

Abstract—This article investigates the challenges in memory

migration during the live migration of virtual machines. We found
three challenges probably existing in pre-copy technology. One of the
main challenges is the challenge of downtime migration. Decreasing
the downtime could promise the normal work for a virtual machine.
Although pre-copy technology is greatly decreasing the downtime, we
still need to shut down the machine in order to finish the last round of
data transfer. This paper provides an optimization scheme for the
problems existing in pro-copy technology, mainly the optimization of
the dirty page migration mechanism. The typical pre-copy technology
copies n-1th’s dirty pages in nth turn. However, our idea is to create a
double iteration method to solve this problem.

Keywords—Virtual machine, pre-copy technology, memory
migration process, downtime, dirty pages migration method.

I. INTRODUCTION

IRTUAL machine migration usually refers to the
migration of a virtual machine running on one host (the

source host) to another host (the destination host). The main
purpose of virtual machine migration is to improve system
availability, flexibility and resource utilization. When the
resource utilization of one physical host is high or exceeds its
carrying capacity, migrating some virtual machines to other
physical hosts can balance the load and prevent some hosts
from being overloaded. And this effect also improves overall
system performance and responsiveness in the same time.
Moreover, in the event of a physical host failure, virtual
machines can be quickly migrated to other healthy hosts to
maintain application availability and continuity. Memory
migration of a Virtual machine (VM) can be divided into (1)
Push Phase, (2) Stop-and-copy Phase, and (3) Pull Phase [1].
Currently, there are many different migration mechanisms for
memory migration of virtual machines, such as post-copy and
pre-copy. Taking Xen live migration as an example, it uses a
pre-migration mechanism to cycle memory pages to the
destination host while the virtual machine is running and to
record memory dirty pages at the same time. Each round of
loops only needs to transfer the dirty pages generated during the
previous cycle. The virtual machine will be paused when most
of the memory is synchronized. Then the CPU state and
remaining unsynchronized memory pages will be synchronized
to the destination host, and the virtual machine can resume
operation on the destination host [2].

Kang Zijian, Zhang Tingyu, and Dr. Burra Venkata Durga Kumar are with

the School of Computing & Data Science, Xiamen University Malaysia,
DULN009(B) Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul

Fig. 1 Steps of VM migration [3]

Unlike pre-copy, post-copy first stops execution of the
virtual machine on the source host. The virtual machine is then
restored by initiating data erasure and copying to the target host.
Various methods, including proactive pushing, pre-paging, and
on-demand fetching, can be used to transfer the final in-
memory data. The overall migration time is predictable since
every memory page is copied only once after it has already been
transferred [4]. As we just mentioned, the pre-copy technique
uses iteration during the push phase. Some memory pages that
are updated/modified during iteration are called dirty pages.
Throughout the migration phase, dirty pages on the source
server are produced again. In subsequent iterations, these filthy
pages are transmitted again to the target host. Additionally,
some frequently visited memory pages are delivered more than
once as a result, making the migration time-consuming [3].

II. BACKGROUND

Live migration, in which logical procedures are nearly
identical to offline migration, means that the virtual machine is
moved between various physical hosts while maintaining the
regular functioning of its services. The distinction is that the
migration procedure has very low downtime in order to ensure
the availability of virtual machine services during the migration

Ehsan (e-mail: cst2109159@xmu.edu.my, cst2109205@xmu.edu.my,
venkata.burra@xmu.edu.my).

Kang Zijian, Zhang Tingyu, Burra Venkata Durga Kumar

A Dirty Page Migration Method in Process of
Memory Migration Based on Pre-copy Technology

V

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:5, 2024

242International Scholarly and Scientific Research & Innovation 18(5) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
5,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
62

0.
pd

f

process [7]. The time required for a virtual machine to complete
the online migration can be divided into two parts: downtime
and end-to-end time. The majority of time expenditure stems
from the end-to-end process during which machine resources
are utilized to execute the migration.

Fig. 2 Total end-to-end time for a migration [5]

Fig. 2 shows that the total end-to-end time depends strongly
on the size of the VM’s memory, and confirms the need to keep
the VM running during most of this time [5]. This is because
the virtual machine iterates after the preparation work, the first
iteration copies all memory pages, and the second iteration only
copies the pages modified during the first iteration, which are
dirty pages. By analogy, the nth round copy is the modified
interface after the n-1 iteration process [6].

