%0 Journal Article
	%A Vishwajit M. Ghatge and  David Looper
	%D 2015
	%J International Journal of Computer and Systems Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 98, 2015
	%T FEM and Experimental Modal Analysis of Computer Mount
	%U https://publications.waset.org/pdf/10000282
	%V 98
	%X Over the last few decades, oilfield service rolling
equipment has significantly increased in weight, primarily because of
emissions regulations, which require larger/heavier engines, larger
cooling systems, and emissions after-treatment systems, in some
cases, etc. Larger engines cause more vibration and shock loads,
leading to failure of electronics and control systems.
If the vibrating frequency of the engine matches the system
frequency, high resonance is observed on structural parts and mounts.
One such existing automated control equipment system comprising
wire rope mounts used for mounting computers was designed
approximately 12 years ago. This includes the use of an industrialgrade
computer to control the system operation. The original
computer had a smaller, lighter enclosure. After a few years, a newer
computer version was introduced, which was 10 lbm heavier. Some
failures of internal computer parts have been documented for cases in
which the old mounts were used. Because of the added weight, there
is a possibility of having the two brackets impact each other under
off-road conditions, which causes a high shock input to the computer
parts. This added failure mode requires validating the existing mount
design to suit the new heavy-weight computer.
This paper discusses the modal finite element method (FEM)
analysis and experimental modal analysis conducted to study the
effects of vibration on the wire rope mounts and the computer. The
existing mount was modelled in ANSYS software, and resultant
mode shapes and frequencies were obtained. The experimental modal
analysis was conducted, and actual frequency responses were
observed and recorded.
Results clearly revealed that at resonance frequency, the brackets
were colliding and potentially causing damage to computer parts. To
solve this issue, spring mounts of different stiffness were modeled in
ANSYS software, and the resonant frequency was determined.
Increasing the stiffness of the system increased the resonant
frequency zone away from the frequency window at which the engine
showed heavy vibrations or resonance. After multiple iterations in
ANSYS software, the stiffness of the spring mount was finalized,
which was again experimentally validated.

	%P 206 - 211