Search results for: feedback error learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3552

Search results for: feedback error learning

3162 Software Engineering Mobile Learning Software Solution Using Task Based Learning Approach

Authors: Bekim Fetaji, Majlinda Fetaji

Abstract:

The development and use of mobile devices as well as its integration within education systems to deliver electronic contents and to support real-time communications was the focus of this research. In order to investigate the software engineering issues in using mobile devices a research on electronic content was initiated. The Developed MP3 mobile software solution was developed as a prototype for testing and developing a strategy for designing a usable m-learning environment. The mobile software solution was evaluated using mobile device using the link: http://projects.seeu.edu.mk/mlearn. The investigation also tested the correlation between the two mobile learning indicators: electronic content and attention, based on the Task Based learning instructional method. The mobile software solution ''M-Learn“ was developed as a prototype for testing the approach and developing a strategy for designing usable m-learning environment. The proposed methodology is about what learning modeling approach is more appropriate to use when developing mobile learning software.

Keywords: M-learning, mobile software development, mobiledevices, learning instructions, task based learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
3161 Parallel Joint Channel Coding and Cryptography

Authors: Nataša Živić, Christoph Ruland

Abstract:

Method of Parallel Joint Channel Coding and Cryptography has been analyzed and simulated in this paper. The method is an extension of Soft Input Decryption with feedback, which is used for improvement of channel decoding of secured messages. Parallel Joint Channel Coding and Cryptography results in improved coding gain of channel decoding, which achieves more than 2 dB. Such results are an implication of a combination of receiver components and their interoperability.

Keywords: Block length, Coding gain, Feedback, L-values, Parallel Joint Channel Coding and Cryptography, Soft Input Decryption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
3160 A Selective 3-Anchor DV-Hop Algorithm Based On the Nearest Anchor for Wireless Sensor Network

Authors: Hichem Sassi, Tawfik Najeh, Noureddine Liouane

Abstract:

Information of nodes’ locations is an important criterion for lots of applications in Wireless Sensor Networks. In the hop-based range-free localization methods, anchors transmit the localization messages counting a hop count value to the whole network. Each node receives this message and calculates its own distance with anchor in hops and then approximates its own position. However the estimative distances can provoke large error, and affect the localization precision. To solve the problem, this paper proposes an algorithm, which makes the unknown nodes fix the nearest anchor as a reference and select two other anchors which are the most accurate to achieve the estimated location. Compared to the DV-Hop algorithm, experiment results illustrate that proposed algorithm has less average localization error and is more effective.

Keywords: Wireless Sensors Networks, Localization problem, localization average error, DV–Hop Algorithm, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2960
3159 The Effectiveness of Lesson Study via Learning Communities in Increasing Instructional Self-Efficacy of Beginning Special Educators

Authors: David D. Hampton

Abstract:

Lesson study is used as an instructional technique to promote both student and faculty learning. However, little is known about the usefulness of learning communities in supporting results of lesson study on the self-efficacy and development for tenure-track faculty. This study investigated the impact of participation in a lesson study learning community on 34 new faculty members at a mid-size Midwestern University, specifically regarding implementing lesson study evaluations by new faculty on their reported self-efficacy. Results indicate that participation in a lesson study learning community significantly increased faculty members’ lesson study self-efficacy as well as grant and manuscript production over one academic year. Suggestions for future lesson study around faculty learning communities are discussed.

Keywords: Lesson study, learning community, lesson study self-efficacy, new faculty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 401
3158 Application of Extreme Learning Machine Method for Time Series Analysis

Authors: Rampal Singh, S. Balasundaram

Abstract:

In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.

Keywords: Chaotic time series, Extreme learning machine, Generalization performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3523
3157 A Design of the Infrastructure and Computer Network for Distance Education, Online Learning via New Media, E-Learning and Blended Learning

Authors: Sumitra Nuanmeesri

Abstract:

The research focus on study, analyze and design the model of the infrastructure and computer networks for distance education, online learning via new media, e-learning and blended learning. The collected information from study and analyze process that information was evaluated by the index of item objective congruence (IOC) by 9 specialists to design model. The results of evaluate the model with the mean and standard deviation by the sample of 9 specialists value is 3.85. The results showed that the infrastructure and computer networks are designed to be appropriate to a great extent appropriate to a great extent.