We still take the Xen virtual machine as an example, whose
live migration uses a pre-copy approach with simple prediction.
It uses Xen’s shadow page to record the modified pages, and
divides the memory pages into 3 types of dirty bitmap
pages:1.to_skip: The page is soiled in this iteration and can be
skipped.2.to_send: The page was soiled in the previous iteration
and may be migrated in this round. 3.to_fix: During the stop-
and-copy phase, pages with a high dirty rate will be migrated
[1]. (1) When both to_send and to_skip are 0, the memory pages
have not been modified for these two rounds, so the interface is
not transmitted; (2) when to_send is 0 but to_skip is 1, the
memory page has become dirty in these two iterations. But
these pages may continue to get dirty, so the page does not need
to be transferred; (3) when to_send is 1 and to_skip is 1,
indicating that the process of dirty memory pages in these two
iterations has ended and the page needs to be transferred; (4)
when both to_send and to_skip are 1, the page gets dirty
frequently during both iterations, so the page is not delivered
[6]. The rule is shown as Table I.

TABLE I

RULE OF PRE-COPY MIGRATION

To_send 1 0 1 0

To_skip 0 1 0 1

Send or not 1 0 0 0

III. ISSUE

There are three issues in the migration time during the
memory migration.
1) If the memory size is too large, the migration time will

greatly increase (refer to Fig. 2). The initial iteration's
duration is inversely proportional to the VM memory size,
which has an impact on the overall migration time. This is
due to the fact that the first pre-copy iteration tries to
replicate throughout the RAM that the entire VM has
allocated. On average, the total migration time increases
linearly with the size of the virtual machine [8].

2) Pre-copy technology cannot avoid downtime. A long
offline transfer time often leads to poor performance of the
corresponding virtual machine. This is because the virtual
machine service shuts down while data are being
transferred offline [9].

3) One additional question arises during the memory
migration process. The question is, unless a stop condition
exists, the iterative pre-copy phase may continue
indefinitely. From this vantage point, it is essential to
specify the cessation criteria in order to timely conclude
this phase. These requirements are often characterized as
minimizing VM downtime while reducing the amount of
data copied between physical hosts. However, they are
typically very dependent on the architecture of the
hypervisor and live migration subsystem. Most things have
two sides. While achieving a pre-copy phase stop, these
stop conditions may have a major impact on migration
performance. Even the total migration time and VM
downtime encounter a non-linear trend as a result of this
[8].

IV. FLOWCHART OF ISSUE

For a better understanding of the process of iteration in pre-
copy migration. Figs. 3 and 4 show how the dirty pages send to
a target host.

V. A DIRTY PAGES MIGRATION METHOD TO SOLVE DOWNTIME

PROBLEM

Based on the rule of pre-copy migration and the process of n
turns iteration, we imaged and designed a method for dirty
pages’ migration which we called double iteration. The
previous pre-copy iteration sends dirty pages created in n-1th
turn to target host when in nth turn. So, when the process arrives
stop and copy phase, it still has to progress the nth turn dirty
pages. However, the double iteration is to send dirty pages
created in nth turn when in nth turn. So, it could decrease the
memory that required to be progressed in stop and copy phase
which decrease the downtime as well. It uses to_send and
to_skip to check whether we should send this page or not.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:5, 2024

243International Scholarly and Scientific Research & Innovation 18(5) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
5,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
62

0.
pd

f

Fig. 3 The process of pre-copy iteration [10]

Fig. 4 One iteration in pre-copy live migration [12]

Here is the pseudo-code of a double iteration we provided to

decrease the downtime:
1: Input: source host, target host
2: createMemorySpace (target host, sizeof source host)
3: mark all pages of source as unmodified
4: sourcePageTable<-source host.pageTable
5: targetPageTable<-target host.pageTable
6: for each page in sourcePageTable do
7: mark pages migration
8: if (page is modified) then
9: if (to_skip = 0) then
10: if (to_send = 1) then
11: copyPage (source host, target host, dirty page)
12: end if
13: end if
14: end if

15: targetPageTable[page]<-target host.pages[page]
16: end for

Our idea is to detect the function values (i.e., to_send and

to_skip) immediately after the modification is done for each
memory page in the source host. The dirty pages that meet the
criteria are then transferred to the destination host. Because
there is only one loop in every iteration, so the time complexity
will not change. And the complexity of if statement is O(1).
When the problem size is large, the impact of it is negligible.
The detail of process is shown as flowchart İn Fig. 5.

