Search results for: structural behavior of reinforced concrete beams.
3574 The Improvement of 28-day Compressive Strength of Self Compacting Concrete Made by Different Percentages of Recycled Concrete Aggregates using Nano-Silica
Authors: S. Salkhordeh, P. Golbazi, H. Amini
Abstract:
In this study two series of self compacting concrete mixtures were prepared with 100% coarse recycled concrete aggregates and different percentages of 0%, 20%, 40%, 60%, 80% and 100% fine recycled concrete aggregates. In series I and II the water to binder ratios were 0.50 and 0.45, respectively. The cement content was kept 350 3 m kg for those mixtures that don't have any Nano-Silica. To improve the compressive strength of samples, Nano- Silica replaced with 10% of cement weight in concrete mixtures. By doing the tests, the results showed that, adding Nano-silica to the samples with less percentage of fine recycled concrete aggregates, lead to more increase on the compressive strength.Keywords: Compressive Strength, Nano-Silica, RecycledConcrete Aggregates, Self Compacting Concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19643573 Analysis of Sulphur-Oxidizing Bacteria Attack on Concrete Based On Waste Materials
Authors: A. Eštoková, M. Kovalčíková, A. Luptáková, A. Sičáková, M. Ondová
Abstract:
Concrete durability as an important engineering property of concrete, determining the service life of concrete structures very significantly, can be threatened and even lost due to the interactions of concrete with external environment. Bio-corrosion process caused by presence and activities of microorganisms producing sulphuric acid is a special type of sulphate deterioration of concrete materials. The effects of sulphur-oxidizing bacteria Acidithiobacillus thiooxidans on various concrete samples, based on silica fume and zeolite, were investigated in laboratory during 180 days. A laboratory study was conducted to compare the performance of concrete samples in terms of the concrete deterioration influenced by the leaching of calcium and silicon compounds from the cement matrix. The changes in the elemental concentrations of calcium and silicon in both solid samples and liquid leachates were measured by using X – ray fluorescence method. Experimental studies confirmed the silica fume based concrete samples were found out to have the best performance in terms of both silicon and calcium ions leaching.
Keywords: Bio-corrosion, concrete, leaching, bacteria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26703572 Influence of Surface-Treated Coarse Recycled Concrete Aggregate on Compressive Strength of Concrete
Authors: Sallehan Ismail, Mahyuddin Ramli
Abstract:
This paper reports on the influence of surface-treated coarse recycled concrete aggregate (RCA) on developing the compressive strength of concrete. The coarse RCA was initially treated by separately impregnating it in calcium metasilicate (CM) or wollastonite and nanosilica (NS) prepared at various concentrations. The effects of both treatment materials on concrete properties (e.g., slump, density and compressive strength) were evaluated. Scanning electron microscopy (SEM) analysis was performed to examine the microstructure of the resulting concrete. Results show that the effective use of treated coarse RCA significantly enhances the compressive strength of concrete. This result is supported by the SEM analysis, which indicates the formation of a dense interface between the treated coarse RCA and the cement matrix. Coarse RCA impregnated in CM solution results in better concrete strength than NS, and the optimum concentration of CM solution recommended for treated coarse RCA is 10%.
Keywords: Calcium metasilicate, compressive strength, nanosilica, recycled concrete aggregate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28673571 A Procedure for Post-Earthquake Damage Estimation Based on Detection of High-Frequency Transients
Authors: Aleksandar Zhelyazkov, Daniele Zonta, Helmut Wenzel, Peter Furtner
Abstract:
In the current research structural health monitoring is considered for addressing the critical issue of post-earthquake damage detection. A non-standard approach for damage detection via acoustic emission is presented - acoustic emissions are monitored in the low frequency range (up to 120 Hz). Such emissions are termed high-frequency transients. Further a damage indicator defined as the Time-Ratio Damage Indicator is introduced. The indicator relies on time-instance measurements of damage initiation and deformation peaks. Based on the time-instance measurements a procedure for estimation of the maximum drift ratio is proposed. Monitoring data is used from a shaking-table test of a full-scale reinforced concrete bridge pier. Damage of the experimental column is successfully detected and the proposed damage indicator is calculated.Keywords: Acoustic emission, Damage detection, Shaking table test, Structural health monitoring, High-frequency transients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10693570 Response of Fully Backed Sandwich Beams to Low Velocity Transverse Impact
Authors: M. Sadighi, H. Pouriayevali, M. Saadati
Abstract:
This paper describes analysis of low velocity transverse impact on fully backed sandwich beams with composite faces from Eglass/epoxy and cores from Polyurethane or PVC. Indentation on sandwich beams has been analyzed with the existing theories and modeled with the FE code ABAQUS, also loadings have been done experimentally to verify theoretical results. Impact on fully backed has been modeled in two cases of impactor energy with SDOF model (single-degree-of-freedom) and indentation stiffness: lower energy for elastic indentation of sandwich beams and higher energy for plastic area in indentation. Impacts have been modeled by ABAQUS. Impact results can describe response of beam in terms of core and faces thicknesses, core material, indentor energy and energy absorbed. The foam core is modeled using the crushable foam material model and response of the foam core is experimentally characterized in uniaxial compression with higher velocity loading to define quasi impact behaviour.
