Search results for: Shear field test method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12010

Search results for: Shear field test method

7930 Quantitative Assessment of Different Formulations of Antimalarials in Sentinel Sites of India

Authors: Taruna Katyal Arora, Geeta Kumari, Hari Shankar, Neelima Mishra

Abstract:

Substandard and counterfeit antimalarials is a major problem in malaria endemic areas. The availability of counterfeit/ substandard medicines is not only decreasing the efficacy in patients, but it is also one of the contributing factors for developing antimalarial drug resistance. Owing to this, a pilot study was conducted to survey quality of drugs collected from different malaria endemic areas of India. Artesunate+Sulphadoxine-Pyrimethamine (AS+SP), Artemether-Lumefantrine (AL), Chloroquine (CQ) tablets were randomly picked from public health facilities in selected states of India. The quality of antimalarial drugs from these areas was assessed by using Global Pharma Health Fund Minilab test kit. This includes physical/visual inspection and disintegration test. Thin-layer chromatography (TLC) was carried out for semi-quantitative assessment of active pharmaceutical ingredients. A total of 45 brands, out of which 21 were for CQ, 14 for AL and 10 for AS+SP were tested from Uttar Pradesh (U.P.), Mizoram, Meghalaya and Gujrat states. One out of 45 samples showed variable disintegration and retension factor. The variable disintegration and retention factor which would have been due to substandard quality or other factors including storage. However, HPLC analysis confirms standard active pharmaceutical ingredient, but may be due to humid temperature and moisture in storage may account for the observed result.

Keywords: Antimalarial medicines, counterfeit, substandard, thin layer chromatography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
7929 Iterative Image Reconstruction for Sparse-View Computed Tomography via Total Variation Regularization and Dictionary Learning

Authors: XianYu Zhao, JinXu Guo

Abstract:

Recently, low-dose computed tomography (CT) has become highly desirable due to increasing attention to the potential risks of excessive radiation. For low-dose CT imaging, ensuring image quality while reducing radiation dose is a major challenge. To facilitate low-dose CT imaging, we propose an improved statistical iterative reconstruction scheme based on the Penalized Weighted Least Squares (PWLS) standard combined with total variation (TV) minimization and sparse dictionary learning (DL) to improve reconstruction performance. We call this method "PWLS-TV-DL". In order to evaluate the PWLS-TV-DL method, we performed experiments on digital phantoms and physical phantoms, respectively. The experimental results show that our method is in image quality and calculation. The efficiency is superior to other methods, which confirms the potential of its low-dose CT imaging.

Keywords: Low dose computed tomography, penalized weighted least squares, total variation, dictionary learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849
7928 Measurement of Systemic Power Efficiency of Microwave Heating Application

Authors: Yi He, Nutdechatorn Puangngernmak, Suramate Chalermwisutkul

Abstract:

Microwave heating process has been developed about sixty years while measurement system has also progressed. Because of irradiation of high frequency of microwave, researchers have been utilized many costly technical instrument measuring parameters to evaluate the performance of microwave heating system. Therefore, this paper is intended to present an easier and feasible efficiency measurement method. It can help inspecting efficiency of microwave heating system with good accuracy, while the method can also give reference to optimizing procedure for microwave heating system for various load material

Keywords: measurement, microwave heating system, systemic power efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
7927 Adaptive Shape Parameter (ASP) Technique for Local Radial Basis Functions (RBFs) and Their Application for Solution of Navier Strokes Equations

Authors: A. Javed, K. Djidjeli, J. T. Xing

Abstract:

The concept of adaptive shape parameters (ASP) has been presented for solution of incompressible Navier Strokes equations using mesh-free local Radial Basis Functions (RBF). The aim is to avoid ill-conditioning of coefficient matrices of RBF weights and inaccuracies in RBF interpolation resulting from non-optimized shape of basis functions for the cases where data points (or nodes) are not distributed uniformly throughout the domain. Unlike conventional approaches which assume globally similar values of RBF shape parameters, the presented ASP technique suggests that shape parameter be calculated exclusively for each data point (or node) based on the distribution of data points within its own influence domain. This will ensure interpolation accuracy while still maintaining well conditioned system of equations for RBF weights. Performance and accuracy of ASP technique has been tested by evaluating derivatives and laplacian of a known function using RBF in Finite difference mode (RBFFD), with and without the use of adaptivity in shape parameters. Application of adaptive shape parameters (ASP) for solution of incompressible Navier Strokes equations has been presented by solving lid driven cavity flow problem on mesh-free domain using RBF-FD. The results have been compared for fixed and adaptive shape parameters. Improved accuracy has been achieved with the use of ASP in RBF-FD especially at regions where larger gradients of field variables exist.

Keywords: CFD, Meshless Particle Method, Radial Basis Functions, Shape Parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2835
7926 A New Objective Weight on Interval Type-2 Fuzzy Sets

Authors: Nurnadiah Z., Lazim A.

Abstract:

The design of weight is one of the important parts in fuzzy decision making, as it would have a deep effect on the evaluation results. Entropy is one of the weight measure based on objective evaluation. Non--probabilistic-type entropy measures for fuzzy set and interval type-2 fuzzy sets (IT2FS) have been developed and applied to weight measure. Since the entropy for (IT2FS) for decision making yet to be explored, this paper proposes a new objective weight method by using entropy weight method for multiple attribute decision making (MADM). This paper utilizes the nature of IT2FS concept in the evaluation process to assess the attribute weight based on the credibility of data. An example was presented to demonstrate the feasibility of the new method in decision making. The entropy measure of interval type-2 fuzzy sets yield flexible judgment and could be applied in decision making environment.

Keywords: Objective weight, entropy weight, multiple attributedecision making, type-2 fuzzy sets, interval type-2 fuzzy sets

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
7925 Optimal Transmission Network Usage and Loss Allocation Using Matrices Methodology and Cooperative Game Theory

Authors: Baseem Khan, Ganga Agnihotri

Abstract:

Restructuring of Electricity supply industry introduced many issues such as transmission pricing, transmission loss allocation and congestion management. Many methodologies and algorithms were proposed for addressing these issues. In this paper a power flow tracing based method is proposed which involves Matrices methodology for the transmission usage and loss allocation for generators and demands. This method provides loss allocation in a direct way because all the computation is previously done for usage allocation. The proposed method is simple and easy to implement in a large power system. Further it is less computational because it requires matrix inversion only a single time. After usage and loss allocation cooperative game theory is applied to results for finding efficient economic signals. Nucleolus and Shapely value approach is used for optimal allocation of results. Results are shown for the IEEE 6 bus system and IEEE 14 bus system.

Keywords: Modified Kirchhoff Matrix, Power flow tracing, Transmission Pricing, Transmission Loss Allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601
7924 Automotive ECU Design with Functional Safety for Electro-Mechanical Actuator Systems

Authors: Kyung-Jung Lee, Young-Hun Ki, Hyun-Sik Ahn

Abstract:

In this paper, we propose a hardware and software design method for automotive Electronic Control Units (ECU) considering the functional safety. The proposed ECU is considered for the application to Electro-Mechanical Actuator systems and the validity of the design method is shown by the application to the Electro-Mechanical Brake (EMB) control system which is used as a brake actuator in Brake-By-Wire (BBW) systems. The importance of a functional safety-based design approach to EMB ECU design has been emphasized because of its safety-critical functions, which are executed with the aid of many electric actuators, sensors, and application software. Based on hazard analysis and risk assessment according to ISO26262, the EMB system should be ASIL-D-compliant, the highest ASIL level. To this end, an external signature watchdog and an Infineon 32-bit microcontroller TriCore are used to reduce risks considering common-cause hardware failure. Moreover, a software design method is introduced for implementing functional safety-oriented monitoring functions based on an asymmetric dual core architecture considering redundancy and diversity. The validity of the proposed ECU design approach is verified by using the EMB Hardware-In-the-Loop (HILS) system, which consists of the EMB assembly, actuator ECU, a host PC, and a few debugging devices. Furthermore, it is shown that the existing sensor fault tolerant control system can be used more effectively for mitigating the effects of hardware and software faults by applying the proposed ECU design method.

Keywords: BBW (Brake-By-wire), EMB (Electro-Mechanical Brake), Functional Safety, ISO26262.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7009
7923 Experimental Measurements of the Mean Flow Field in Wide-Angled Diffusers: A Data Bank Contribution

Authors: Karanja Kibicho, Anthony Sayers

Abstract:

Due to adverse pressure gradient along the diverging walls of wide-angled diffusers, the attached flow separates from one wall and remains attached permanently to the other wall in a process called stalling. Stalled diffusers render the whole fluid flow system, in which they are part of, very inefficient. There is then an engineering need to try to understand the whole process of diffuser stall if any meaningful attempts to improve on diffuser efficiency are to be made. In this regard, this paper provides a data bank contribution for the mean flow-field in wide-angled diffusers where the complete velocity and static pressure fields, and pressure recovery data for diffusers in the fully stalled flow regime are experimentally measured. The measurements were carried out at Reynolds numbers between 1.07×105 and 2.14×105 based on inlet hydraulic diameter and centreline velocity for diffusers whose divergence angles were between 30Ôùª and 50Ôùª. Variation of Reynolds number did not significantly affect the velocity and static pressure profiles. The wall static pressure recovery was found to be more sensitive to changes in the Reynolds number. By increasing the velocity from 10 m/s to 20 m/s, the wall static pressure recovery increased by 8.31%. However, as the divergence angle was increased, a similar increase in the Reynolds number resulted in a higher percentage increase in pressure recovery. Experimental results showed that regardless of the wall to which the flow was attached, both the velocity and pressure fields were replicated with discrepancies below 2%.

