Search results for: harmonic parameter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1335

Search results for: harmonic parameter

975 Robust Steam Temperature Regulation for Distillation of Essential Oil Extraction Process using Hybrid Fuzzy-PD plus PID Controller

Authors: Nurhani Kasuan, Zakariah Yusuf, Mohd Nasir Taib, Mohd Hezri Fazalul Rahiman, Nazurah Tajuddin, Mohd Azri Abdul Aziz

Abstract:

This paper presents a hybrid fuzzy-PD plus PID (HFPP) controller and its application to steam distillation process for essential oil extraction system. Steam temperature is one of the most significant parameters that can influence the composition of essential oil yield. Due to parameter variations and changes in operation conditions during distillation, a robust steam temperature controller becomes nontrivial to avoid the degradation of essential oil quality. Initially, the PRBS input is triggered to the system and output of steam temperature is modeled using ARX model structure. The parameter estimation and tuning method is adopted by simulation using HFPP controller scheme. The effectiveness and robustness of proposed controller technique is validated by real time implementation to the system. The performance of HFPP using 25 and 49 fuzzy rules is compared. The experimental result demonstrates the proposed HFPP using 49 fuzzy rules achieves a better, consistent and robust controller compared to PID when considering the test on tracking the set point and the effects due to disturbance.

Keywords: Fuzzy Logic controller, steam temperature, steam distillation, real time control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2809
974 Response of Pavement under Temperature and Vehicle Coupled Loading

Authors: Yang Zhong, Mei-jie Xu

Abstract:

To study the dynamic mechanics response of asphalt pavement under the temperature load and vehicle loading, asphalt pavement was regarded as multilayered elastic half-space system, and theory analysis was conducted by regarding dynamic modulus of asphalt mixture as the parameter. Firstly, based on the dynamic modulus test of asphalt mixture, function relationship between the dynamic modulus of representative asphalt mixture and temperature was obtained. In addition, the analytical solution for thermal stress in single layer was derived by using Laplace integral transformation and Hankel integral transformation respectively by using thermal equations of equilibrium. The analytical solution of calculation model of thermal stress in asphalt pavement was derived by transfer matrix of thermal stress in multilayer elastic system. Finally, the variation of thermal stress in pavement structure was analyzed. The result shows that there is obvious difference between the thermal stress based on dynamic modulus and the solution based on static modulus. So the dynamic change of parameter in asphalt mixture should be taken into consideration when theoretical analysis is taken out.

Keywords: Asphalt pavement, dynamic modulus, integral transformation, transfer matrix, thermal stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
973 Modelling of Induction Motor Including Skew Effect Using MWFA for Performance Improvement

Authors: M. Harir, A. Bendiabdellah, A. Chaouch, N. Benouzza

Abstract:

This paper deals with the modelling and simulation of the squirrel cage induction motor by taking into account all space harmonic components as well as the introduction of the bars skew in the calculation of the linear evolution of the magnetomotive force (MMF) between the slots extremities. The model used is based on multiple coupled circuits and the modified winding function approach (MWFA). The effect of skewing is included in the calculation of motors inductances with an axial asymmetry in the rotor. The simulation results in both time and spectral domains show the effectiveness and merits of the model and the error that may be caused if the skew of the bars are neglected.

Keywords: Modelling, MWFA, Skew effect, Squirrel cage induction motor, Spectral domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3254
972 Process Parameter Optimization in Resistance Spot Welding of Dissimilar Thickness Materials

Authors: Pradeep M., N. S. Mahesh, Raja Hussain

Abstract:

Resistance spot welding (RSW) has been used widely to join sheet metals. It has been a challenge to get required weld quality in spot welding of dissimilar thickness materials. Weld parameters are not generally available in standards for thickness beyond 4mm. This paper presents the welding process design and parameter optimization of RSW used in joining of low carbon steel sheet of thickness 0.8 mm and metal strips of cross section 10 x 5mm for electrical motor applications. Taguchi quality design was adopted for weld current and time optimization using L9 orthogonal array. Optimum process parameters (current- 3.5kA and time- 10 cycles) were obtained from the Taguchi analysis and shear test results. Confirmation experiment result revealed that the weld quality was within acceptable interval. Further, numerical simulation of RSW process was carried out with selected weld parameters to quantify the temperature at faying surface and check for formation of appropriate nugget. The nugget geometry measured after peel test and predicted from numerical validation method were similar and in accordance with the standards.

Keywords: Resistance spot welding, dissimilar thickness, weld parameters, Taguchi method, numerical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5154
971 Non-Singular Gravitational Collapse of a Homogeneous Scalar Field in Deformed Phase Space

Authors: Amir Hadi Ziaie

Abstract:

In the present work, we revisit the collapse process of a spherically symmetric homogeneous scalar field (in FRW background) minimally coupled to gravity, when the phase-space deformations are taken into account. Such a deformation is mathematically introduced as a particular type of noncommutativity between the canonical momenta of the scale factor and of the scalar field. In the absence of such deformation, the collapse culminates in a spacetime singularity. However, when the phase-space is deformed, we find that the singularity is removed by a non-singular bounce, beyond which the collapsing cloud re-expands to infinity. More precisely, for negative values of the deformation parameter, we identify the appearance of a negative pressure, which decelerates the collapse to finally avoid the singularity formation. While in the un-deformed case, the horizon curve monotonically decreases to finally cover the singularity, in the deformed case the horizon has a minimum value that this value depends on deformation parameter and initial configuration of the collapse. Such a setting predicts a threshold mass for black hole formation in stellar collapse and manifests the role of non-commutative geometry in physics and especially in stellar collapse and supernova explosion.

Keywords: Gravitational collapse, non-commutative geometry, spacetime singularity, black hole physics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384
970 Liquid Crystal Based Reconfigurable Reflectarray Antenna Design

Authors: M. Y. Ismail, M. Inam

Abstract:

This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with slot embedded patch element configurations within X-band frequency range. The slots are shown to modify the surface current distribution on the patch element of reflectarray which causes the resonant patch element to provide different resonant frequencies depending on the slot dimensions. The simulated results are supported and verified by waveguide scattering parameter measurements of different reflectarray unit cells. Different rectangular slots on patch element have been fabricated and a change in resonant frequency from 10.46GHz to 8.78GHz has been demonstrated as the width of the rectangular slot is varied from 0.2W to 0.6W. The rectangular slot in the center of the patch element has also been utilized for the frequency tunable reflectarray antenna design based on K-15 Nematic LC. For the active reflectarray antenna design, a frequency tunability of 1.2% from 10GHz to 9.88GHz has been demonstrated with a dynamic phase range of 103° provided by the measured scattering parameter results. Time consumed by liquid crystals for reconfiguration, which is one of the drawback of LC based design, has also been disused in this paper.

Keywords: Liquid crystal, tunable reflectarray, frequency tunability, dynamic phase range.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
969 Heat Flux Reduction Research in Hypersonic Flow with Opposing Jet

Authors: Yisheng Rong, Jian Sun, