Search results for: linear machine
2552 Rapid Study on Feature Extraction and Classification Models in Healthcare Applications
Authors: S. Sowmyayani
Abstract:
The advancement of computer-aided design helps the medical force and security force. Some applications include biometric recognition, elderly fall detection, face recognition, cancer recognition, tumor recognition, etc. This paper deals with different machine learning algorithms that are more generically used for any health care system. The most focused problems are classification and regression. With the rise of big data, machine learning has become particularly important for solving problems. Machine learning uses two types of techniques: supervised learning and unsupervised learning. The former trains a model on known input and output data and predicts future outputs. Classification and regression are supervised learning techniques. Unsupervised learning finds hidden patterns in input data. Clustering is one such unsupervised learning technique. The above-mentioned models are discussed briefly in this paper.
Keywords: Supervised learning, unsupervised learning, regression, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3462551 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients
Authors: Karina Zaccari, Ernesto Cordeiro Marujo
Abstract:
This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.
Keywords: Machine learning, medical diagnosis, meningitis detection, gradient boosting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11102550 Integration of Big Data to Predict Transportation for Smart Cities
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system. The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.
Keywords: Big data, bus headway prediction, machine learning, public transportation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15622549 A Family of Improved Secant-Like Method with Super-Linear Convergence
Authors: Liang Chen
Abstract:
A family of improved secant-like method is proposed in this paper. Further, the analysis of the convergence shows that this method has super-linear convergence. Efficiency are demonstrated by numerical experiments when the choice of α is correct.
Keywords: Nonlinear equations, Secant method, Convergence order, Secant-like method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20462548 Selection the Optimum Cooling Scheme for Generators based on the Electro-Thermal Analysis
Authors: Diako Azizi, Ahmad Gholami, Vahid Abbasi
Abstract:
Optimal selection of electrical insulations in electrical machinery insures reliability during operation. From the insulation studies of view for electrical machines, stator is the most important part. This fact reveals the requirement for inspection of the electrical machine insulation along with the electro-thermal stresses. In the first step of the study, a part of the whole structure of machine in which covers the general characteristics of the machine is chosen, then based on the electromagnetic analysis (finite element method), the machine operation is simulated. In the simulation results, the temperature distribution of the total structure is presented simultaneously by using electro-thermal analysis. The results of electro-thermal analysis can be used for designing an optimal cooling system. In order to design, review and comparing the cooling systems, four wiring structures in the slots of Stator are presented. The structures are compared to each other in terms of electrical, thermal distribution and remaining life of insulation by using Finite Element analysis. According to the steps of the study, an optimization algorithm has been presented for selection of appropriate structure.Keywords: Electrical field, field distribution, insulation, winding, finite element method, electro thermal
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17482547 Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA
Authors: T. Yamaguchi, M. Watanabe, M. Sasajima, C. Yuan, S. Maruyama, T. B. Ibrahim, H. Tomita
Abstract:
This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses.Keywords: Dynamic response, Nonlinear impact response, Finite Element analysis, Numerical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17202546 Effect of Channel Estimation on Capacity of MIMO System Employing Circular or Linear Receiving Array Antennas
Authors: Xia Liu, Marek E. Bialkowski
Abstract:
This paper reports on investigations into capacity of a Multiple Input Multiple Output (MIMO) wireless communication system employing a uniform linear array (ULA) at the transmitter and either a uniform linear array (ULA) or a uniform circular array (UCA) antenna at the receiver. The transmitter is assumed to be surrounded by scattering objects while the receiver is postulated to be free from scattering objects. The Laplacian distribution of angle of arrival (AOA) of a signal reaching the receiver is postulated. Calculations of the MIMO system capacity are performed for two cases without and with the channel estimation errors. For estimating the MIMO channel, the scaled least square (SLS) and minimum mean square error (MMSE) methods are considered.Keywords: MIMO, channel capacity, channel estimation, ULA, UCA, spatial correlation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13652545 Unified Fusion Approach with Application to SLAM
Authors: Xinde Li, Xinhan Huang, Min Wang
Abstract:
