolation, wooden structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725
921 A Pull-out Fiber/Matrix Interface Characterization of Vegetal Fibers Reinforced Thermoplastic Polymer Composites: The Influence of the Processing Temperature

Authors: Duy Cuong Nguyen, Ali Makke, Guillaume Montay

Abstract:

This work presents an improved single fiber pull-out test for fiber/matrix interface characterization. This test has been used to study the Inter-Facial Shear Strength ‘IFSS’ of hemp fibers reinforced polypropylene (PP). For this aim, the fiber diameter has been carefully measured using a tomography inspired method. The fiber section contour can then be approximated by a circle or a polygon. The results show that the IFSS is overestimated if the circular approximation is used. The Influence of the molding temperature on the IFSS has also been studied. We find that a molding temperature of 183◦C leads to better interfacial properties. Above or below this temperature the interface strength is reduced.

Keywords: Interface, pull-out, processing, temperature, hemp, polypropylene, composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097
920 Specific Biomarker Level and Function Outcome Changes in Treatment of Patients with Frozen Shoulder Using Dextrose Prolotherapy Injection

Authors: Nuralam Sam, Irawan Yusuf, Irfan Idris, Endi Adnan

Abstract:

Frozen shoulder (FS) is an insidious, painful condition caused by an inflammatory condition that causes fibrosis of the glenohumeral joint capsule, which causes progressive stiffness and restriction of the active and passive range of motion (ROM) of the shoulder. The studies of FS are still limited. This single-blinded randomized controlled trial involved participants with FS. The study participants were divided into two groups. The Prolotherapy group was the study group, and the Normal Saline (NS) group was the control group. Both groups were given injections at weeks 0, 2, 4, and 6. Matrix Metalloproteinase-1 (MMP-1) and Tissue Inhibitor Metalloproteinase-1 (TIMP-1) were measured at week six and week 12 after the last injection. The Disabilities of The Arm, Shoulder, and Hand (DASH) Score and ROM were measured at weeks 0, 2, 4, and 6 before and after injection and week 12. Comparative analysis was performed using repeated measures Paired T-Test, and data processing to assess correlation was using ANOVA. The result showed a significant decrease in The Disability of the Arm, Shoulder, and Hand (DASH) score in prolotherapy injection patients in each measurement week (p < 0.05). While the measurement of ROM, each direction of shoulder motion showed a significant difference in average each week, from week 0 to week 6 (p < 0.05). Dextrose prolotherapy injection results significantly improved the functional outcome of the shoulder joint and ROM. They did not show significant results in assessing the specific biomarker, MMP-1, and TIMP-1, in tissue repair. This study suggests an alternative to injection prolotherapy in FS patients; it has minimal adverse effects and is efficient in time and cost.

Keywords: Frozen Shoulder, ROM, DASH Score, prolotherapy, MMP-1, TIMP-1.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 474
919 Dynamic Performance Indicators for Aged-Care Construction Projects

Authors: Norman Wu, Darren Sun

Abstract:

Key performance indicators (KPIs) are used for post result evaluation in the construction industry, and they normally do not have provisions for changes. This paper proposes a set of dynamic key performance indicators (d-KPIs) which predicts the future performance of the activity being measured and presents the opportunity to change practice accordingly. Critical to the predictability of a construction project is the ability to achieve automated data collection. This paper proposes an effective way to collect the process and engineering management data from an integrated construction management system. The d-KPI matrix, consisting of various indicators under seven categories, developed from this study can be applied to close monitoring of the development projects of aged-care facilities. The d-KPI matrix also enables performance measurement and comparison at both project and organization levels.