Keywords: Two-dimensional, wide-angled, diffuser, stall, separated flows, subsonic flows, diffuser flow regimes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
7922 Numerical Investigation of Pressure Drop and Erosion Wear by Computational Fluid Dynamics Simulation

Authors: Praveen Kumar, Nitin Kumar, Hemant Kumar

Abstract:

The modernization of computer technology and commercial computational fluid dynamic (CFD) simulation has given better detailed results as compared to experimental investigation techniques. CFD techniques are widely used in different field due to its flexibility and performance. Evaluation of pipeline erosion is complex phenomenon to solve by numerical arithmetic technique, whereas CFD simulation is an easy tool to resolve that type of problem. Erosion wear behaviour due to solid–liquid mixture in the slurry pipeline has been investigated using commercial CFD code in FLUENT. Multi-phase Euler-Lagrange model was adopted to predict the solid particle erosion wear in 22.5° pipe bend for the flow of bottom ash-water suspension. The present study addresses erosion prediction in three dimensional 22.5° pipe bend for two-phase (solid and liquid) flow using finite volume method with standard k-ε turbulence, discrete phase model and evaluation of erosion wear rate with varying velocity 2-4 m/s. The result shows that velocity of solid-liquid mixture found to be highly dominating parameter as compared to solid concentration, density, and particle size. At low velocity, settling takes place in the pipe bend due to low inertia and gravitational effect on solid particulate which leads to high erosion at bottom side of pipeline.

Keywords: Computational fluid dynamics, erosion, slurry transportation, k-ε Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
7921 Estimation of the Park-Ang Damage Index for Floating Column Building with Infill Wall

Authors: Susanta Banerjee, Sanjaya Kumar Patro

Abstract:

Buildings with floating column are highly undesirable built in seismically active areas. Many urban multi-storey buildings today have floating column buildings which are adopted to accommodate parking at ground floor or reception lobbies in the first storey. The earthquake forces developed at different floor levels in a building need to be brought down along the height to the ground by the shortest path; any deviation or discontinuity in this load transfer path results in poor performance of the building. Floating column buildings are severely damaged during earthquake. Damage on this structure can be reduce by taking the effect of infill wall. This paper presents the effect of stiffness of infill wall to the damage occurred in floating column building when ground shakes. Modelling and analysis are carried out by non linear analysis programme IDARC-2D. Damage occurred in beams, columns, storey are studied by formulating modified Park & Ang model to evaluate damage indices. Overall structural damage indices in buildings due to shaking of ground are also obtained. Dynamic response parameters i.e. lateral floor displacement, storey drift, time period, base shear of buildings are obtained and results are compared with the ordinary moment resisting frame buildings. Formation of cracks, yield, plastic hinge, are also observed during analysis.

Keywords: Floating column, Infill Wall, Park-Ang Damage Index, Damage State.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3126
7920 Sonochemically Prepared SnO2 Quantum Dots as a Selective and Low Temperature CO Sensor

Authors: S. Mosadegh Sedghi, Y. Mortazavi, A. Khodadadi, O. Alizadeh Sahraei, M. Vesali Naseh

Abstract:

In this study, a low temperature sensor highly selective to CO in presence of methane is fabricated by using 4 nm SnO2 quantum dots (QDs) prepared by sonication assisted precipitation. SnCl4 aqueous solution was precipitated by ammonia under sonication, which continued for 2 h. A part of the sample was then dried and calcined at 400°C for 1.5 h and characterized by XRD and BET. The average particle size and the specific surface area of the SnO2 QDs as well as their sensing properties were compared with the SnO2 nano-particles which were prepared by conventional sol-gel method. The BET surface area of sonochemically as-prepared product and the one calcined at 400°C after 1.5 hr are 257 m2/gr and 212 m2/gr respectively while the specific surface area for SnO2 nanoparticles prepared by conventional sol-gel method is about 80m2/gr. XRD spectra revealed pure crystalline phase of SnO2 is formed for both as-prepared and calcined samples of SnO2 QDs. However, for the sample prepared by sol-gel method and calcined at 400°C SnO crystals are detected along with those of SnO2. Quantum dots of SnO2 show exceedingly high sensitivity to CO with different concentrations of 100, 300 and 1000 ppm in whole range of temperature (25- 350°C). At 50°C a sensitivity of 27 was obtained for 1000 ppm CO, which increases to a maximum of 147 when the temperature rises to 225°C and then drops off while the maximum sensitivity for the SnO2 sample prepared by the sol-gel method was obtained at 300°C with the amount of 47.2. At the same time no sensitivity to methane is observed in whole range of temperatures for SnO2 QDs. The response and recovery times of the sensor sharply decreases with temperature, while the high selectivity to CO does not deteriorate.