In this paper, we propose the pre-processor based on the Evidence Supporting Measure of Similarity (ESMS) filter and also propose the unified fusion approach (UFA) based on the general fusion machine coupled with ESMS filter, which improve the correctness and precision of information fusion in any fields of application. Here we mainly apply the new approach to Simultaneous Localization And Mapping (SLAM) of Pioneer II mobile robots. A simulation experiment was performed, where an autonomous virtual mobile robot with sonar sensors evolves in a virtual world map with obstacles. By comparing the result of building map according to the general fusion machine (here DSmT-based fusing machine and PCR5-based conflict redistributor considereded) coupling with ESMS filter and without ESMS filter, it shows the benefit of the selection of the sources as a prerequisite for improvement of the information fusion, and also testifies the superiority of the UFA in dealing with SLAM.Keywords: DSmT, ESMS filter, SLAM, UFA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13502544 Adomian Decomposition Method Associated with Boole-s Integration Rule for Goursat Problem
Authors: Mohd Agos Salim Nasir, Ros Fadilah Deraman, Siti Salmah Yasiran
Abstract:
The Goursat partial differential equation arises in linear and non linear partial differential equations with mixed derivatives. This equation is a second order hyperbolic partial differential equation which occurs in various fields of study such as in engineering, physics, and applied mathematics. There are many approaches that have been suggested to approximate the solution of the Goursat partial differential equation. However, all of the suggested methods traditionally focused on numerical differentiation approaches including forward and central differences in deriving the scheme. An innovation has been done in deriving the Goursat partial differential equation scheme which involves numerical integration techniques. In this paper we have developed a new scheme to solve the Goursat partial differential equation based on the Adomian decomposition (ADM) and associated with Boole-s integration rule to approximate the integration terms. The new scheme can easily be applied to many linear and non linear Goursat partial differential equations and is capable to reduce the size of computational work. The accuracy of the results reveals the advantage of this new scheme over existing numerical method.Keywords: Goursat problem, partial differential equation, Adomian decomposition method, Boole's integration rule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18562543 Envelope-Wavelet Packet Transform for Machine Condition Monitoring
Authors: M. F. Yaqub, I. Gondal, J. Kamruzzaman
Abstract:
Wavelet transform has been extensively used in machine fault diagnosis and prognosis owing to its strength to deal with non-stationary signals. The existing Wavelet transform based schemes for fault diagnosis employ wavelet decomposition of the entire vibration frequency which not only involve huge computational overhead in extracting the features but also increases the dimensionality of the feature vector. This increase in the dimensionality has the tendency to 'over-fit' the training data and could mislead the fault diagnostic model. In this paper a novel technique, envelope wavelet packet transform (EWPT) is proposed in which features are extracted based on wavelet packet transform of the filtered envelope signal rather than the overall vibration signal. It not only reduces the computational overhead in terms of reduced number of wavelet decomposition levels and features but also improves the fault detection accuracy. Analytical expressions are provided for the optimal frequency resolution and decomposition level selection in EWPT. Experimental results with both actual and simulated machine fault data demonstrate significant gain in fault detection ability by EWPT at reduced complexity compared to existing techniques.Keywords: Envelope Detection, Wavelet Transform, Bearing Faults, Machine Health Monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19582542 Comprehensive Study on the Linear Hydrodynamic Analysis of a Truss Spar in Random Waves
Authors: Roozbeh Mansouri, Hassan Hadidi
Abstract:
Truss spars are used for oil exploitation in deep and ultra-deep water if storage crude oil is not needed. The linear hydrodynamic analysis of truss spar in random sea wave load is necessary for determining the behaviour of truss spar. This understanding is not only important for design of the mooring lines, but also for optimising the truss spar design. In this paper linear hydrodynamic analysis of truss spar is carried out in frequency domain. The hydrodynamic forces are calculated using the modified Morison equation and diffraction theory. Added mass and drag coefficients of truss section computed by transmission matrix and normal acceleration and velocity component acting on each element and for hull section computed by strip theory. The stiffness properties of the truss spar can be separated into two components; hydrostatic stiffness and mooring line stiffness. Then, platform response amplitudes obtained by solved the equation of motion. This equation is non-linear due to viscous damping term therefore linearised by iteration method [1]. Finally computed RAOs and significant response amplitude and results are compared with experimental data.