Keywords: Low velocity impact, fully backed, indentation, sandwich beams, foams, finite element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18103569 Development of Light-Weight Fibre-Based Materials for Building Envelopes
Authors: René Čechmánek, Vladan Prachař, Ludvík Lederer, Jiří Loskot
Abstract:
Thin-walled elements with a matrix set on a base of high-valuable Portland cement with dispersed reinforcement from alkali-resistant glass fibres are used in a range of applications as claddings of buildings and infrastructure constructions as well as various architectural elements of residential buildings. Even though their elementary thickness and therefore total weight is quite low, architects and building companies demand on even further decreasing of the bulk density of these fibre-cement elements for the reason of loading elimination of connected superstructures and easier assembling in demand conditions. By the means of various kinds of light-weight aggregates it is possible to achieve light-weighing of these composite elements. From the range of possible fillers with different material properties granulated expanded glass worked the best. By the means of laboratory testing an effect of two fillers based on expanded glass on the fibre reinforced cement composite was verified. Practical applicability was tested in the production of commonly manufactured glass fibre reinforced concrete elements, such as channels for electrical cable deposition, products for urban equipment and especially various cladding elements. Even though these are not structural elements, it is necessary to evaluate also strength characteristics and resistance to environment for their durability in certain applications.
Keywords: Fibre-cement composite, granulated expanded glass, light-weighing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20053568 A Study of Indentation Energy in Three Points Bending of Sandwich beams with Composite Laminated Faces and Foam Core
Authors: M. Sadighi, H. Pouriayevali, M. Saadati
Abstract:
This paper deals with analysis of flexural stiffness, indentation and their energies in three point loading of sandwich beams with composite faces from Eglass/epoxy and cores from Polyurethane or PVC. Energy is consumed in three stages of indentation in laminated beam, indentation of sandwich beam and bending of sandwich beam. Theory of elasticity is chosen to present equations for indentation of laminated beam, then these equations have been corrected to offer better results. An analytical model has been used assuming an elastic-perfectly plastic compressive behavior of the foam core. Classical theory of beam is used to describe three point bending. Finite element (FE) analysis of static indentation sandwich beams is performed using the FE code ABAQUS. The foam core is modeled using the crushable foam material model and response of the foam core is experimentally characterized in uniaxial compression. Three point bending and indentation have been done experimentally in two cases of low velocity and higher velocity (quasi-impact) of loading. Results can describe response of beam in terms of core and faces thicknesses, core material, indentor diameter, energy absorbed, and length of plastic area in the testing. The experimental results are in good agreement with the analytical and FE analyses. These results can be used as an introduction for impact loading and energy absorbing of sandwich structures.Keywords: Three point Bending, Indentation, Foams, Composite laminated beam, Sandwich beams, Finite element
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25913567 Assessment of Vermiculite Concrete Containing Bio-Polymer Aggregate
Authors: Aliakbar Sayadi, Thomas R. Neitzert, G. Charles Clifton, Min Cheol Han
Abstract:
The present study aims to assess the performance of vermiculite concrete containing poly-lactic acid beads as an eco-friendly aggregate. Vermiculite aggregate was replaced by poly-lactic acid in percentages of 0%, 20%, 40%, 60% and 80%. Mechanical and thermal properties of concrete were investigated. Test results indicated that the inclusion of poly-lactic acid decreased the PH value of concrete and all the poly-lactic acid particles were dissolved due to the formation of sodium lactide and lactide oligomers when subjected to the high alkaline environment of concrete. In addition, an increase in thermal conductivity value of concrete was observed as the ratio of poly-lactic acid increased. Moreover, a set of equations was proposed to estimate the water-cement ratio, cement content and water absorption ratio of concrete.Keywords: Poly-lactic acid, PLA, vermiculite, concrete, eco-friendly, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18073566 Seismic Behavior of Three-Dimensional Steel Buildings with Post-Tensioned Connections