Keywords: Sonochemical, SnO2 QDs, SnO2 gas sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2256
7919 Bio-Heat Transfer in Various Transcutaneous Stimulation Models

Authors: Trevor E. Davis, Isaac Cassar, Yi-Kai Lo, Wentai Liu

Abstract:

This study models the use of transcutaneous electrical nerve stimulation on skin with a disk electrode in order to simulate tissue damage. The current density distribution above a disk electrode is known to be a dynamic and non-uniform quantity that is intensified at the edges of the disk. The non-uniformity is subject to change through using various electrode geometries or stimulation methods. One of these methods known as edge-retarded stimulation has shown to reduce this edge enhancement. Though progress has been made in modeling the behavior of a disk electrode, little has been done to test the validity of these models in simulating the actual heat transfer from the electrode. This simulation uses finite element software to couple the injection of current from a disk electrode to heat transfer described by the Pennesbioheat transfer equation. An example application of this model is studying an experimental form of stimulation, known as edge-retarded stimulation. The edge-retarded stimulation method will reduce the current density at the edges of the electrode. It is hypothesized that reducing the current density edge enhancement effect will, in turn, reduce temperature change and tissue damage at the edges of these electrodes. This study tests this hypothesis as a demonstration of the capabilities of this model. The edge-retarded stimulation proved to be safer after this simulation. It is shown that temperature change and the fraction of tissue necrosis is much greater in the square wave stimulation. These results bring implications for changes of procedures in transcutaneous electrical nerve stimulation and transcutaneous spinal cord stimulation as well.

Keywords: Bioheat transfer, Electrode, Neuroprosthetics, TENS, Transcutaneous stimulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303
7918 Application of the Least Squares Method in the Adjustment of Chlorodifluoromethane (HCFC-142b) Regression Models

Authors: L. J. de Bessa Neto, V. S. Filho, J. V. Ferreira Nunes, G. C. Bergamo

Abstract:

There are many situations in which human activities have significant effects on the environment. Damage to the ozone layer is one of them. The objective of this work is to use the Least Squares Method, considering the linear, exponential, logarithmic, power and polynomial models of the second degree, to analyze through the coefficient of determination (R²), which model best fits the behavior of the chlorodifluoromethane (HCFC-142b) in parts per trillion between 1992 and 2018, as well as estimates of future concentrations between 5 and 10 periods, i.e. the concentration of this pollutant in the years 2023 and 2028 in each of the adjustments. A total of 809 observations of the concentration of HCFC-142b in one of the monitoring stations of gases precursors of the deterioration of the ozone layer during the period of time studied were selected and, using these data, the statistical software Excel was used for make the scatter plots of each of the adjustment models. With the development of the present study, it was observed that the logarithmic fit was the model that best fit the data set, since besides having a significant R² its adjusted curve was compatible with the natural trend curve of the phenomenon.

Keywords: Chlorodifluoromethane (HCFC-142b), ozone (O3), least squares method, regression models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836
7917 Dynamic Analysis of Nonlinear Models with Infinite Extension by Boundary Elements

Authors: Delfim Soares Jr., Webe J. Mansur

Abstract:

The Time-Domain Boundary Element Method (TDBEM) is a well known numerical technique that handles quite properly dynamic analyses considering infinite dimension media. However, when these analyses are also related to nonlinear behavior, very complex numerical procedures arise considering the TD-BEM, which may turn its application prohibitive. In order to avoid this drawback and model nonlinear infinite media, the present work couples two BEM formulations, aiming to achieve the best of two worlds. In this context, the regions expected to behave nonlinearly are discretized by the Domain Boundary Element Method (D-BEM), which has a simpler mathematical formulation but is unable to deal with infinite domain analyses; the TD-BEM is employed as in the sense of an effective non-reflexive boundary. An iterative procedure is considered for the coupling of the TD-BEM and D-BEM, which is based on a relaxed renew of the variables at the common interfaces. Elastoplastic models are focused and different time-steps are allowed to be considered by each BEM formulation in the coupled analysis.

Keywords: Boundary Element Method, Dynamic Elastoplastic Analysis, Iterative Coupling, Multiple Time-Steps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
7916 Circuit Breaker and Transformer Monitoring

Authors: M.Nafar, A.H.Gheisari, A.Alesaadi

Abstract:

Since large power transformers are the most expensive and strategically important components of any power generator and transmission system, their reliability is crucially important for the energy system operation. Also, Circuit breakers are very important elements in the power transmission line so monitoring the events gives a knowledgebase to determine time to the next maintenance. This paper deals with the introduction of the comparative method of the state estimation of transformers and Circuit breakers using continuous monitoring of voltage, current. This paper gives details a new method based on wavelet to apparatus insulation monitoring. In this paper to insulation monitoring of transformer, a new method based on wavelet transformation and neutral point analysis is proposed. Using the EMTP tools, fault in transformer winding and the detailed transformer winding model were simulated. The current of neutral point of winding was analyzed by wavelet transformation. It is shown that the neutral current of the transformer winding has useful information about fault in insulation of the transformer.