Keywords: Aged-care project, construction, dynamic KPI, healthcare system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375
918 Calibration of the Discrete Element Method Using a Large Shear Box

Authors: Corné J. Coetzee, Etienne Horn

Abstract:

One of the main challenges in using the Discrete Element Method (DEM) is to specify the correct input parameter values. In general, the models are sensitive to the input parameter values and accurate results can only be achieved if the correct values are specified. For the linear contact model, micro-parameters such as the particle density, stiffness, coefficient of friction, as well as the particle size and shape distributions are required. There is a need for a procedure to accurately calibrate these parameters before any attempt can be made to accurately model a complete bulk materials handling system. Since DEM is often used to model applications in the mining and quarrying industries, a calibration procedure was developed for materials that consist of relatively large (up to 40 mm in size) particles. A coarse crushed aggregate was used as the test material. Using a specially designed large shear box with a diameter of 590 mm, the confined Young’s modulus (bulk stiffness) and internal friction angle of the material were measured by means of the confined compression test and the direct shear test respectively. DEM models of the experimental setup were developed and the input parameter values were varied iteratively until a close correlation between the experimental and numerical results was achieved. The calibration process was validated by modelling the pull-out of an anchor from a bed of material. The model results compared well with experimental measurement.

Keywords: Discrete Element Method (DEM), calibration, shear box, anchor pull-out.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2672
917 Genetic Programming Approach to Hierarchical Production Rule Discovery

Authors: Basheer M. Al-Maqaleh, Kamal K. Bharadwaj

Abstract:

Automated discovery of hierarchical structures in large data sets has been an active research area in the recent past. This paper focuses on the issue of mining generalized rules with crisp hierarchical structure using Genetic Programming (GP) approach to knowledge discovery. The post-processing scheme presented in this work uses flat rules as initial individuals of GP and discovers hierarchical structure. Suitable genetic operators are proposed for the suggested encoding. Based on the Subsumption Matrix(SM), an appropriate fitness function is suggested. Finally, Hierarchical Production Rules (HPRs) are generated from the discovered hierarchy. Experimental results are presented to demonstrate the performance of the proposed algorithm.

Keywords: Genetic Programming, Hierarchy, Knowledge Discovery in Database, Subsumption Matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
916 Enhanced Thermal Properties of Rigid PVC Foams Using Fly Ash

Authors: Nidal H. Abu-Zahra, Parisa Khoshnoud, Murtatha Jamel, Subhashini Gunashekar

Abstract:

PVC foam-fly ash composites (PVC-FA) are characterized for their structural, morphological, mechanical and thermal properties. The tensile strength of the composites increased modestly with higher fly ash loading, while there was a significant increase in the elastic modulus for the same composites. On the other hand, a decrease in elongation at UTS was observed upon increasing fly ash content due to increased rigidity of the composites. Similarly, the flexural modulus increased as the fly ash loading increased, where the composites containing 25 phr fly ash showed the highest flexural strength. Thermal properties of PVC-fly ash composites were determined by Thermo Gravimetric Analysis (TGA). The microstructural properties were studied by Scanning Electron Microscopy (SEM). SEM results confirm that fly ash particles were mechanically interlocked in PVC matrix with good interfacial interaction with the matrix. Particle agglomeration and debonding was observed in samples containing higher amounts of fly ash.

Keywords: PVC Foam, Polyvinyl Chloride, Rigid PVC, Fly Ash Composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3241
915 A Framework for Designing Complex Product- Service Systems with a Multi-Domain Matrix

Authors: Yoonjung An, Yongtae Park

Abstract:

Offering a Product-Service System (PSS) is a well-accepted strategy that companies may adopt to provide a set of systemic solutions to customers. PSSs were initially provided in a simple form but now take diversified and complex forms involving multiple services, products and technologies. With the growing interest in the PSS, frameworks for the PSS development have been introduced by many researchers. However, most of the existing frameworks fail to examine various relations existing in a complex PSS. Since designing a complex PSS involves full integration of multiple products and services, it is essential to identify not only product-service relations but also product-product/ service-service relations. It is also equally important to specify how they are related for better understanding of the system. Moreover, as customers tend to view their purchase from a more holistic perspective, a PSS should be developed based on the whole system’s requirements, rather than focusing only on the product requirements or service requirements. Thus, we propose a framework to develop a complex PSS that is coordinated fully with the requirements of both worlds. Specifically, our approach adopts a multi-domain matrix (MDM). A MDM identifies not only inter-domain relations but also intra-domain relations so that it helps to design a PSS that includes highly desired and closely related core functions/ features. Also, various dependency types and rating schemes proposed in our approach would help the integration process.