Keywords: Truss Spar, Hydrodynamic analysis, Wave spectrum, Frequency Domain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24182541 Linear Phase High Pass FIR Filter Design using Improved Particle Swarm Optimization
Authors: Sangeeta Mondal, Vasundhara, Rajib Kar, Durbadal Mandal, S. P. Ghoshal
Abstract:
This paper presents an optimal design of linear phase digital high pass finite impulse response (FIR) filter using Improved Particle Swarm Optimization (IPSO). In the design process, the filter length, pass band and stop band frequencies, feasible pass band and stop band ripple sizes are specified. FIR filter design is a multi-modal optimization problem. An iterative method is introduced to find the optimal solution of FIR filter design problem. Evolutionary algorithms like real code genetic algorithm (RGA), particle swarm optimization (PSO), improved particle swarm optimization (IPSO) have been used in this work for the design of linear phase high pass FIR filter. IPSO is an improved PSO that proposes a new definition for the velocity vector and swarm updating and hence the solution quality is improved. A comparison of simulation results reveals the optimization efficacy of the algorithm over the prevailing optimization techniques for the solution of the multimodal, nondifferentiable, highly non-linear, and constrained FIR filter design problems.Keywords: FIR Filter, IPSO, GA, PSO, Parks and McClellan Algorithm, Evolutionary Optimization, High Pass Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30992540 Mouse Pointer Tracking with Eyes
Authors: H. Mhamdi, N. Hamrouni, A. Temimi, M. Bouhlel
Abstract:
In this article, we expose our research work in Human-machine Interaction. The research consists in manipulating the workspace by eyes. We present some of our results, in particular the detection of eyes and the mouse actions recognition. Indeed, the handicaped user becomes able to interact with the machine in a more intuitive way in diverse applications and contexts. To test our application we have chooses to work in real time on videos captured by a camera placed in front of the user.Keywords: Computer vision, Face and Eyes Detection, Mouse pointer recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21292539 Virtual Machines Cooperation for Impatient Jobs under Cloud Paradigm
Authors: Nawfal A. Mehdi, Ali Mamat, Hamidah Ibrahim, Shamala K. Syrmabn
Abstract:
The increase on the demand of IT resources diverts the enterprises to use the cloud as a cheap and scalable solution. Cloud computing promises achieved by using the virtual machine as a basic unite of computation. However, the virtual machine pre-defined settings might be not enough to handle jobs QoS requirements. This paper addresses the problem of mapping jobs have critical start deadlines to virtual machines that have predefined specifications. These virtual machines hosted by physical machines and shared a fixed amount of bandwidth. This paper proposed an algorithm that uses the idle virtual machines bandwidth to increase the quote of other virtual machines nominated as executors to urgent jobs. An algorithm with empirical study have been given to evaluate the impact of the proposed model on impatient jobs. The results show the importance of dynamic bandwidth allocation in virtualized environment and its affect on throughput metric.Keywords: Insufficient bandwidth, virtual machine, cloudprovider, impatient jobs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16802538 Validation and Selection between Machine Learning Technique and Traditional Methods to Reduce Bullwhip Effects: a Data Mining Approach
Authors: Hamid R. S. Mojaveri, Seyed S. Mousavi, Mojtaba Heydar, Ahmad Aminian
Abstract:
The aim of this paper is to present a methodology in three steps to forecast supply chain demand. In first step, various data mining techniques are applied in order to prepare data for entering into forecasting models. In second step, the modeling step, an artificial neural network and support vector machine is presented after defining Mean Absolute Percentage Error index for measuring error. The structure of artificial neural network is selected based on previous researchers' results and in this article the accuracy of network is increased by using sensitivity analysis. The best forecast for classical forecasting methods (Moving Average, Exponential Smoothing, and Exponential Smoothing with Trend) is resulted based on prepared data and this forecast is compared with result of support vector machine and proposed artificial neural network. The results show that artificial neural network can forecast more precisely in comparison with other methods. Finally, forecasting methods' stability is analyzed by using raw data and even the effectiveness of clustering analysis is measured.Keywords: Artificial Neural Networks (ANN), bullwhip effect, demand forecasting, Support Vector Machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20102537 Linear Prediction System in Measuring Glucose Level in Blood
Authors: Intan Maisarah Abd Rahim, Herlina Abdul Rahim, Rashidah Ghazali
Abstract:
Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained.
Keywords: Diabetes, glucose level, linear, near-infrared (NIR), non-invasive, prediction system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8742536 Geometrically Non-Linear Axisymmetric Free Vibration Analysis of Functionally Graded Annular Plates
Authors: Boutahar Lhoucine, El Bikri Khalid, Benamar Rhali
Abstract:
In this paper, the non-linear free axisymmetric vibration of a thin annular plate made of functionally graded material (FGM) has been studied by using the energy method and a multimode approach. FGM properties vary continuously as well as non-homogeneity through the thickness direction of the plate. The theoretical model is based on the classical plate theory and the Von Kármán geometrical non-linearity assumptions. An approximation has been adopted in the present work consisting of neglecting the in-plane deformation in the formulation. Hamilton’s principle is used to derive the governing equation of motion. The problem is solved by a numerical iterative procedure in order to obtain more accurate results for vibration amplitudes up to 1.5 times the plate thickness. The numerical results are given for the first axisymmetric non-linear mode shape for a wide range of vibration amplitudes and they are presented either in tabular form or in graphical form to show the effect that the vibration amplitude and the variation in material properties have significant effects on the frequencies and the bending stresses in large amplitude vibration of the functionally graded annular plate.