Authors: M. E. Soto-López, I. Gaxiola-Avendaño, A. Reyes-Salazar, E. Bojórquez, S. E. Ruiz
Abstract:
The seismic responses of steel buildings with semirigid post-tensioned connections (PC) are estimated and compared with those of steel buildings with typical rigid (welded) connections (RC). The comparison is made in terms of global and local response parameters. The results indicate that the seismic responses in terms of interstory shears, roof displacements, axial load and bending moments are smaller for the buildings with PC connection. The difference is larger for global than for local parameters, which in turn varies from one column location to another. The reason for this improved behavior is that the buildings with PC dissipate more hysteretic energy than those with RC. In addition, unlike the case of buildings with WC, for the PC structures the hysteretic energy is mostly dissipated at the connections, which implies that structural damage in beams and columns is not significant. According to these results, steel buildings with PC are a viable option in high seismicity areas because of their smaller response and self-centering connection capacity as well as the fact that brittle failure is avoided.
Keywords: Inter-story drift, Nonlinear time-history analysis, Post-tensioned connections, Steel buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21733565 Nonlinear Static Analysis of Laminated Composite Hollow Beams with Super-Elliptic Cross-Sections
Authors: G. Akgun, I. Algul, H. Kurtaran
Abstract:
In this paper geometrically nonlinear static behavior of laminated composite hollow super-elliptic beams is investigated using generalized differential quadrature method. Super-elliptic beam can have both oval and elliptic cross-sections by adjusting parameters in super-ellipse formulation (also known as Lamé curves). Equilibrium equations of super-elliptic beam are obtained using the virtual work principle. Geometric nonlinearity is taken into account using von-Kármán nonlinear strain-displacement relations. Spatial derivatives in strains are expressed with the generalized differential quadrature method. Transverse shear effect is considered through the first-order shear deformation theory. Static equilibrium equations are solved using Newton-Raphson method. Several composite super-elliptic beam problems are solved with the proposed method. Effects of layer orientations of composite material, boundary conditions, ovality and ellipticity on bending behavior are investigated.
Keywords: Generalized differential quadrature, geometric nonlinearity, laminated composite, super-elliptic cross-section.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13913564 Mechanical Characterization of Extrudable Foamed Concrete: An Experimental Study
Authors: D. Falliano, D. De Domenico, G. Ricciardi, E. Gugliandolo
Abstract:
This paper is focused on the mechanical characterization of foamed concrete specimens with protein-based foaming agent. Unlike classic foamed concrete, a peculiar property of the analyzed foamed concrete is the extrudability, which is achieved via a specific additive in the concrete mix that significantly improves the cohesion and viscosity of the fresh cementitious paste. A broad experimental campaign was conducted to evaluate the compressive strength and the indirect tensile strength of the specimens. The study has comprised three different cement types, two water/cement ratios, three curing conditions and three target dry densities. The variability of the strength values upon the above mentioned factors is discussed.Keywords: Cement type, curing conditions, density, extrudable concrete, foamed concrete, mechanical characterization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12943563 Effect of Impact Load on the Bond between Steel and CFRP Laminate
Authors: A. Al-Mosawe, R. Al-Mahaidi
Abstract:
Carbon fiber reinforced polymersarewidely used to strengthen steel structural elements. These structural elements are normally subjected to static, dynamic and fatigue loadings during their life-time. CFRP laminate is commonly used to strengthen these structures under the subjected loads. A number of studies have focused on the characteristics of CFRP sheets bonded to steel members under static, dynamic and fatigue loadings. However, there is a gap in understanding the bonding behavior between CFRP laminates and steel members under impact loading. This paper shows the effect of high load rates on this bond. CFRP laminate CFK 150/2000 was used to strengthen steel joints using Araldite 420 epoxy. The results show that applying a high load rate significantly affects the bond strength but has little influence on the effective bond length.