Keywords: Inter-domain relations, intra-domain relations, multi-domain matrix, product-service system design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2434
914 A Novel Forgetting Factor Recursive Least Square Algorithm Applied to the Human Motion Analysis

Authors: Hadi Sadoghi Yazdi, Mehri Sadoghi Yazdi, Mohammad Reza Mohammadi

Abstract:

This paper is concerned with studying the forgetting factor of the recursive least square (RLS). A new dynamic forgetting factor (DFF) for RLS algorithm is presented. The proposed DFF-RLS is compared to other methods. Better performance at convergence and tracking of noisy chirp sinusoid is achieved. The control of the forgetting factor at DFF-RLS is based on the gradient of inverse correlation matrix. Compared with the gradient of mean square error algorithm, the proposed approach provides faster tracking and smaller mean square error. In low signal-to-noise ratios, the performance of the proposed method is superior to other approaches.

Keywords: Forgetting factor, RLS, Inverse correlation matrix, human motion analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
913 Image Rotation Using an Augmented 2-Step Shear Transform

Authors: Hee-Choul Kwon, Heeyong Kwon

Abstract:

Image rotation is one of main pre-processing steps for image processing or image pattern recognition. It is implemented with a rotation matrix multiplication. It requires a lot of floating point arithmetic operations and trigonometric calculations, so it takes a long time to execute. Therefore, there has been a need for a high speed image rotation algorithm without two major time-consuming operations. However, the rotated image has a drawback, i.e. distortions. We solved the problem using an augmented two-step shear transform. We compare the presented algorithm with the conventional rotation with images of various sizes. Experimental results show that the presented algorithm is superior to the conventional rotation one.

Keywords: High speed rotation operation, image rotation, transform matrix, image processing, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2653
912 A New Analytical Approach for Free Vibration of Membrane from Wave Standpoint

Authors: Mansour Nikkhah-Bahrami, Masih Loghmani, Mostafa Pooyanfar

Abstract:

In this paper, an analytical approach for free vibration analysis of rectangular and circular membranes is presented. The method is based on wave approach. From wave standpoint vibration propagate, reflect and transmit in a structure. Firstly, the propagation and reflection matrices for rectangular and circular membranes are derived. Then, these matrices are combined to provide a concise and systematic approach to free vibration analysis of membranes. Subsequently, the eigenvalue problem for free vibration of membrane is formulated and the equation of membrane natural frequencies is constructed. Finally, the effectiveness of the approach is shown by comparison of the results with existing classical solution.

Keywords: Rectangular and circular membranes, propagation matrix, reflection matrix, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165
911 Investigation of New Method to Achieve Well Dispersed Multiwall Carbon Nanotubes Reinforced Al Matrix Composites

Authors: A.H.Javadi, Sh.Mirdamadi, M.A.Faghisani, S.Shakhesi

Abstract:

Nanostructured materials have attracted many researchers due to their outstanding mechanical and physical properties. For example, carbon nanotubes (CNTs) or carbon nanofibres (CNFs) are considered to be attractive reinforcement materials for light weight and high strength metal matrix composites. These composites are being projected for use in structural applications for their high specific strength as well as functional materials for their exciting thermal and electrical characteristics. The critical issues of CNT-reinforced MMCs include processing techniques, nanotube dispersion, interface, strengthening mechanisms and mechanical properties. One of the major obstacles to the effective use of carbon nanotubes as reinforcements in metal matrix composites is their agglomeration and poor distribution/dispersion within the metallic matrix. In order to tap into the advantages of the properties of CNTs (or CNFs) in composites, the high dispersion of CNTs (or CNFs) and strong interfacial bonding are the key issues which are still challenging. Processing techniques used for synthesis of the composites have been studied with an objective to achieve homogeneous distribution of carbon nanotubes in the matrix. Modified mechanical alloying (ball milling) techniques have emerged as promising routes for the fabrication of carbon nanotube (CNT) reinforced metal matrix composites. In order to obtain a homogeneous product, good control of the milling process, in particular control of the ball movement, is essential. The control of the ball motion during the milling leads to a reduction in grinding energy and a more homogeneous product. Also, the critical inner diameter of the milling container at a particular rotational speed can be calculated. In the present work, we use conventional and modified mechanical alloying to generate a homogenous distribution of 2 wt. % CNT within Al powders. 99% purity Aluminium powder (Acros, 200mesh) was used along with two different types of multiwall carbon nanotube (MWCNTs) having different aspect ratios to produce Al-CNT composites. The composite powders were processed into bulk material by compaction, and sintering using a cylindrical compaction and tube furnace. Field Emission Scanning electron microscopy (FESEM), X-Ray diffraction (XRD), Raman spectroscopy and Vickers macro hardness tester were used to evaluate CNT dispersion, powder morphology, CNT damage, phase analysis, mechanical properties and crystal size determination. Despite the success of ball milling in dispersing CNTs in Al powder, it is often accompanied with considerable strain hardening of the Al powder, which may have implications on the final properties of the composite. The results show that particle size and morphology vary with milling time. Also, by using the mixing process and sonication before mechanical alloying and modified ball mill, dispersion of the CNTs in Al matrix improves.