Keywords: Wavelet, Power Transformer, EMTP, CircuitBreaker, Monitoring

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
7915 Kinematic Parameter-Independent Modeling and Measuring of Three-Axis Machine Tools

Authors: Yung-Yuan Hsu

Abstract:

The primary objective of this paper was to construct a “kinematic parameter-independent modeling of three-axis machine tools for geometric error measurement" technique. Improving the accuracy of the geometric error for three-axis machine tools is one of the machine tools- core techniques. This paper first applied the traditional method of HTM to deduce the geometric error model for three-axis machine tools. This geometric error model was related to the three-axis kinematic parameters where the overall errors was relative to the machine reference coordinate system. Given that the measurement of the linear axis in this model should be on the ideal motion axis, there were practical difficulties. Through a measurement method consolidating translational errors and rotational errors in the geometric error model, we simplified the three-axis geometric error model to a kinematic parameter-independent model. Finally, based on the new measurement method corresponding to this error model, we established a truly practical and more accurate error measuring technique for three-axis machine tools.

Keywords: Three-axis machine tool, Geometric error, HTM, Error measuring

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
7914 Accurate Positioning Method of Indoor Plastering Robot Based on Line Laser

Authors: Guanqiao Wang, Hongyang Yu

Abstract:

There is a lot of repetitive work in the traditional construction industry. These repetitive tasks can significantly improve production efficiency by replacing manual tasks with robots. Therefore, robots appear more and more frequently in the construction industry. Navigation and positioning is a very important task for construction robots, and the requirements for accuracy of positioning are very high. Traditional indoor robots mainly use radio frequency or vision methods for positioning. Compared with ordinary robots, the indoor plastering robot needs to be positioned closer to the wall for wall plastering, so the requirements for construction positioning accuracy are higher, and the traditional navigation positioning method has a large error, which will cause the robot to move. Without the exact position, the wall cannot be plastered or the error of plastering the wall is large. A positioning method is proposed, which is assisted by line lasers and uses image processing-based positioning to perform more accurate positioning on the traditional positioning work. In actual work, filter, edge detection, Hough transform and other operations are performed on the images captured by the camera. Each time the position of the laser line is found, it is compared with the standard value, and the position of the robot is moved or rotated to complete the positioning work. The experimental results show that the actual positioning error is reduced to less than 0.5 mm by this accurate positioning method.

Keywords: Indoor plastering robot, navigation, precise positioning, line laser, image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 563
7913 Primary Level Teachers’ Response to Gender Representation in Textbook Contents

Authors: Pragya Paneru

Abstract:

This paper explores altogether 10 primary teachers’ views on gender representation in primary level textbooks. Data were collected from the teachers who taught in private schools in the Kailali and Kathmandu districts. This research uses a semi-structured interview method to obtain information regarding teachers’ attitudes toward gender representations in textbook contents. The interview data were analysed by using critical skills of qualitative research. The findings revealed that most of the teachers were unaware and regarded gender issues as insignificant to discuss in primary-level classes. Most of them responded to the questions personally and claimed that there were no gender issues in their classrooms. Some of the teachers connected gender issues with contexts other than textbook representations such as school discrimination in the distribution of salary among male and female teachers, school practices of awarding girls rather than boys as the most disciplined students, following girls’ first rule in the assembly marching, encouraging only girls in the stage shows, and involving students in gender-specific activities such as decorating works for girls and physical tasks for boys. The interview also revealed teachers’ covert gendered attitudes in their remarks. Nevertheless, most of the teachers accepted that gender-biased contents have an impact on learners and this problem can be solved with more gender-centred research in the education field, discussions, and training to increase awareness regarding gender issues. Agreeing with the suggestion of teachers, this paper recommends proper training and awareness regarding how to confront gender issues in textbooks.

Keywords: Content analysis, gender equality, school education, critical awareness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 261
7912 Advanced Model for Calculation of the Neutral Axis Shifting and the Wall Thickness Distribution in Rotary Draw Bending Processes

Authors: B. Engel, H. Hassan

Abstract:

Rotary draw bending is a method which is being used in tube forming. In the tube bending process, the neutral axis moves towards the inner arc and the wall thickness distribution changes for tube’s cross section. Thinning takes place in the outer arc of the tube (extrados) due to the stretching of the material, whereas thickening occurs in the inner arc of the tube (intrados) due to the comparison of the material. The calculations of the wall thickness distribution, neutral axis shifting, and strain distribution have not been accurate enough, so far. The previous model (the geometrical model) describes the neutral axis shifting and wall thickness distribution. The geometrical of the tube, bending radius and bending angle are considered in the geometrical model, while the influence of the material properties of the tube forming are ignored. The advanced model is a modification of the previous model using material properties that depends on the correction factor. The correction factor is a purely empirically determined factor. The advanced model was compared with the Finite element simulation (FE simulation) using a different bending factor (Bf =bending radius/ diameter of the tube), wall thickness (Wf = diameter of the tube/ wall thickness), and material properties (strain hardening exponent). Finite element model of rotary draw bending has been performed in PAM-TUBE program (version: 2012). Results from the advanced model resemble the FE simulation and the experimental test.