Keywords: Blended Learning, New Media, Infrastructure and Computer Network, Tele-Education, Online Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
3156 Classification Based on Deep Neural Cellular Automata Model

Authors: Yasser F. Hassan

Abstract:

Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.

Keywords: Cellular automata, neural cellular automata, deep learning, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869
3155 Springback Investigation on Sheet Metal Incremental Formed Parts

Authors: Hongyu Wei, Wenliang Chen, Lin Gao

Abstract:

Incremental forming is a complex forming process with continuously local cumulative deformation taking place during its process, and springback that forming quality affected by would occur. The springback evaluation method based on forming error compensation also was proposed, which it can be defined as the difference between theory and the actual amount of compensation along the measured direction. According to forming error compensation evaluation method, experiments was designed and implemented. And from the results that obtained it can be show, the magnitude of springback average (δE) of formed parts was very small, and the forming precision could be significantly improved by adopting compensation method. Based on double tensile stress state in the main deformation area, a hypothesis that there is little springback be arisen by bending behavior on the formed parts that was proposed.

Keywords: Sheet metal, incremental forming, springback, forming error compensation, geometric accuracy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2400
3154 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models

Authors: [email protected]

Abstract:

Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data need a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM), ensemble learning with hyper parameters optimization, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.

Keywords: Machine learning, Deep learning, cancer prediction, breast cancer, LSTM, Score-Level Fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 415
3153 Process-Oriented Learning Requirements for Employees and for Organizations

Authors: Richard Pircher, Lukas Zenk, Hanna Risku

Abstract:

Using activity theory, organisational theory and didactics as theoretical foundations, a comprehensive model of the organisational dimensions relevant for learning and knowledge transfer will be developed. In a second step, a Learning Assessment Guideline will be elaborated. This guideline will be designed to permit a targeted analysis of organisations to identify the status quo in those areas crucial to the implementation of learning and knowledge transfer. In addition, this self-analysis tool will enable learning managers to select adequate didactic models for e- and blended learning. As part of the European Integrated Project "Process-oriented Learning and Information Exchange" (PROLIX), this model of organisational prerequisites for learning and knowledge transfer will be empirically tested in four profit and non-profit organisations in Great Britain, Germany and France (to be finalized in autumn 2006). The findings concern not only the capability of the model of organisational dimensions, but also the predominant perceptions of and obstacles to learning in organisations.

Keywords: Activity theory, knowledge management organisational theory, "Process-oriented Learning and Information Exchange" (PROLIX).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
3152 Open Source Implementation of M-Learning for Primary School in Malaysia

Authors: Saipunidzam Mahamad, Mohammad Noor Ibrahim, Mohamad Izzriq Ab Malek Foad, ShakirahMohd Taib

Abstract:

With the proliferation of the mobile device technologies, mobile learning can be used to complement and improve traditional learning problems. Both students and teachers need a proper and handy system to monitor and keep track the performance of the students. This paper presents an implementation of M-learning for primary school in Malaysia by using an open source technology. It focuses on learning mathematics using handheld devices for primary schools- students aged 11 and 12 years old. Main users for this system include students, teachers and the administrator. This application suggests a new mobile learning environment with mobile graph for tracking the students- progress and performance. The purpose of this system is not to replace traditional classroom but to complement the learning process. In a testing conducted, students who used this system performed better in their examination.

Keywords: M-Learning, Automated Mobile Graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2458
3151 Leveraging xAPI in a Corporate e-Learning Environment to Facilitate the Tracking, Modelling, and Predictive Analysis of Learner Behaviour

Authors: Libor Zachoval, Daire O Broin, Oisin Cawley

Abstract:

E-learning platforms, such as Blackboard have two major shortcomings: limited data capture as a result of the limitations of SCORM (Shareable Content Object Reference Model), and lack of incorporation of Artificial Intelligence (AI) and machine learning algorithms which could lead to better course adaptations. With the recent development of Experience Application Programming Interface (xAPI), a large amount of additional types of data can be captured and that opens a window of possibilities from which online education can benefit. In a corporate setting, where companies invest billions on the learning and development of their employees, some learner behaviours can be troublesome for they can hinder the knowledge development of a learner. Behaviours that hinder the knowledge development also raise ambiguity about learner’s knowledge mastery, specifically those related to gaming the system. Furthermore, a company receives little benefit from their investment if employees are passing courses without possessing the required knowledge and potential compliance risks may arise. Using xAPI and rules derived from a state-of-the-art review, we identified three learner behaviours, primarily related to guessing, in a corporate compliance course. The identified behaviours are: trying each option for a question, specifically for multiple-choice questions; selecting a single option for all the questions on the test; and continuously repeating tests upon failing as opposed to going over the learning material. These behaviours were detected on learners who repeated the test at least 4 times before passing the course. These findings suggest that gauging the mastery of a learner from multiple-choice questions test scores alone is a naive approach. Thus, next steps will consider the incorporation of additional data points, knowledge estimation models to model knowledge mastery of a learner more accurately, and analysis of the data for correlations between knowledge development and identified learner behaviours. Additional work could explore how learner behaviours could be utilised to make changes to a course. For example, course content may require modifications (certain sections of learning material may be shown to not be helpful to many learners to master the learning outcomes aimed at) or course design (such as the type and duration of feedback).