Keywords: multiwall carbon nanotube, Aluminum matrixcomposite, dispersion, mechanical alloying, sintering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325
910 Seismic Retrofitting of RC Buildings with Soft Storey and Floating Columns

Authors: Vinay Agrawal, Suyash Garg, Ravindra Nagar, Vinay Chandwani

Abstract:

Open ground storey with floating columns is a typical feature in the modern multistory constructions in urban India. Such features are very much undesirable in buildings built in seismically active areas. The present study proposes a feasible solution to mitigate the effects caused due to non-uniformity of stiffness and discontinuity in load path and to simultaneously hold the functional use of the open storey particularly under the floating column, through a combination of various lateral strengthening systems. An investigation is performed on an example building with nine different analytical models to bring out the importance of recognising the presence of open ground storey and floating columns. Two separate analyses on various models of the building namely, the equivalent static analysis and the response spectrum analysis as per IS: 1893-2002 were performed. Various measures such as incorporation of Chevron bracings and shear walls, strengthening the columns in the open ground storey, and their different combinations were examined. The analysis shows that, in comparison to two short ones separated by interconnecting beams, the structural walls are most effective when placed at the periphery of the buildings and used as one long structural wall. Further, it can be shown that the force transfer from floating columns becomes less horizontal when the Chevron Bracings are placed just below them, thereby reducing the shear forces in the beams on which the floating column rests.

Keywords: Equivalent static analysis, floating column, open ground storey, response spectrum analysis, shear wall, stiffness irregularity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
909 FEA Modeling of Material Removal Rate in Electrical Discharge Machining of Al6063/SiC Composites

Authors: U. K. Vishwakarma , A. Dvivedi, P. Kumar

Abstract:

Metal matrix composites (MMC) are generating extensive interest in diverse fields like defense, aerospace, electronics and automotive industries. In this present investigation, material removal rate (MRR) modeling has been carried out using an axisymmetric model of Al-SiC composite during electrical discharge machining (EDM). A FEA model of single spark EDM was developed to calculate the temperature distribution.Further, single spark model was extended to simulate the second discharge. For multi-discharge machining material removal was calculated by calculating the number of pulses. Validation of model has been done by comparing the experimental results obtained under the same process parameters with the analytical results. A good agreement was found between the experimental results and the theoretical value.

Keywords: Electrical Discharge Machining, FEA, Metal matrix composites, Multi-discharge

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3732
908 A Novel VLSI Architecture for Image Compression Model Using Low power Discrete Cosine Transform

Authors: Vijaya Prakash.A.M, K.S.Gurumurthy

Abstract:

In Image processing the Image compression can improve the performance of the digital systems by reducing the cost and time in image storage and transmission without significant reduction of the Image quality. This paper describes hardware architecture of low complexity Discrete Cosine Transform (DCT) architecture for image compression[6]. In this DCT architecture, common computations are identified and shared to remove redundant computations in DCT matrix operation. Vector processing is a method used for implementation of DCT. This reduction in computational complexity of 2D DCT reduces power consumption. The 2D DCT is performed on 8x8 matrix using two 1-Dimensional Discrete cosine transform blocks and a transposition memory [7]. Inverse discrete cosine transform (IDCT) is performed to obtain the image matrix and reconstruct the original image. The proposed image compression algorithm is comprehended using MATLAB code. The VLSI design of the architecture is implemented Using Verilog HDL. The proposed hardware architecture for image compression employing DCT was synthesized using RTL complier and it was mapped using 180nm standard cells. . The Simulation is done using Modelsim. The simulation results from MATLAB and Verilog HDL are compared. Detailed analysis for power and area was done using RTL compiler from CADENCE. Power consumption of DCT core is reduced to 1.027mW with minimum area[1].