Fig. 5 The process of double iteration

Double iteration works based on the pre-copy iteration. There
is no need to do iteration again after create dirty page. Actually,
the general flow of double iteration is consistent with pre-copy.
However, unlike Fig. 1, the system enters the double iteration
first after the pre-copy iteration. Next, VM will enter the stop
and copy phase.

To better understand how the double iteration run time differs
from the original iteration, here are two timelines for pre-copy
technology and double iteration method.

Fig. 6 Pre-copy migration memory synchronization [11]

Fig. 7 Double iteration migration memory synchronization

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:5, 2024

244International Scholarly and Scientific Research & Innovation 18(5) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
5,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
62

0.
pd

f

We could see that all the iteration runtime decreases a little
except first iteration. This is because in first iteration we still
need copy all memory pages. By comparing the two timelines,
we can see that the most reduced time is downtime. We believe
this method could reduce downtime to keep virtual machines up
and running.

VI. CONCLUSION

In conclusion, a migration of virtual machine could be
divided into two type migration. One is live migration; another
is static migration. Static migrations have significant periods of
time when the services in the client are unavailable, while
dynamic migrations have no significant service downtime [13].
Dynamic migration actually encapsulates the configuration of a
virtual machine in a file and then passes it over a high-speed
network. Quickly transfer virtual machine configuration and
memory running status from one physical machine to another.
The virtual machine remains running during this period. The
most widely used technology in a memory migration is pre-
copy. The pre-copy migration phase involves restarting the
destination virtual machine after the hypervisor has copied the
memory contents of the source virtual machine to it. If the data
are altered in memory during this procedure (known as "dirty
pages"), it will be duplicated again until the dirty rate is
satisfied. The remaining data are then sent to the destination
virtual machine, which is then resumed on the destination host
after being suspended on the source virtual machine's physical
host [14].

After investigating, we found that when the file memory is
large, the migration time tends to be longer. How to stop
iterations under the right conditions is also a tricky problem.
Sometimes downtime can take several seconds during the
stop© phase. After studying the detailed process of pre-
copy, we proposed a double iteration to reduce downtime in
response to the problem of VM performance in stop©.
This double iteration is established based on the original
iteration. It checks the value of to_skip and to_send, then decide
next step’s action. We have provided pseudocode to verify our
assumptions. Theoretically, this double iteration method will be
effective and feasible. However, it does not optimize the time
cost on dirty page’s migration. In the pre-copy method of hot
migration, frequently updated pages are repeatedly transferred
[12]. Therefore, our future work is to optimize the dirty page
prediction mechanism to ensure that those pages that are
frequently updated are transmitted only once in the iterative
process. That is, the overall migration time will be once again
reduced.

ACKNOWLEDGMENT

We would like to express our sincere gratitude to Dr. Burra
Venkata Durga Kumar for his invaluable guidance and
mentorship throughout the process of writing this paper. Thanks
to Dr. Burra, we could have this valuable opportunity to
complete this article. His knowledge of Unix memory
management has been crucial in advancing our knowledge and
bettering our comprehension of this challenging topic. His

ongoing encouragement and assistance have been essential to
finishing this project. We also like to express our sincere
gratitude to all the authors whose works were referenced in this
essay. Our research is built on the solid ground of their
important contributions to the field of virtual machine
migration. We have been motivated and our comprehension of
the topic has been expanded by their tireless work and passion
to developing knowledge in this field.

REFERENCES

[1] Wu, T., Guizani, N., & Huang, J. (2017). Related Dirty Memory
Prediction Mechanism for Live Migration Enhancement in Cloud
Computing Environments. Journal of Network and Computer
Applications, 90(15 July), 83–89.
https://doi.org/http://dx.doi.org/10.1016/j.jnca.2017.03.011

[2] Zhang, B., Luo, Y., Wang, Z., Sun, Y., Chen, H., Xu, Z., & Li, X. (2009).
Whole-System Live Migration Mechanism for Virtual Machines. ACTA
ELECTRONICA SINICA, 37(4), 894–899.