Keywords: Compliance Course, Corporate Training, Learner Behaviours, xAPI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 564
3150 Lookup Table Reduction and Its Error Analysis of Hall Sensor-Based Rotation Angle Measurement

Authors: Young-San Shin, Seongsoo Lee

Abstract:

Hall sensor is widely used to measure rotation angle. When the Hall voltage is measured for linear displacement, it is converted to angular displacement using arctangent function, which requires a large lookup table. In this paper, a lookup table reduction technique is presented for angle measurement. When the input of the lookup table is small within a certain threshold, the change of the outputs with respect to the change of the inputs is relatively small. Thus, several inputs can share same output, which significantly reduce the lookup table size. Its error analysis was also performed, and the threshold was determined so as to maintain the error less than 1°. When the Hall voltage has 11-bit resolution, the lookup table size is reduced from 1,024 samples to 279 samples.

Keywords: Hall sensor, angle measurement, lookup table, arctangent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
3149 Verification of a Locked CFD Approach to Cool Down Modeling

Authors: P. Bárta

Abstract:

Increasing demand on the performance of Subsea Production Systems (SPS) suggests a need for more detailed investigation of fluid behavior taking place in subsea equipment. Complete CFD cool down analyses of subsea equipment are very time demanding. The objective of this paper is to investigate a Locked CFD approach, which enables significant reduction of the computational time and at the same time maintains sufficient accuracy during thermal cool down simulations. The result comparison of a dead leg simulation using the Full CFD and the three LCFD-methods confirms the validity of the locked flow field assumption for the selected case. For the tested case the LCFD simulation speed up by factor of 200 results in the absolute thermal error of 0.5 °C (3% relative error), speed up by factor of 10 keeps the LCFD results within 0.1 °C (0.5 % relative error) comparing to the Full CFD.

Keywords: CFD, Locked Flow Field, Speed up of CFD simulation time, Subsea

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
3148 Optimizing Data Evaluation Metrics for Fraud Detection Using Machine Learning

Authors: Jennifer Leach, Umashanger Thayasivam

Abstract:

The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate others. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease these advancements. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent datasets, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which split and technique would lead to the most optimal results.

Keywords: Data science, fraud detection, machine learning, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779
3147 Secured Session Based Profile Caching for E-Learning Systems Using WiMAX Networks

Authors: R. Chithra, B. Kalaavathi

Abstract:

E-Learning enables the users to learn at anywhere at any time. In E-Learning systems, authenticating the E-Learning user has security issues. The usage of appropriate communication networks for providing the internet connectivity for E-learning is another challenge. WiMAX networks provide Broadband Wireless Access through the Multicast Broadcast Service so these networks can be most suitable for E-Learning applications. The authentication of E-Learning user is vulnerable to session hijacking problems. The repeated authentication of users can be done to overcome these issues. In this paper, session based Profile Caching Authentication is proposed. In this scheme, the credentials of E-Learning users can be cached at authentication server during the initial authentication through the appropriate subscriber station. The proposed cache based authentication scheme performs fast authentication by using cached user profile. Thus, the proposed authentication protocol reduces the delay in repeated authentication to enhance the security in ELearning.