Keywords: Rotary draw bending, material properties, neutral axis shifting, wall thickness distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3929
7911 Information Filtering using Index Word Selection based on the Topics

Authors: Takeru YOKOI, Hidekazu YANAGIMOTO, Sigeru OMATU

Abstract:

We have proposed an information filtering system using index word selection from a document set based on the topics included in a set of documents. This method narrows down the particularly characteristic words in a document set and the topics are obtained by Sparse Non-negative Matrix Factorization. In information filtering, a document is often represented with the vector in which the elements correspond to the weight of the index words, and the dimension of the vector becomes larger as the number of documents is increased. Therefore, it is possible that useless words as index words for the information filtering are included. In order to address the problem, the dimension needs to be reduced. Our proposal reduces the dimension by selecting index words based on the topics included in a document set. We have applied the Sparse Non-negative Matrix Factorization to the document set to obtain these topics. The filtering is carried out based on a centroid of the learning document set. The centroid is regarded as the user-s interest. In addition, the centroid is represented with a document vector whose elements consist of the weight of the selected index words. Using the English test collection MEDLINE, thus, we confirm the effectiveness of our proposal. Hence, our proposed selection can confirm the improvement of the recommendation accuracy from the other previous methods when selecting the appropriate number of index words. In addition, we discussed the selected index words by our proposal and we found our proposal was able to select the index words covered some minor topics included in the document set.

Keywords: Information Filtering, Sparse NMF, Index wordSelection, User Profile, Chi-squared Measure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
7910 Nonlinear Response of Infinite Beams on a Tensionless Extensible Geosynthetic – Reinforced Earth Beds under Moving Load

Authors: Karuppsamy K., Eswara Prasad C. R.

Abstract:

In this paper analysis of an infinite beam resting on tensionless extensible geosynthetic reinforced granular bed overlying soft soil strata under moving load with constant velocity is presented. The beam is subjected to a concentrated load moving with constant velocity. The upper reinforced granular bed is modeled by a rough elastic membrane embedded in Pasternak shear layer overlying a series of compressible nonlinear Winkler springs representing the under-lied very poor soil. The tensionless extensible geosynthetic layer has been assumed to deform such that at interface the geosynthetic and the soil have some deformation. Nonlinear behavior of granular fill and the very poor soil has been considered in the analysis by means of hyperbolic constitutive relationships. Detailed parametric study has been conducted to study the influence of various parameters on the response of soil foundation system under consideration by means of deflection and bending moment in the beam and tension mobilized in the geosynthetic layer. This study clearly observed that the comparisons of tension and tensionless foundation and magnitude of applied load, relative compressibility of granular fill and ultimate resistance of poor soil has significant influence on the response of soil foundation system.

Keywords: Infinite Beams, Tensionless Extensible Geosynthetic, Granular layer, Moving Load and Nonlinear behavior of poor soil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
7909 Experimental Study on Mechanical Properties of Commercially Pure Copper Processed by Severe Plastic Deformation Technique-Equal Channel Angular Extrusion

Authors: Krishnaiah Arkanti, Ramulu Malothu

Abstract:

The experiments have been conducted to study the mechanical properties of commercially pure copper processing at room temperature by severe plastic deformation using equal channel angular extrusion (ECAE) through a die of 90oangle up to 3 passes by route BC i.e. rotating the sample in the same direction by 90o after each pass. ECAE is used to produce from existing coarse grains to ultra-fine, equiaxed grains structure with high angle grain boundaries in submicron level by introducing a large amount of shear strain in the presence of hydrostatic pressure into the material without changing billet shape or dimension. Mechanical testing plays an important role in evaluating fundamental properties of engineering materials as well as in developing new materials and in controlling the quality of materials for use in design and construction. Yield stress, ultimate tensile stress and ductility are structure sensitive properties and vary with the structure of the material. Microhardness and tensile tests were carried out to evaluate the hardness, strength and ductility of the ECAE processed materials. The results reveal that the strength and hardness of commercially pure copper samples improved significantly without losing much ductility after each pass.