Keywords: Adhesively-bonded joints, Bond strength, CFRP laminate, Impact tensile loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25723562 A Quick Prediction for Shear Behaviour of RC Membrane Elements by Fixed-Angle Softened Truss Model with Tension-Stiffening
Authors: X. Wang, J. S. Kuang
Abstract:
The Fixed-angle Softened Truss Model with Tension-stiffening (FASTMT) has a superior performance in predicting the shear behaviour of reinforced concrete (RC) membrane elements, especially for the post-cracking behaviour. Nevertheless, massive computational work is inevitable due to the multiple transcendental equations involved in the stress-strain relationship. In this paper, an iterative root-finding technique is introduced to FASTMT for solving quickly the transcendental equations of the tension-stiffening effect of RC membrane elements. This fast FASTMT, which performs in MATLAB, uses the bisection method to calculate the tensile stress of the membranes. By adopting the simplification, the elapsed time of each loop is reduced significantly and the transcendental equations can be solved accurately. Owing to the high efficiency and good accuracy as compared with FASTMT, the fast FASTMT can be further applied in quick prediction of shear behaviour of complex large-scale RC structures.
Keywords: Bisection method, fixed-angle softened truss model with tension-stiffening, iterative root-finding technique, reinforced concrete membrane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8333561 Effect of Nigerian Portland-Limestone Cement Grades on Concrete Compressive Strength
Authors: Kazeem K. Adewole, Festus. A. Olutoge, Hamzat Habib
Abstract:
In this paper, the effect of grades 32.4 and 42.5 Portland-limestone cements generally used for concrete production in Nigeria on concrete compressive strength is investigated. Investigation revealed that the compressive strength of concrete produced with Portland-limestone cement grade 42.5 is generally higher than that produced with cement grade 32.5. The percentage difference between the compressive strengths of the concrete cubes produced with Portland-limestone cement grades 42.5 and 32.5 is inversely proportional to the richness of the concrete with the highest and the least percentage difference associated with the 1:2:4 and 1:1:2 mix ratios respectively. It is recommended that cement grade 42.5 be preferred for construction in Nigeria as this will lead to the construction of stronger concrete structures, which will reduce the incidence of failure of building and other concrete structures at no additional cost since the cost of both cement grades are the same.
Keywords: Cement grades, Concrete, Compressive strength, Portland-limestone cement, Ordinary Portland cement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42703560 Time-Domain Analysis Approaches of Soil-Structure Interaction: A Comparative Study
Authors: Abdelrahman Taha, Niloofar Malekghaini, Hamed Ebrahimian, Ramin Motamed
Abstract:
This paper compares the substructure and direct approaches for soil-structure interaction (SSI) analysis in the time domain. In the substructure approach, the soil domain is replaced by a set of springs and dashpots, also referred to as the impedance function, derived through the study of the behavior of a massless rigid foundation. The impedance function is inherently frequency dependent, i.e., it varies as a function of the frequency content of the structural response. To use the frequency-dependent impedance function for time-domain SSI analysis, the impedance function is approximated at the fundamental frequency of the coupled soil-structure system. To explore the potential limitations of the substructure modeling process, a two-dimensional (2D) reinforced concrete frame structure is modeled and analyzed using the direct and substructure approaches. The results show discrepancy between the simulated responses of the direct and substructure models. It is concluded that the main source of discrepancy is likely attributed to the way the impedance functions are calculated, i.e., assuming a massless rigid foundation without considering the presence of the superstructure. Hence, a refined impedance function, considering the presence of the superstructure, shall alternatively be developed. This refined impedance function is expected to improve the simulation accuracy of the substructure approach.
Keywords: Direct approach, impedance function, massless rigid foundation, soil-structure interaction, substructure approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4803559 Development of Elasticity Modulus in Time for Concrete Containing Mineral Admixtures
Authors: K. Krizova, R. Hela, S. Keprdova
Abstract:
This paper introduces selected composition of conventional concretes and their resulting mechanical properties at different ages of concrete. With respect to utilization of mineral admixtures, fly ash and ground limestone agents were included in addition to pure Portland binder. The proposal of concrete composition remained constant in basic concrete components such as cement and representation of individual contents of aggregate fractions; weight dosing of admixtures and water dose were only modified. Water dose was chosen in order to achieve identical consistence by settlement for all proposals of concrete composition. Mechanical properties monitored include compression strength, static and dynamic modulus of concrete elasticity, at ages of 7, 28, 90, and 180 days.