Keywords: Authentication, E-Learning, WiMAX, Security, Profile caching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
3146 Interactive Chinese Character Learning System though Pictograph Evolution

Authors: J.H. Low, C.O. Wong, E.J. Han, K.R Kim K.C. Jung, H.K. Yang

Abstract:

This paper proposes an Interactive Chinese Character Learning System (ICCLS) based on pictorial evolution as an edutainment concept in computer-based learning of language. The advantage of the language origination itself is taken as a learning platform due to the complexity in Chinese language as compared to other types of languages. Users especially children enjoy more by utilize this learning system because they are able to memories the Chinese Character easily and understand more of the origin of the Chinese character under pleasurable learning environment, compares to traditional approach which children need to rote learning Chinese Character under un-pleasurable environment. Skeletonization is used as the representation of Chinese character and object with an animated pictograph evolution to facilitate the learning of the language. Shortest skeleton path matching technique is employed for fast and accurate matching in our implementation. User is required to either write a word or draw a simple 2D object in the input panel and the matched word and object will be displayed as well as the pictograph evolution to instill learning. The target of computer-based learning system is for pre-school children between 4 to 6 years old to learn Chinese characters in a flexible and entertaining manner besides utilizing visual and mind mapping strategy as learning methodology.

Keywords: Computer-based learning, Chinese character, pictograph evolution, skeletonization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
3145 The Optimization of Decision Rules in Multimodal Decision-Level Fusion Scheme

Authors: Andrey V. Timofeev, Dmitry V. Egorov

Abstract:

This paper introduces an original method of parametric optimization of the structure for multimodal decisionlevel fusion scheme which combines the results of the partial solution of the classification task obtained from assembly of the mono-modal classifiers. As a result, a multimodal fusion classifier which has the minimum value of the total error rate has been obtained.

Keywords: Сlassification accuracy, fusion solution, total error rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
3144 Problem Based Learning in B. P. Koirala Institute of Health Sciences

Authors: Gurung S., Yadav B. N., Budhathoki SS.

Abstract:

Problem based learning is one of the highly acclaimed learning methods in medical education since its first introduction at Mc-Master University in Canada in the 1960s. It has now been adopted as a teaching learning method in many medical colleges of Nepal. B.P. Koirala Institute of Health Sciences (BPKIHS), a health science deemed university is the second institute in Nepal to establish problem-based learning academic program and need-based teaching approach hence minimizing teaching through lectures since its inception. During the first two years of MBBS course, the curriculum is divided into various organ-systems incorporated with problem-based learning exercise each of one week duration.

Keywords: PBL, medical education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2343
3143 Factors of English Language Learning and Acquisition at Bisha College of Technology

Authors: Khalid Albishi

Abstract:

This paper participates in giving new vision and explains the learning and acquisition processes of English language by analyzing a certain context. Five important factors in English language acquisition and learning are discussed and suitable solutions are provided. The factors are compared with the learners' linguistic background at Bisha College of Technology BCT attempting to link the issues faced by students and the research done on similar situations. These factors are phonology, age of acquisition, motivation, psychology and courses of English. These factors are very important; because they interfere and affect specific learning processes at BCT context and general English learning situations.

Keywords: Acquisition, age, factors, language, learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
3142 Controller Design of Discrete Systems by Order Reduction Technique Employing Differential Evolution Optimization Algorithm

Authors: J. S. Yadav, N. P. Patidar, J. Singhai

Abstract:

One of the main objectives of order reduction is to design a controller of lower order which can effectively control the original high order system so that the overall system is of lower order and easy to understand. In this paper, a simple method is presented for controller design of a higher order discrete system. First the original higher order discrete system in reduced to a lower order model. Then a Proportional Integral Derivative (PID) controller is designed for lower order model. An error minimization technique is employed for both order reduction and controller design. For the error minimization purpose, Differential Evolution (DE) optimization algorithm has been employed. DE method is based on the minimization of the Integral Squared Error (ISE) between the desired response and actual response pertaining to a unit step input. Finally the designed PID controller is connected to the original higher order discrete system to get the desired specification. The validity of the proposed method is illustrated through a numerical example.

Keywords: Discrete System, Model Order Reduction, PIDController, Integral Squared Error, Differential Evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
3141 Unit Root Tests Based On the Robust Estimator

Authors: Wararit Panichkitkosolkul

Abstract:

The unit root tests based on the robust estimator for the first-order autoregressive process are proposed and compared with the unit root tests based on the ordinary least squares (OLS) estimator. The percentiles of the null distributions of the unit root test are also reported. The empirical probabilities of Type I error and powers of the unit root tests are estimated via Monte Carlo simulation. Simulation results show that all unit root tests can control the probability of Type I error for all situations. The empirical power of the unit root tests based on the robust estimator are higher than the unit root tests based on the OLS estimator.