[3] Choudhary, A., Govil, M., Singh, G. et al. A critical survey of live virtual
machine migration techniques. J Cloud Comp 6, 23 (2017).
https://doi.org/10.1186/s13677-017-0092-1

[4] Zhang, F., Liu, G., Fu, X., & Yahyapour, R. (2018, January 17). A Survey
on Virtual Machine Migration: Challenges, Techniques and Open Issues.
IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/8260891

[5] Nelson, M., Lim, B., & Hutchins, G. (2005, April 10). Fast Transparent
Migration for Virtual Machines. ACM DIGITAL LIBRARY.
https://dl.acm.org/doi/10.5555/1247360.1247385

[6] Zhang, W., Zhang, X., & Wang, R. (2013). Live Memory Migration for
Virtual Machine Based on Dirty Pages Delayed Copy Method. Computer
Science, 40(5), 126–131. https://www.jsjkx.com/EN/Y2013/V40/I5/126

[7] Zeeeitch. (2017, June 27). Principles of VM Migration. CSDN.
https://blog.csdn.net/zeeeitch/article/details/73800010?ops_request_misc
=&request_id=&biz_id=102&utm_term=%E8%99%9A%E6%8B%9F%
E6%9C%BAprecopy&utm_medium=distribute.pc_search_result.none-
task-blog-2~all~sobaiduweb~default-2-
73800010.nonecase&spm=1018.2226.3001.4187

[8] S. Akoush, R. Sohan, A. Rice, A. W. Moore and A. Hopper, "Predicting
the Performance of Virtual Machine Migration," 2010 IEEE International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, Miami Beach, FL, USA, 2010, pp. 37-46,
doi: 10.1109/MASCOTS.2010.13.

[9] N. Tziritas, T. Loukopoulos, S. U. Khan, C. -Z. Xu and A. Y. Zomaya,
"Online Live VM Migration Algorithms to Minimize Total Migration
Time and Downtime," 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Rio de Janeiro, Brazil, 2019, pp. 406-
417, doi: 10.1109/IPDPS.2019.00051.

[10] Elsaid, M.E., Abbas, H.M. & Meinel, C. Virtual machines pre-copy live
migration cost modeling and prediction: a survey. Distrib Parallel
Databases 40, 441–474 (2022). https://doi.org/10.1007/s10619-021-
07387-2

[11] Chen, Y., Huai, J., & Hu, C. (2011). Live Migration of Virtual Machines
Based on Hybrid Memory Approach. Chinese Journal of Computer,
34(12), 2278–2291. https://doi.org/10.3724/SP.J.1016.2011.02275

[12] F. Ma, F. Liu and Z. Liu, "Live virtual machine migration based on
improved pre-copy approach," 2010 IEEE International Conference on
Software Engineering and Service Sciences, Beijing, China, 2010, pp.
230-233, doi: 10.1109/ICSESS.2010.5552416.

[13] Yi, S. (2022, July 7). Migration of Virtual Machines. CSDN.
https://blog.csdn.net/beginerToBetter/article/details/125646906?ops_req
uest_misc=%257B%2522request%255Fid%2522%253A%25221686840
86816800227472586%2522%252C%2522scm%2522%253A%2522201
40713.130102334.pc%255Fall.%2522%257D&request_id=1686840868
16800227472586&biz_id=0&utm_medium=distribute.pc_search_result.
none-task-blog-2~all~first_rank_ecpm_v1~rank_v31_ecpm-4-
125646906-null-
null.142^v88^control,239^v2^insert_chatgpt&utm_term=%E8%99%9A
%E6%8B%9F%E6%9C%BA%E5%81%9C%E6%9C%BA%E6%97%B
6%E9%97%B4&spm=1018.2226.3001.4187

[14] P. P. Thakre and V. N. Sahare, "VM live migration time reduction using
NAS based algorithm during VM live migration," 2017 Third
International Conference on Sensing, Signal Processing and Security

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:5, 2024

245International Scholarly and Scientific Research & Innovation 18(5) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
5,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
62

0.
pd

f

(ICSSS), Chennai, India, 2017, pp. 242-246, doi:
10.1109/SSPS.2017.8071599.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:5, 2024

246International Scholarly and Scientific Research & Innovation 18(5) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
5,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
62

0.
pd

f