Keywords: Cement, mineral admixtures, microstructure of concrete, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20463558 Statistical Analysis of Parameters Effects on Maximum Strain and Torsion Angle of FRP Honeycomb Sandwich Panels Subjected to Torsion
Authors: Mehdi Modabberifar, Milad Roodi, Ehsan Souri
Abstract:
In recent years, honeycomb fiber reinforced plastic (FRP) sandwich panels have been increasingly used in various industries. Low weight, low price and high mechanical strength are the benefits of these structures. However, their mechanical properties and behavior have not been fully explored. The objective of this study is to conduct a combined numerical-statistical investigation of honeycomb FRP sandwich beams subject to torsion load. In this paper, the effect of geometric parameters of sandwich panel on maximum shear strain in both face and core and angle of torsion in a honeycomb FRP sandwich structures in torsion is investigated. The effect of Parameters including core thickness, face skin thickness, cell shape, cell size, and cell thickness on mechanical behavior of the structure were numerically investigated. Main effects of factors were considered in this paper and regression equations were derived. Taguchi method was employed as experimental design and an optimum parameter combination for the maximum structure stiffness has been obtained. The results showed that cell size and face skin thickness have the most significant impacts on torsion angle, maximum shear strain in face and core.Keywords: Finite element, honeycomb FRP sandwich panel, torsion, civil engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26313557 Cantilever Shoring Piles with Prestressing Strands: An Experimental Approach
Authors: Hani Mekdash, Lina Jaber, Yehia Temsah
Abstract:
Underground space is becoming a necessity nowadays, especially in highly congested urban areas. Retaining underground excavations using shoring systems is essential in order to protect adjoining structures from potential damage or collapse. Reinforced Concrete Piles (RCP) supported by multiple rows of tie-back anchors are commonly used type of shoring systems in deep excavations. However, executing anchors can sometimes be challenging because they might illegally trespass neighboring properties or get obstructed by infrastructure and other underground facilities. A technique is proposed in this paper, and it involves the addition of eccentric high-strength steel strands to the RCP section through ducts without providing the pile with lateral supports. The strands are then vertically stressed externally on the pile cap using a hydraulic jack, creating a compressive strengthening force in the concrete section. An experimental study about the behavior of the shoring wall by pre-stressed piles is presented during the execution of an open excavation in an urban area (Beirut city) followed by numerical analysis using finite element software. Based on the experimental results, this technique is proven to be cost-effective and provides flexible and sustainable construction of shoring works.Keywords: Excavation, inclinometer, prestressing, shoring system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5313556 Best Timing for Capturing Satellite Thermal Images, Asphalt, and Concrete Objects
Authors: Toufic Abd El-Latif Sadek
Abstract:
The asphalt object represents the asphalted areas like roads, and the concrete object represents the concrete areas like concrete buildings. The efficient extraction of asphalt and concrete objects from one satellite thermal image occurred at a specific time, by preventing the gaps in times which give the close and same brightness values between asphalt and concrete, and among other objects. So that to achieve efficient extraction and then better analysis. Seven sample objects were used un this study, asphalt, concrete, metal, rock, dry soil, vegetation, and water. It has been found that, the best timing for capturing satellite thermal images to extract the two objects asphalt and concrete from one satellite thermal image, saving time and money, occurred at a specific time in different months. A table is deduced shows the optimal timing for capturing satellite thermal images to extract effectively these two objects.