Keywords: Autoregressive, Ordinary least squares, Type I error, Power of the test, Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
3140 The Interaction between Accounting Students- Preference, Teaching Methodology and Performance

Authors: Dorine M. Mattar, Rim M. El Khoury

Abstract:

This paper examined the influence of matching students- learning preferences with the teaching methodology adopted, on their academic performance in an accounting course in two types of learning environment in one university in Lebanon: classes with PowerPoint (PPT) vs. conventional classes. Learning preferences were either for PPT or for Conventional methodology. A statistically significant increase in academic achievement is found in the conventionally instructed group as compared to the group taught with PPT. This low effectiveness of PPT might be attributed to the learning preferences of Lebanese students. In the PPT group, better academic performance was found among students with learning/teaching match as compared with students with learning/teaching mismatch. Since the majority of students display a preference for the conventional methodology, the result might suggest that Lebanese students- performance is not optimized by PPT in the accounting classrooms, not because of PPT itself, but because it is not matching the Lebanese students- learning preferences in such a quantitative course.

Keywords: Accounting education, learning preferences, learning/teaching match, Lebanon, Student performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
3139 BIP-Based Alarm Declaration and Clearing in SONET Networks Employing Automatic Protection Switching

Authors: Vitalice K. Oduol, C. Ardil

Abstract:

The paper examines the performance of bit-interleaved parity (BIP) methods in error rate monitoring, and in declaration and clearing of alarms in those transport networks that employ automatic protection switching (APS). The BIP-based error rate monitoring is attractive for its simplicity and ease of implementation. The BIP-based results are compared with exact results and are found to declare the alarms too late, and to clear the alarms too early. It is concluded that the standards development and systems implementation should take into account the fact of early clearing and late declaration of alarms. The window parameters defining the detection and clearing thresholds should be set so as to build sufficient hysteresis into the system to ensure that BIP-based implementations yield acceptable performance results.

Keywords: Automatic protection switching, bit interleaved parity, excessive bit error rate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
3138 Building a Personalized Multidimensional Intelligent Learning System

Authors: Lun-Ping Hung, Nan-Chen Hsieh, Chia-Ling Ho, Chien-Liang Chen

Abstract:

Currently, most of distance learning courses can only deliver standard material to students. Students receive course content passively which leads to the neglect of the goal of education – “to suit the teaching to the ability of students". Providing appropriate course content according to students- ability is the main goal of this paper. Except offering a series of conventional learning services, abundant information available, and instant message delivery, a complete online learning environment should be able to distinguish between students- ability and provide learning courses that best suit their ability. However, if a distance learning site contains well-designed course content and design but fails to provide adaptive courses, students will gradually loss their interests and confidence in learning and result in ineffective learning or discontinued learning. In this paper, an intelligent tutoring system is proposed and it consists of several modules working cooperatively in order to build an adaptive learning environment for distance education. The operation of the system is based on the result of Self-Organizing Map (SOM) to divide students into different groups according to their learning ability and learning interests and then provide them with suitable course content. Accordingly, the problem of information overload and internet traffic problem can be solved because the amount of traffic accessing the same content is reduced.

Keywords: Distance Learning, Intelligent Tutoring System(ITS), Self-Organizing Map (SOM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
3137 A Framework on the Critical Success Factors of E-Learning Implementation in Higher Education: A Review of the Literature

Authors: Sujit K. Basak, Marguerite Wotto, Paul Bélanger

Abstract:

This paper presents a conceptual framework on the critical success factors of e-learning implementation in higher education, derived from an in-depth survey of literature review. The aim of this study was achieved by identifying critical success factors that affect for the successful implementation of e-learning. The findings help to articulate issues that are related to e-learning implementation in both formal and non-formal higher education and in this way contribute to the development of programs designed to address the relevant issues.

Keywords: Critical success factors, e-learning, higher education, life-long learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3894
3136 Digital Learning Environments for Joint Master in Science Programmes in Building and Construction in Europe: Experimenting with Tools and Technologies

Authors: E. Dado, R. Beheshti

Abstract:

Recent developments in information and communication technologies (ICT) have created excellent conditions for profoundly enhancing the traditional learning and teaching practices. New modes of teaching in higher education subjects can profoundly enhance ones ability to proactively constructing his or her personal learning universe. These developments have contributed to digital learning environments becoming widely available and accessible. In addition, there is a trend towards enlargement and specialization in higher education in Europe. With as a result that existing Master of Science (MSc) programmes are merged or new programmes have been established that are offered as joint MSc programmes to students. In these joint MSc programmes, the need for (common) digital learning environments capable of surmounting the barriers of time and location has become evident. This paper discusses the past and ongoing efforts to establish such common digital learning environments in two joint MSc programmes in Europe and discusses the way technology-based learning environments affect the traditional way of learning.