Keywords: Non-linear vibrations, Annular plates, Large amplitudes, FGM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21812535 Magnetohydrodynamic Maxwell Nanofluids Flow over a Stretching Surface through a Porous Medium: Effects of Non-Linear Thermal Radiation, Convective Boundary Conditions and Heat Generation/Absorption
Authors: Sameh E. Ahmed, Ramadan A. Mohamed, Abd Elraheem M. Aly, Mahmoud S. Soliman
Abstract:
In this paper, an enhancement of the heat transfer using non-Newtonian nanofluids by magnetohydrodynamic (MHD) mixed convection along stretching sheets embedded in an isotropic porous medium is investigated. Case of the Maxwell nanofluids is studied using the two phase mathematical model of nanofluids and the Darcy model is applied for the porous medium. Important effects are taken into account, namely, non-linear thermal radiation, convective boundary conditions, electromagnetic force and presence of the heat source/sink. Suitable similarity transformations are used to convert the governing equations to a system of ordinary differential equations then it is solved numerically using a fourth order Runge-Kutta method with shooting technique. The main results of the study revealed that the velocity profiles are decreasing functions of the Darcy number, the Deborah number and the magnetic field parameter. Also, the increase in the non-linear radiation parameters causes an enhancement in the local Nusselt number.
Keywords: MHD, nanofluids, stretching surface, non-linear thermal radiation, convective condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9602534 A Power Reduction Technique for Built-In-Self Testing Using Modified Linear Feedback Shift Register
Authors: Mayank Shakya, Soundra Pandian. K. K
Abstract:
A linear feedback shift register (LFSR) is proposed which targets to reduce the power consumption from within. It reduces the power consumption during testing of a Circuit Under Test (CUT) at two stages. At first stage, Control Logic (CL) makes the clocks of the switching units of the register inactive for a time period when output from them is going to be same as previous one and thus reducing unnecessary switching of the flip-flops. And at second stage, the LFSR reorders the test vectors by interchanging the bit with its next and closest neighbor bit. It keeps fault coverage capacity of the vectors unchanged but reduces the Total Hamming Distance (THD) so that there is reduction in power while shifting operation.Keywords: Linear Feedback Shift Register, Total Hamming Distance, Fault Coverage, Control Logic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20262533 On the Efficiency of a Double-Cone Gravitational Motor and Generator
Authors: Barenten Suciu, Akio Miyamura
Abstract:
In this paper, following the study-case of an inclined plane gravitational machine, efficiency of a double-cone gravitational motor and generator is evaluated. Two types of efficiency ratios, called translational efficiency and rotational efficiency, are defined relative to the intended duty of the gravitational machine, which can be either the production of translational kinetic energy, or rotational kinetic energy. One proved that, for pure rolling movement of the double- cone, in the absence of rolling friction, the total mechanical energy is conserved. In such circumstances, as the motion of the double-cone progresses along rails, the translational efficiency decreases and the rotational efficiency increases, in such way that sum of the rotational and translational efficiencies remains unchanged and equal to 1. Results obtained allow a comparison of the gravitational machine with other types of motor-generators, in terms of the achievable efficiency.
Keywords: Truncated double-cone, friction, rolling and sliding, efficiency, gravitational motor and generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9472532 BIM Application and Construction Schedule Simulation for the Horizontal Work Area
Authors: Hyeon-Seong Kim, Sang-Mi Park, Seul-Gi Kim, Seon-Ju Han, Leen-Seok Kang
Abstract:
The use of BIM, including 4D CAD system, in a construction project is gradually increasing. Since the building construction works repeatedly in the vertical space, it is relatively easy to confirm the interference effect when applying the BIM, but the interference effect for the civil engineering project is relatively small because the civil works perform non-repetitive processes in the horizontal space. For this reason, it is desirable to apply BIM to the construction phase when applying BIM to the civil engineering project, and the most active BIM tool applied to the construction phase is the 4D CAD function for the schedule management. This paper proposes the application procedure of BIM by the construction phase of civil engineering project and a linear 4D CAD construction methodology suitable for the civil engineering project in which linear work is performed.