Keywords: Discrete Cosine Transform (DCT), Inverse DiscreteCosine Transform (IDCT), Joint Photographic Expert Group (JPEG), Low Power Design, Very Large Scale Integration (VLSI) .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3139
907 Turbine Speed Variation Study in Gas Power Plant for an Active Generator

Authors: R. Kazemzadeh, J. M. Kauffmann

Abstract:

This research deals with investigations on the “Active Generator" under rotor speed variations and output frequency control. It runs at turbine speed and it is connected to a three phase electrical power grid which has its own frequency different from turbine frequency. In this regard the set composed of a four phase synchronous generator and a natural commutated matrix converter (NCMC) made with thyristors, is called active generator. It replaces a classical mechanical gearbox which introduces many drawbacks. The main idea in this article is the presentation of frequency control at grid side when turbine runs at variable speed. Frequency control has been done by linear and step variations of the turbine speed. Relation between turbine speed (frequency) and main grid zero sequence voltage frequency is presented.

Keywords: Power Generation, Energy Conversion, FrequencyControl, Matrix Converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
906 Decision Making using Maximization of Negret

Authors: José M. Merigó, Montserrat Casanovas

Abstract:

We analyze the problem of decision making under ignorance with regrets. Recently, Yager has developed a new method for decision making where instead of using regrets he uses another type of transformation called negrets. Basically, the negret is considered as the dual of the regret. We study this problem in detail and we suggest the use of geometric aggregation operators in this method. For doing this, we develop a different method for constructing the negret matrix where all the values are positive. The main result obtained is that now the model is able to deal with negative numbers because of the transformation done in the negret matrix. We further extent these results to another model developed also by Yager about mixing valuations and negrets. Unfortunately, in this case we are not able to deal with negative numbers because the valuations can be either positive or negative.

Keywords: Decision Making, Aggregation operators, Negret, OWA operator, OWG operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310
905 Delay-Dependent H∞ Performance Analysis for Markovian Jump Systems with Time-Varying Delays

Authors: Yucai Ding, Hong Zhu, Shouming Zhong, Yuping Zhang

Abstract:

This paper considers ­H∞ performance for Markovian jump systems with Time-varying delays. The systems under consideration involve disturbance signal, Markovian switching and timevarying delays. By using a new Lyapunov-Krasovskii functional and a convex optimization approach, a delay-dependent stability condition in terms of linear matrix inequality (LMI) is addressed, which guarantee asymptotical stability in mean square and a prescribed ­H∞ performance index for the considered systems. Two numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed main results. All these results are expected to be of use in the study of stochastic systems with time-varying delays.

Keywords: ­H∞ performance, Markovian switching, Delaydependent stability, Linear matrix inequality (LMI)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
904 A Robust Visual Tracking Algorithm with Low-Rank Region Covariance

Authors: Songtao Wu, Yuesheng Zhu, Ziqiang Sun

Abstract:

Region covariance (RC) descriptor is an effective and efficient feature for visual tracking. Current RC-based tracking algorithms use the whole RC matrix to track the target in video directly. However, there exist some issues for these whole RCbased algorithms. If some features are contaminated, the whole RC will become unreliable, which results in lost object-tracking. In addition, if some features are very discriminative to the background, other features are still processed and thus reduce the efficiency. In this paper a new robust tracking method is proposed, in which the whole RC matrix is decomposed into several low rank matrices. Those matrices are dynamically chosen and processed so as to achieve a good tradeoff between discriminability and complexity. Experimental results have shown that our method is more robust to complex environment changes, especially either when occlusion happens or when the background is similar to the target compared to other RC-based methods.