Keywords: Asphalt, concrete, satellite thermal images, timing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13003555 Non-Linear Load-Deflection Response of Shape Memory Alloys-Reinforced Composite Cylindrical Shells under Uniform Radial Load
Authors: Behrang Tavousi Tehrani, Mohammad-Zaman Kabir
Abstract:
Shape memory alloys (SMA) are often implemented in smart structures as the active components. Their ability to recover large displacements has been used in many applications, including structural stability/response enhancement and active structural acoustic control. SMA wires or fibers can be embedded with composite cylinders to increase their critical buckling load, improve their load-deflection behavior, and reduce the radial deflections under various thermo-mechanical loadings. This paper presents a semi-analytical investigation on the non-linear load-deflection response of SMA-reinforced composite circular cylindrical shells. The cylinder shells are under uniform external pressure load. Based on first-order shear deformation shell theory (FSDT), the equilibrium equations of the structure are derived. One-dimensional simplified Brinson’s model is used for determining the SMA recovery force due to its simplicity and accuracy. Airy stress function and Galerkin technique are used to obtain non-linear load-deflection curves. The results are verified by comparing them with those in the literature. Several parametric studies are conducted in order to investigate the effect of SMA volume fraction, SMA pre-strain value, and SMA activation temperature on the response of the structure. It is shown that suitable usage of SMA wires results in a considerable enhancement in the load-deflection response of the shell due to the generation of the SMA tensile recovery force.
Keywords: Airy stress function, cylindrical shell, Galerkin technique, load-deflection curve, recovery stress, shape memory alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7203554 Utilization of Demolished Concrete Waste for New Construction
Authors: Asif Husain, Majid Matouq Assas
Abstract:
In recent years demolished concrete waste handling and management is the new primary challenging issue faced by the countries all over the world. It is very challenging and hectic problem that has to be tackled in an indigenous manner, it is desirable to completely recycle demolished concrete waste in order to protect natural resources and reduce environmental pollution. In this research paper an experimental study is carried out to investigate the feasibility and recycling of demolished waste concrete for new construction. The present investigation to be focused on recycling demolished waste materials in order to reduce construction cost and resolving housing problems faced by the low income communities of the world. The crushed demolished concrete wastes is segregated by sieving to obtain required sizes of aggregate, several tests were conducted to determine the aggregate properties before recycling it into new concrete. This research shows that the recycled aggregate that are obtained from site make good quality concrete. The compressive strength test results of partial replacement and full recycled aggregate concrete and are found to be higher than the compressive strength of normal concrete with new aggregate.
Keywords: Demolished, concrete waste, recycle, new concrete, fresh coarse aggregate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58543553 Study on Compressive Strength and Setting Times of Fly Ash Concrete after Slump Recovery Using Superplasticizer
Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert
Abstract:
Fresh concrete has one of dynamic properties known as slump. Slump of concrete is design to compatible with placing method. Due to hydration reaction of cement, the slump of concrete is loss through time. Therefore, delayed concrete probably get reject because slump is unacceptable. In order to recover the slump of delayed concrete the second dose of superplasticizer (naphthalene based type F) is added into the system, the slump recovery can be done as long as the concrete is not setting. By adding superplasticizer as solution for recover unusable slump loss concrete may affects other concrete properties. Therefore, this paper was observed setting times and compressive strength of concrete after being re-dose with chemical admixture type F (superplasticizer, naphthalene based) for slump recovery. The concrete used in this study was fly ash concrete with fly ash replacement of 0%, 30% and 50% respectively. Concrete mix designed for test specimen was prepared with paste content (ratio of volume of cement to volume of void in the aggregate) of 1.2 and 1.3, water-to-binder ratio (w/b) range of 0.3 to 0.58, initial dose of superplasticizer (SP) range from 0.5 to 1.6%. The setting times of concrete were tested both before and after re-dosed with different amount of second dose and time of dosing. The research was concluded that addition of second dose of superplasticizer would increase both initial and final setting times accordingly to dosage of addition. As for fly ash concrete, the prolongation effect was higher as the replacement of fly ash increase. The prolongation effect can reach up to maximum about 4 hours. In case of compressive strength, the re-dosed concrete has strength fluctuation within acceptable range of ±10%.Keywords: Compressive strength, Fly ash concrete, Second dose of superplasticizer, Slump recovery, Setting times.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19393552 Model Studies on Shear Behavior of Reinforced Reconstituted Clay
Abstract:
In this paper, shear behavior of reconstituted clay reinforced with varying diameter of sand compaction piles with area replacement-ratio (as) of 6.25, 10.24, 16, 20.25 and 64% in 100mm diameter and 200mm long clay specimens is modeled using consolidated drained and undrained triaxial tests under different confining pressures ranging from 50kPa to 575kPa. The test results show that the stress-strain behavior of the clay was highly influenced by the presence of SCP. The insertion of SCPs into soft clay has shown to have a positive effect on the load carrying capacity of the clay, resulting in a composite soil mass that has greater shear strength and improved stiffness compared to the unreinforced clay due to increased reinforcement area ratio. In addition, SCP also acts as vertical drain in the clay thus accelerating the dissipation of excess pore water pressures that are generated during loading by shortening the drainage path and activating radial drainage, thereby reducing post-construction settlement. Thus, sand compaction piles currently stand as one of the most viable and practical techniques for improving the mechanical properties of soft clays.Keywords: Reconstituted clay, SCP, shear strength, stress-strain response, triaxial tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15073551 Modeling and Analysis of Concrete Slump Using Hybrid Artificial Neural Networks
Authors: Vinay Chandwani, Vinay Agrawal, Ravindra Nagar
Abstract:
Artificial Neural Networks (ANN) trained using backpropagation (BP) algorithm are commonly used for modeling material behavior associated with non-linear, complex or unknown interactions among the material constituents. Despite multidisciplinary applications of back-propagation neural networks (BPNN), the BP algorithm possesses the inherent drawback of getting trapped in local minima and slowly converging to a global optimum. The paper present a hybrid artificial neural networks and genetic algorithm approach for modeling slump of ready mix concrete based on its design mix constituents. Genetic algorithms (GA) global search is employed for evolving the initial weights and biases for training of neural networks, which are further fine tuned using the BP algorithm. The study showed that, hybrid ANN-GA model provided consistent predictions in comparison to commonly used BPNN model. In comparison to BPNN model, the hybrid ANNGA model was able to reach the desired performance goal quickly. Apart from the modeling slump of ready mix concrete, the synaptic weights of neural networks were harnessed for analyzing the relative importance of concrete design mix constituents on the slump value. The sand and water constituents of the concrete design mix were found to exhibit maximum importance on the concrete slump value.
Keywords: Artificial neural networks, Genetic algorithms, Back-propagation algorithm, Ready Mix Concrete, Slump value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29123550 Laboratory Investigations on Mechanical Properties of High Volume Fly Ash Concrete and Composite Sections
Authors: Aravindkumar B. Harwalkar, S. S. Awanti
Abstract:
Use of fly ash as a supplementary cementing material in large volumes can bring both technological and economic benefits for concrete industry. In this investigation mix proportions for high volume fly ash concrete were determined at cement replacement levels of 50%, 55%, 60% and 65% with low calcium fly ash. Flexural and compressive strengths of different mixes were measured at ages of 7, 28 and 90 days. Flexural strength of composite section prepared from pavement quality and lean high volume fly ash concrete was determined at the age of 28 days. High volume fly ash concrete mixes exhibited higher rate of strength gain and age factors than corresponding reference concrete mixes. The optimum cement replacement level for pavement quality concrete was found to be 60%. The consideration of bond between pavement quality and lean of high volume fly ash concrete will be beneficial in design of rigid pavements.
Keywords: Keywords—Composite section, Compressive strength, Flexural strength, Fly ash.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19633549 Experimental Study on Recycled Aggregate Pervious Concrete
Authors: Ji Wenzhan, Zhang Tao, Li Guoyou
Abstract:
Concrete is the most widely used building material in the world. At the same time, the world produces a large amount of construction waste each year. Waste concrete is processed and treated, and the recycled aggregate is used to make pervious concrete, which enables the construction waste to be recycled. Pervious concrete has many advantages such as permeability to water, protection of water resources, and so on. This paper tests the recycled aggregate obtained by crushing high-strength waste concrete (TOU) and low-strength waste concrete (PU), and analyzes the effect of porosity, amount of cement, mineral admixture and recycled aggregate on the strength of permeable concrete. The porosity is inversely proportional to the strength, and the amount of cement used is proportional to the strength. The mineral admixture can effectively improve the workability of the mixture. The quality of recycled aggregates had a significant effect on strength. Compared with concrete using "PU" aggregates, the strength of 7d and 28d concrete using "TOU" aggregates increased by 69.0% and 73.3%, respectively. Therefore, the quality of recycled aggregates should be strictly controlled during production, and the mix ratio should be designed according to different use environments and usage requirements. This test prepared a recycled aggregate permeable concrete with a compressive strength of 35.8 MPa, which can be used for light load roads and provides a reference for engineering applications.