Keywords: BIM, 4D CAD, Horizontal work area, Linear simulation, VR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10222531 A Dirty Page Migration Method in Process of Memory Migration Based on Pre-copy Technology
Authors: Kang Zijian, Zhang Tingyu, Burra Venkata Durga Kumar
Abstract:
This article investigates the challenges in memory migration during the live migration of virtual machines. We found three challenges probably existing in pre-copy technology. One of the main challenges is the challenge of downtime migration. Decreasing the downtime could promise the normal work for a virtual machine. Although pre-copy technology is greatly decreasing the downtime, we still need to shut down the machine in order to finish the last round of data transfer. This paper provides an optimization scheme for the problems existing in pro-copy technology, mainly the optimization of the dirty page migration mechanism. The typical pre-copy technology copies n-1th’s dirty pages in nth turn. However, our idea is to create a double iteration method to solve this problem.
Keywords: Virtual machine, pre-copy technology, memory migration process, downtime, dirty pages migration method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712530 Enhanced Automated Teller Machine Using Short Message Service Authentication Verification
Authors: Rasheed Gbenga Jimoh, Akinbowale Nathaniel Babatunde
Abstract:
The use of Automated Teller Machine (ATM) has become an important tool among commercial banks, customers of banks have come to depend on and trust the ATM conveniently meet their banking needs. Although the overwhelming advantages of ATM cannot be over-emphasized, its alarming fraud rate has become a bottleneck in it’s full adoption in Nigeria. This study examined the menace of ATM in the society another cost of running ATM services by banks in the country. The researcher developed a prototype of an enhanced Automated Teller Machine Authentication using Short Message Service (SMS) Verification. The developed prototype was tested by Ten (10) respondents who are users of ATM cards in the country and the data collected was analyzed using Statistical Package for Social Science (SPSS). Based on the results of the analysis, it is being envisaged that the developed prototype will go a long way in reducing the alarming rate of ATM fraud in Nigeria.
Keywords: ATM, ATM Fraud, E-banking, Prototyping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21762529 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning
Authors: Walid Cherif
Abstract:
Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.
Keywords: Data mining, knowledge discovery, machine learning, similarity measurement, supervised classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15272528 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-time Stochastic Systems
Authors: Tomoaki Hashimoto
Abstract:
Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the effectiveness of the obtained stability condition.Keywords: Computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18462527 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach
Authors: Rajvir Kaur, Jeewani Anupama Ginige
Abstract:
With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.Keywords: Artificial neural networks, breast cancer, cancer dataset, classifiers, cervical cancer, F-score, logistic regression, machine learning, precision, recall, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15532526 Transient Stability Improvement in Multi-Machine System Using Power System Stabilizer (PSS) and Static Var Compensator (SVC)
Authors: Khoshnaw Khalid Hama Saleh, Ergun Ercelebi
Abstract:
Increasingly complex modern power systems require stability, especially for transient and small disturbances. Transient stability plays a major role in stability during fault and large disturbance. This paper compares a power system stabilizer (PSS) and static Var compensator (SVC) to improve damping oscillation and enhance transient stability. The effectiveness of a PSS connected to the exciter and/or governor in damping electromechanical oscillations of isolated synchronous generator was tested. The SVC device is a member of the shunt FACTS (flexible alternating current transmission system) family, utilized in power transmission systems. The designed model was tested with a multi-machine system consisting of four machines six bus, using MATLAB/SIMULINK software. The results obtained indicate that SVC solutions are better than PSS.Keywords: FACTS, MATLAB/SIMULINK, multi-machine system, PSS, SVC, transient stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33802525 Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System
Authors: Tomyslav Sledevič, Artūras Serackis, Gintautas Tamulevičius, Dalius Navakauskas
Abstract:
Paper presents an comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in speaker dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signal to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients gives best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfy the real-time requirements and is suitable for applications in embedded systems.
Keywords: Isolated word recognition, features extraction, MFCC, LFCC, LPCC, LPC, FPGA, DTW.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35402524 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems
Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano
Abstract:
The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.Keywords: EIoT, machine learning, anomaly detection, environment monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10272523 Particle Swarm Optimization Based PID Power System Stabilizer for a Synchronous Machine
Authors: Gowrishankar Kasilingam
Abstract:
This paper proposes a swarm intelligence method that yields optimal Proportional-Integral-Derivative (PID) Controller parameters of a power system stabilizer (PSS) in a single machine infinite bus system. The proposed method utilizes the Particle Swarm Optimization (PSO) algorithm approach to generate the optimal tuning parameters. The paper is modeled in the MATLAB Simulink Environment to analyze the performance of a synchronous machine under several load conditions. At the same operating point, the PID-PSS parameters are also tuned by Ziegler-Nichols method. The dynamic performance of proposed controller is compared with the conventional Ziegler-Nichols method of PID tuning controller to demonstrate its advantage. The analysis reveals the effectiveness of the proposed PSO based PID controller.
Keywords: Particle Swarm Optimization, PID Controller, Power System Stabilizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3038