Keywords: Visual tracking, region covariance descriptor, lowrankregion covariance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
903 A Methodology to Analyze Technology Convergence: Patent-Citation Based Technology Input-Output Analysis

Authors: Jeeeun Kim, Sungjoo Lee

Abstract:

This research proposes a methodology for patent-citation-based technology input-output analysis by applying the patent information to input-output analysis developed for the dependencies among different industries. For this analysis, a technology relationship matrix and its components, as well as input and technology inducement coefficients, are constructed using patent information. Then, a technology inducement coefficient is calculated by normalizing the degree of citation from certain IPCs to the different IPCs (International patent classification) or to the same IPCs. Finally, we construct a Dependency Structure Matrix (DSM) based on the technology inducement coefficient to suggest a useful application for this methodology.

Keywords: Technology spillover effect, technology relationship, IO table, technology inducement coefficients, patent analysis, patent citation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2573
902 Mapping of C* Elements in Finite Element Method using Transformation Matrix

Authors: G. H. Majzoob, B. Sharifi Hamadani

Abstract:

Mapping between local and global coordinates is an important issue in finite element method, as all calculations are performed in local coordinates. The concern arises when subparametric are used, in which the shape functions of the field variable and the geometry of the element are not the same. This is particularly the case for C* elements in which the extra degrees of freedoms added to the nodes make the elements sub-parametric. In the present work, transformation matrix for C1* (an 8-noded hexahedron element with 12 degrees of freedom at each node) is obtained using equivalent C0 elements (with the same number of degrees of freedom). The convergence rate of 8-noded C1* element is nearly equal to its equivalent C0 element, while it consumes less CPU time with respect to the C0 element. The existence of derivative degrees of freedom at the nodes of C1* element along with excellent convergence makes it superior compared with it equivalent C0 element.

Keywords: Mapping, Finite element method, C* elements, Convergence, C0 elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3149
901 Mercerization Treatment Parameter Effect on Natural Fiber Reinforced Polymer Matrix Composite: A Brief Review

Authors: Mohd Yussni Hashim, Mohd Nazrul Roslan, Azriszul Mohd Amin, Ahmad Mujahid Ahmad Zaidi, Saparudin Ariffin

Abstract:

Environmental awareness and depletion of the petroleum resources are among vital factors that motivate a number of researchers to explore the potential of reusing natural fiber as an alternative composite material in industries such as packaging, automotive and building constructions. Natural fibers are available in abundance, low cost, lightweight polymer composite and most importance its biodegradability features, which often called “ecofriendly" materials. However, their applications are still limited due to several factors like moisture absorption, poor wettability and large scattering in mechanical properties. Among the main challenges on natural fibers reinforced matrices composite is their inclination to entangle and form fibers agglomerates during processing due to fiber-fiber interaction. This tends to prevent better dispersion of the fibers into the matrix, resulting in poor interfacial adhesion between the hydrophobic matrix and the hydrophilic reinforced natural fiber. Therefore, to overcome this challenge, fiber treatment process is one common alternative that can be use to modify the fiber surface topology by chemically, physically or mechanically technique. Nevertheless, this paper attempt to focus on the effect of mercerization treatment on mechanical properties enhancement of natural fiber reinforced composite or so-called bio composite. It specifically discussed on mercerization parameters, and natural fiber reinforced composite mechanical properties enhancement.

Keywords: Mercerization treatment, mechanical properties, natural fiber and bio composite

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4753
900 Bridge Analysis Structure under Human Induced Dynamic Load

Authors: O. Kratochvíl, J. Križan

Abstract:

The paper deals with the analysis of the dynamic response of footbridges under human - induced dynamic loads. This is a frequently occurring and often dominant load for footbridges as it stems from the very purpose of a footbridge - to convey pedestrian. Due to the emergence of new materials and advanced engineering technology, slender footbridges are increasingly becoming popular to satisfy the modern transportation needs and the aesthetical requirements of the society. These structures however are always lively with low stiffness, low mass, low damping and low natural frequencies. As a consequence, they are prone to vibration induced by human activities and can suffer severe vibration serviceability problems, particularly in the lateral direction. Pedestrian bridges are designed according to first and second limit states, these are the criteria involved in response to static design load. However, it is necessary to assess the dynamic response of bridge design load on pedestrians and assess it impact on the comfort of the user movement. Usually the load is considered a person or a small group which can be assumed in perfect motion synchronization. Already one person or small group can excite significant vibration of the deck. In order to calculate the dynamic response to the movement of people, designer needs available and suitable computational model and criteria. For the calculation program ANSYS based on finite element method was used.