Keywords: Equal Channel Angular Extrusion, Severe Plastic Deformation, Copper, Mechanical Properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
7908 Modeling of Material Removal on Machining of Ti-6Al-4V through EDM using Copper Tungsten Electrode and Positive Polarity

Authors: M. M. Rahman, Md. Ashikur Rahman Khan, K. Kadirgama M. M. Noor, Rosli A. Bakar

Abstract:

This paper deals optimized model to investigate the effects of peak current, pulse on time and pulse off time in EDM performance on material removal rate of titanium alloy utilizing copper tungsten as electrode and positive polarity of the electrode. The experiments are carried out on Ti6Al4V. Experiments were conducted by varying the peak current, pulse on time and pulse off time. A mathematical model is developed to correlate the influences of these variables and material removal rate of workpiece. Design of experiments (DOE) method and response surface methodology (RSM) techniques are implemented. The validity test of the fit and adequacy of the proposed models has been carried out through analysis of variance (ANOVA). The obtained results evidence that as the material removal rate increases as peak current and pulse on time increases. The effect of pulse off time on MRR changes with peak ampere. The optimum machining conditions in favor of material removal rate are verified and compared. The optimum machining conditions in favor of material removal rate are estimated and verified with proposed optimized results. It is observed that the developed model is within the limits of the agreeable error (about 4%) when compared to experimental results. This result leads to desirable material removal rate and economical industrial machining to optimize the input parameters.

Keywords: Ti-6Al-4V, material removal rate, copper tungsten, positive polarity, RSM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544
7907 Digital Library Evaluation by SWARA-WASPAS Method

Authors: Mehmet Yörükoğlu, Serhat Aydın

Abstract:

Since the discovery of the manuscript, mechanical methods for storing, transferring and using the information have evolved into digital methods over the time. In this process, libraries that are the center of the information have also become digitized and become accessible from anywhere and at any time in the world by taking on a structure that has no physical boundaries. In this context, some criteria for information obtained from digital libraries have become more important for users. This paper evaluates the user criteria from different perspectives that make a digital library more useful. The Step-Wise Weight Assessment Ratio Analysis-Weighted Aggregated Sum Product Assessment (SWARA-WASPAS) method is used with flexibility and easy calculation steps for the evaluation of digital library criteria. Three different digital libraries are evaluated by information technology experts according to five conflicting main criteria, ‘interface design’, ‘effects on users’, ‘services’, ‘user engagement’ and ‘context’. Finally, alternatives are ranked in descending order.

Keywords: Digital library, multi criteria decision making, SWARA-WASPAS method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 913
7906 Development of a Roadmap for Assessment the Sustainability of Buildings in Saudi Arabia Using Building Information Modeling

Authors: Ibrahim A. Al-Sulaihi, Khalid S. Al-Gahtani, Abdullah M. Al-Sugair, Aref A. Abadel

Abstract:

Achieving environmental sustainability is one of the important issues considered in many countries’ vision. Green/Sustainable building is widely used terminology for describing a friendly environmental construction. Applying sustainable practices has a significant importance in various fields, including construction field that consumes an enormous amount of resource and causes a considerable amount of waste. The need for sustainability is increased in the regions that suffering from the limitation of natural resource and extreme weather conditions such as Saudi Arabia. Since buildings designs are getting sophisticated, the need for tools, which support decision-making for sustainability issues, is increasing, especially in the design and preconstruction stages. In this context, Building Information Modeling (BIM) can aid in performing complex building performance analyses to ensure an optimized sustainable building design. Accordingly, this paper introduces a roadmap towards developing a systematic approach for presenting the sustainability of buildings using BIM. The approach includes set of main processes including; identifying the sustainability parameters that can be used for sustainability assessment in Saudi Arabia, developing sustainability assessment method that fits the special circumstances in the Kingdom, identifying the sustainability requirements and BIM functions that can be used for satisfying these requirements, and integrating these requirements with identified functions. As a result, the sustainability-BIM approach can be developed which helps designers in assessing the sustainability and exploring different design alternatives at the early stage of the construction project.

Keywords: Green buildings, sustainability, BIM, rating systems, environment, Saudi Arabia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 889
7905 Experimental Investigation on Cold-Formed Steel Foamed Concrete Composite Wall under Compression

Authors: Zhifeng Xu, Zhongfan Chen

Abstract:

A series of tests on cold-formed steel foamed concrete (CSFC) composite walls subjected to axial load were proposed. The primary purpose of the experiments was to study the mechanical behavior and identify the failure modes of CSFC composite walls. Two main factors were considered in this study: 1) specimen with pouring foamed concrete or without and 2) different foamed concrete density ranks (corresponding to different foamed concrete strength). The interior space between two pieces of straw board of the specimen W-2 and W-3 were poured foamed concrete, and the specimen W-1 does not have foamed concrete core. The foamed concrete density rank of the specimen W-2 was A05 grade, and that of the specimen W-3 was A07 grade. Results showed that the failure mode of CSFC composite wall without foamed concrete was distortional buckling of cold-formed steel (CFS) column, and that poured foamed concrete includes the local crushing of foamed concrete and local buckling of CFS column, but the former prior to the later. Compared with CSFC composite wall without foamed concrete, the ultimate bearing capacity of spec imens poured A05 grade and A07 grade foamed concrete increased 1.6 times and 2.2 times respectively, and specimen poured foamed concrete had a low vertical deformation. According to these results, the simplified calculation formula for the CSFC wall subjected to axial load was proposed, and the calculated results from this formula are in very good agreement with the test results.