Keywords: Recycled aggregate, pervious concrete, compressive strength, permeability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7383548 Utilising Unground Oil Palm Ash in Producing Foamed Concrete and Its Implementation as an Interlocking Mortar-Less Block
Authors: Hanizam Awang, Mohammed Zuhear Al-Mulali
Abstract:
In this study, the possibility of using unground oil palm ash (UOPA) for producing foamed concrete is investigated. The UOPA used in this study is produced by incinerating palm oil biomass at a temperature exceeding 1000ºC. A semi-structural density of 1300kg/m3 was used with filler to binder ratio of 1.5 and preliminary water to binder ratio of 0.45. Cement was replaced by UOPA at replacement levels of 0, 25, 35, 45, 55 and 65% by weight of binder. Properties such as density, compressive strength, drying shrinkage and water absorption were investigated to the age of 90 days. The mix with a 35% of UOPA content was chosen to be used as the base material of a newly designed interlocking, mortar-less block system.
Keywords: Foamed concrete, oil palm ash, strength, interlocking block.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13653547 Chloride Transport in Ultra High Performance Concrete
Authors: R. Pernicová
Abstract:
Chloride resistance in Ultra High Performance Concrete (UHPC) is determined in this paper. This work deals with the one dimension chloride transport, which can be potentially dangerous particularly for the durability of concrete structures. Risk of reinforcement corrosion due to exposure to the concrete surface to direct the action of chloride ions (mainly in the form de-icing salts or groundwater) is dangerously increases. The measured data are investigated depending on the depth of penetration of chloride ions into the concrete structure. Comparative measurements with normal strength concrete are done as well. The experimental results showed that UHCP have improved resistance of chlorides penetration than NSC and also chloride diffusion depth is significantly lower in UHCP.
Keywords: Chloride, One dimensional diffusion, Transport, Salinity, UHPC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21053546 Numerical Model of Low Cost Rubber Isolators for Masonry Housing in High Seismic Regions
Authors: Ahmad B. Habieb, Gabriele Milani, Tavio Tavio, Federico Milani
Abstract:
Housings in developing countries have often inadequate seismic protection, particularly for masonry. People choose this type of structure since the cost and application are relatively cheap. Seismic protection of masonry remains an interesting issue among researchers. In this study, we develop a low-cost seismic isolation system for masonry using fiber reinforced elastomeric isolators. The elastomer proposed consists of few layers of rubber pads and fiber lamina, making it lower in cost comparing to the conventional isolators. We present a finite element (FE) analysis to predict the behavior of the low cost rubber isolators undergoing moderate deformations. The FE model of the elastomer involves a hyperelastic material property for the rubber pad. We adopt a Yeoh hyperelasticity model and estimate its coefficients through the available experimental data. Having the shear behavior of the elastomers, we apply that isolation system onto small masonry housing. To attach the isolators on the building, we model the shear behavior of the isolation system by means of a damped nonlinear spring model. By this attempt, the FE analysis becomes computationally inexpensive. Several ground motion data are applied to observe its sensitivity. Roof acceleration and tensile damage of walls become the parameters to evaluate the performance of the isolators. In this study, a concrete damage plasticity model is used to model masonry in the nonlinear range. This tool is available in the standard package of Abaqus FE software. Finally, the results show that the low-cost isolators proposed are capable of reducing roof acceleration and damage level of masonry housing. Through this study, we are also capable of monitoring the shear deformation of isolators during seismic motion. It is useful to determine whether the isolator is applicable. According to the results, the deformations of isolators on the benchmark one story building are relatively small.Keywords: Masonry, low cost elastomeric isolator, finite element analysis, hyperelasticity, damped non-linear spring, concrete damage plasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11973545 Pervious Concrete for Road Intersection Drainage
Authors: Ivana Barišić, Ivanka Netinger Grubeša, Ines Barjaktarić
Abstract:
Road performance and traffic safety are highly influenced by improper water drainage system performance, particularly within intersection areas. So, the aim of the presented paper is the evaluation of pervious concrete made with two types and two aggregate fractions for potential utilization in intersection drainage areas. Although the studied pervious concrete mixtures achieved proper drainage but lower strength characteristics, this pervious concrete has a good potential for enhancing pavement drainage systems if it is embedded on limited intersection areas.Keywords: Pervious concrete, drainage, road, intersection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147