@article{(Open Science Index):https://publications.waset.org/pdf/10000155,
	  title     = {Enhanced Thermal Properties of Rigid PVC Foams Using Fly Ash},
	  author    = {Nidal H. Abu-Zahra and  Parisa Khoshnoud and  Murtatha Jamel and  Subhashini Gunashekar},
	  country	= {},
	  institution	= {},
	  abstract     = {PVC foam-fly ash composites (PVC-FA) are
characterized for their structural, morphological, mechanical and
thermal properties. The tensile strength of the composites increased
modestly with higher fly ash loading, while there was a significant
increase in the elastic modulus for the same composites. On the other
hand, a decrease in elongation at UTS was observed upon increasing
fly ash content due to increased rigidity of the composites. Similarly,
the flexural modulus increased as the fly ash loading increased,
where the composites containing 25 phr fly ash showed the highest
flexural strength. Thermal properties of PVC-fly ash composites were
determined by Thermo Gravimetric Analysis (TGA). The
microstructural properties were studied by Scanning Electron
Microscopy (SEM). SEM results confirm that fly ash particles were
mechanically interlocked in PVC matrix with good interfacial
interaction with the matrix. Particle agglomeration and debonding
was observed in samples containing higher amounts of fly ash.
},
	    journal   = {International Journal of Materials and Metallurgical Engineering},
	  volume    = {9},
	  number    = {1},
	  year      = {2015},
	  pages     = {18 - 24},
	  ee        = {https://publications.waset.org/pdf/10000155},
	  url   	= {https://publications.waset.org/vol/97},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 97, 2015},
	}