Keywords: education, engineering, learning environments, ICT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
3135 Ensemble Approach for Predicting Student's Academic Performance

Authors: L. A. Muhammad, M. S. Argungu

Abstract:

Educational data mining (EDM) has recorded substantial considerations. Techniques of data mining in one way or the other have been proposed to dig out out-of-sight knowledge in educational data. The result of the study got assists academic institutions in further enhancing their process of learning and methods of passing knowledge to students. Consequently, the performance of students boasts and the educational products are by no doubt enhanced. This study adopted a student performance prediction model premised on techniques of data mining with Students' Essential Features (SEF). SEF are linked to the learner's interactivity with the e-learning management system. The performance of the student's predictive model is assessed by a set of classifiers, viz. Bayes Network, Logistic Regression, and Reduce Error Pruning Tree (REP). Consequently, ensemble methods of Bagging, Boosting, and Random Forest (RF) are applied to improve the performance of these single classifiers. The study reveals that the result shows a robust affinity between learners' behaviors and their academic attainment. Result from the study shows that the REP Tree and its ensemble record the highest accuracy of 83.33% using SEF. Hence, in terms of the Receiver Operating Curve (ROC), boosting method of REP Tree records 0.903, which is the best. This result further demonstrates the dependability of the proposed model.

Keywords: Ensemble, bagging, Random Forest, boosting, data mining, classifiers, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774
3134 Error Correction of Radial Displacement in Grinding Machine Tool Spindle by Optimizing Shape and Bearing Tuning

Authors: Khairul Jauhari, Achmad Widodo, Ismoyo Haryanto

Abstract:

In this article, the radial displacement error correction capability of a high precision spindle grinding caused by unbalance force was investigated. The spindle shaft is considered as a flexible rotor mounted on two sets of angular contact ball bearing. Finite element methods (FEM) have been adopted for obtaining the equation of motion of the spindle. In this paper, firstly, natural frequencies, critical frequencies, and amplitude of the unbalance response caused by residual unbalance are determined in order to investigate the spindle behaviors. Furthermore, an optimization design algorithm is employed to minimize radial displacement of the spindle which considers dimension of the spindle shaft, the dynamic characteristics of the bearings, critical frequencies and amplitude of the unbalance response, and computes optimum spindle diameters and stiffness and damping of the bearings. Numerical simulation results show that by optimizing the spindle diameters, and stiffness and damping in the bearings, radial displacement of the spindle can be reduced. A spindle about 4 μm radial displacement error can be compensated with 2 μm accuracy. This certainly can improve the accuracy of the product of machining.

Keywords: Error correction, High precision grinding, Optimization, Radial displacement, Spindle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
3133 Optimal Model Order Selection for Transient Error Autoregressive Moving Average (TERA) MRI Reconstruction Method

Authors: Abiodun M. Aibinu, Athaur Rahman Najeeb, Momoh J. E. Salami, Amir A. Shafie

Abstract:

An alternative approach to the use of Discrete Fourier Transform (DFT) for Magnetic Resonance Imaging (MRI) reconstruction is the use of parametric modeling technique. This method is suitable for problems in which the image can be modeled by explicit known source functions with a few adjustable parameters. Despite the success reported in the use of modeling technique as an alternative MRI reconstruction technique, two important problems constitutes challenges to the applicability of this method, these are estimation of Model order and model coefficient determination. In this paper, five of the suggested method of evaluating the model order have been evaluated, these are: The Final Prediction Error (FPE), Akaike Information Criterion (AIC), Residual Variance (RV), Minimum Description Length (MDL) and Hannan and Quinn (HNQ) criterion. These criteria were evaluated on MRI data sets based on the method of Transient Error Reconstruction Algorithm (TERA). The result for each criterion is compared to result obtained by the use of a fixed order technique and three measures of similarity were evaluated. Result obtained shows that the use of MDL gives the highest measure of similarity to that use by a fixed order technique.

Keywords: Autoregressive Moving Average (ARMA), MagneticResonance Imaging (MRI), Parametric modeling, Transient Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617