Keywords: Cold-formed steel, composite wall, foamed concrete, axial behavior test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
7904 Numerical Optimization of Trapezoidal Microchannel Heat Sinks

Authors: Yue-Tzu Yang, Shu-Ching Liao

Abstract:

This study presents the numerical simulation of three-dimensional incompressible steady and laminar fluid flow and conjugate heat transfer of a trapezoidal microchannel heat sink using water as a cooling fluid in a silicon substrate. Navier-Stokes equations with conjugate energy equation are discretized by finite-volume method. We perform numerical computations for a range of 50 ≦ Re ≦ 600, 0.05W ≦ P ≦ 0.8W, 20W/cm2 q"≦ 40W/cm2. The present study demonstrates the numerical optimization of a trapezoidal microchannel heat sink design using the response surface methodology (RSM) and the genetic algorithm method (GA). The results show that the average Nusselt number increases with an increase in the Reynolds number or pumping power, and the thermal resistance decreases as the pumping power increases. The thermal resistance of a trapezoidal microchannel is minimized for a constant heat flux and constant pumping power.

Keywords: Microchannel heat sinks, Conjugate heat transfer, Optimization, Genetic algorithm method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2167
7903 Recent Advances in Pulse Width Modulation Techniques and Multilevel Inverters

Authors: Satish Kumar Peddapelli

Abstract:

This paper presents advances in pulse width modulation techniques which refers to a method of carrying information on train of pulses and the information be encoded in the width of pulses. Pulse Width Modulation is used to control the inverter output voltage. This is done by exercising the control within the inverter itself by adjusting the ON and OFF periods of inverter. By fixing the DC input voltage we get AC output voltage. In variable speed AC motors the AC output voltage from a constant DC voltage is obtained by using inverter. Recent developments in power electronics and semiconductor technology have lead improvements in power electronic systems. Hence, different circuit configurations namely multilevel inverters have became popular and considerable interest by researcher are given on them. A fast space-vector pulse width modulation (SVPWM) method for five-level inverter is also discussed. In this method, the space vector diagram of the five-level inverter is decomposed into six space vector diagrams of three-level inverters. In turn, each of these six space vector diagrams of three-level inverter is decomposed into six space vector diagrams of two-level inverters. After decomposition, all the remaining necessary procedures for the three-level SVPWM are done like conventional two-level inverter. The proposed method reduces the algorithm complexity and the execution time. It can be applied to the multilevel inverters above the five-level also. The experimental setup for three-level diode-clamped inverter is developed using TMS320LF2407 DSP controller and the experimental results are analyzed.

Keywords: Five-level inverter, Space vector pulse wide modulation, diode clamped inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7778
7902 Coordinated Voltage Control using Multiple Regulators in Distribution System with Distributed Generators

Authors: R. Shivarudraswamy, D. N. Gaonkar

Abstract:

The continued interest in the use of distributed generation in recent years is leading to the growth in number of distributed generators connected to distribution networks. Steady state voltage rise resulting from the connection of these generators can be a major obstacle to their connection at lower voltage levels. The present electric distribution network is designed to keep the customer voltage within tolerance limit. This may require a reduction in connectable generation capacity, under utilization of appropriate generation sites. Thus distribution network operators need a proper voltage regulation method to allow the significant integration of distributed generation systems to existing network. In this work a voltage rise problem in a typical distribution system has been studied. A method for voltage regulation of distribution system with multiple DG system by coordinated operation distributed generator, capacitor and OLTC has been developed. A sensitivity based analysis has been carried out to determine the priority for individual generators in multiple DG environment. The effectiveness of the developed method has been evaluated under various cases through simulation results.

Keywords: Distributed generation, voltage control, sensitivity factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2581
7901 Characteristics of Maximum Gliding Endurance Path for High-Altitude Solar UAVs

Authors: Gao Xian-Zhong, Hou Zhong-xi, Guo Zheng, Liu Jian-xia

Abstract:

Gliding during night without electric power is an efficient method to enhance endurance performance of solar aircrafts. The properties of maximum gliding endurance path are studied in this paper. The problem is formulated as an optimization problem about maximum endurance can be sustained by certain potential energy storage with dynamic equations and aerodynamic parameter constrains. The optimal gliding path is generated based on gauss pseudo-spectral method. In order to analyse relationship between altitude, velocity of solar UAVs and its endurance performance, the lift coefficient in interval of [0.4, 1.2] and flight envelopes between 0~30km are investigated. Results show that broad range of lift coefficient can improve solar aircrafts- long endurance performance, and it is possible for a solar aircraft to achieve the aim of long endurance during whole night just by potential energy storage.

Keywords: Solar UAVs, Gliding Endurance, gauss pseudo-spectral method, optimization problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2933