Keywords: Footbridge, dynamic analysis, vibration serviceability of footbridges, lateral vibration, stiffness, dynamic force, walking force, slender suspension footbridges, natural frequencies and vibration modes, rhythm jumping, normal walking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2663
899 Optimal Data Compression and Filtering: The Case of Infinite Signal Sets

Authors: Anatoli Torokhti, Phil Howlett

Abstract:

We present a theory for optimal filtering of infinite sets of random signals. There are several new distinctive features of the proposed approach. First, we provide a single optimal filter for processing any signal from a given infinite signal set. Second, the filter is presented in the special form of a sum with p terms where each term is represented as a combination of three operations. Each operation is a special stage of the filtering aimed at facilitating the associated numerical work. Third, an iterative scheme is implemented into the filter structure to provide an improvement in the filter performance at each step of the scheme. The final step of the concerns signal compression and decompression. This step is based on the solution of a new rank-constrained matrix approximation problem. The solution to the matrix problem is described in this paper. A rigorous error analysis is given for the new filter.

Keywords: stochastic signals, optimization problems in signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280
898 Improvement of the Q-System Using the Rock Engineering System: A Case Study of Water Conveyor Tunnel of Azad Dam

Authors: S. Golmohammadi, M. Noorian Bidgoli

Abstract:

Because the status and mechanical parameters of discontinuities in the rock mass are included in the calculations, various methods of rock engineering classification are often used as a starting point for the design of different types of structures. The Q-system is one of the most frequently used methods for stability analysis and determination of support systems of underground structures in rock, including tunnel. In this method, six main parameters of the rock mass, namely, the Rock Quality Designation (RQD), joint set number (Jn), joint roughness number (Jr), joint alteration number (Ja), joint water parameter (Jw) and Stress Reduction Factor (SRF) are required. In this regard, in order to achieve a reasonable and optimal design, identifying the effective parameters for the stability of the mentioned structures is one of the most important goals and the most necessary actions in rock engineering. Therefore, it is necessary to study the relationships between the parameters of a system and how they interact with each other and, ultimately, the whole system. In this research, it has been attempted to determine the most effective parameters (key parameters) from the six parameters of rock mass in the Q-system using the Rock Engineering System (RES) method to improve the relationships between the parameters in the calculation of the Q value. The RES system is, in fact, a method by which one can determine the degree of cause and effect of a system's parameters by making an interaction matrix. In this research, the geomechanical data collected from the water conveyor tunnel of Azad Dam were used to make the interaction matrix of the Q-system. For this purpose, instead of using the conventional methods that are always accompanied by defects such as uncertainty, the Q-system interaction matrix is coded using a technique that is actually a statistical analysis of the data and determining the correlation coefficient between them. So, the effect of each parameter on the system is evaluated with greater certainty. The results of this study show that the formed interaction matrix provides a reasonable estimate of the effective parameters in the Q-system. Among the six parameters of the Q-system, the SRF and Jr parameters have the maximum and minimum impact on the system, respectively, and also the RQD and Jw parameters have the maximum and minimum impact on the system, respectively. Therefore, by developing this method, we can obtain a more accurate relation to the rock mass classification by weighting the required parameters in the Q-system.

Keywords: Q-system, Rock Engineering System, statistical analysis, rock mass, tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 295
897 Generic Filtering of Infinite Sets of Stochastic Signals

Authors: Anatoli Torokhti, Phil Howlett

Abstract:

A theory for optimal filtering of infinite sets of random signals is presented. There are several new distinctive features of the proposed approach. First, a single optimal filter for processing any signal from a given infinite signal set is provided. Second, the filter is presented in the special form of a sum with p terms where each term is represented as a combination of three operations. Each operation is a special stage of the filtering aimed at facilitating the associated numerical work. Third, an iterative scheme is implemented into the filter structure to provide an improvement in the filter performance at each step of the scheme. The final step of the scheme concerns signal compression and decompression. This step is based on the solution of a new rank-constrained matrix approximation problem. The solution to the matrix problem is described in this paper. A rigorous error analysis is given for the new filter.

Keywords: Optimal filtering, data compression, stochastic signals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321
896 Performance Analysis and Optimization for Diagonal Sparse Matrix-Vector Multiplication on Machine Learning Unit

Authors: Qiuyu Dai, Haochong Zhang, Xiangrong Liu

Abstract:

Efficient matrix-vector multiplication with diagonal sparse matrices is pivotal in a multitude of computational domains, ranging from scientific simulations to machine learning workloads. When encoded in the conventional Diagonal (DIA) format, these matrices often induce computational overheads due to extensive zero-padding and non-linear memory accesses, which can hamper the computational throughput, and elevate the usage of precious compute and memory resources beyond necessity. The ’DIA-Adaptive’ approach, a methodological enhancement introduced in this paper, confronts these challenges head-on by leveraging the advanced parallel instruction sets embedded within Machine Learning Units (MLUs). This research presents a thorough analysis of the DIA-Adaptive scheme’s efficacy in optimizing Sparse Matrix-Vector Multiplication (SpMV) operations. The scope of the evaluation extends to a variety of hardware architectures, examining the repercussions of distinct thread allocation strategies and cluster configurations across multiple storage formats. A dedicated computational kernel, intrinsic to the DIA-Adaptive approach, has been meticulously developed to synchronize with the nuanced performance characteristics of MLUs. Empirical results, derived from rigorous experimentation, reveal that the DIA-Adaptive methodology not only diminishes the performance bottlenecks associated with the DIA format but also exhibits pronounced enhancements in execution speed and resource utilization. The analysis delineates a marked improvement in parallelism, showcasing the DIA-Adaptive scheme’s ability to adeptly manage the interplay between storage formats, hardware capabilities, and algorithmic design. The findings suggest that this approach could set a precedent for accelerating SpMV tasks, thereby contributing significantly to the broader domain of high-performance computing and data-intensive applications.

Keywords: Adaptive method, DIA, diagonal sparse matrices, MLU, sparse matrix-vector multiplication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 234
895 Nafion Nanofiber Composite Membrane Fabrication for Fuel Cell Applications

Authors: C. N. Okafor, M. Maaza, T. A. E. Mokrani

Abstract:

A proton exchange membrane has been developed for direct methanol fuel cell (DMFC). The nanofiber network composite membranes were prepared by interconnected network of Nafion (perfuorosulfonic acid) nanofibers that have been embedded in an uncharged and inert polymer matrix, by electro-spinning. The spinning solution of Nafion with a low concentration (1 wt% compared to Nafion) of high molecular weight poly(ethylene oxide), as a carrier polymer. The interconnected network of Nafion nanofibers with average fiber diameter in the range of 160-700nm, were used to make the membranes, with the nanofiber occupying up to 85% of the membrane volume. The matrix polymer was crosslinked with Norland Optical Adhesive 63 under UV. The resulting membranes showed proton conductivity of 0.10 S/cm at 25°C and 80% RH; and methanol permeability of 3.6 x 10-6 cm2/s.

Keywords: Composite membrane, electrospinning, fuel cell, nanofibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2916
894 Identification of Wideband Sources Using Higher Order Statistics in Noisy Environment

Authors: S. Bourennane, A. Bendjama

Abstract:

This paper deals with the localization of the wideband sources. We develop a new approach for estimating the wide band sources parameters. This method is based on the high order statistics of the recorded data in order to eliminate the Gaussian components from the signals received on the various hydrophones.In fact the noise of sea bottom is regarded as being Gaussian. Thanks to the coherent signal subspace algorithm based on the cumulant matrix of the received data instead of the cross-spectral matrix the wideband correlated sources are perfectly located in the very noisy environment. We demonstrate the performance of the proposed algorithm on the real data recorded during an underwater acoustics experiments.

Keywords: Higher-order statistics, high resolution array processing techniques, localization of acoustics sources, wide band sources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599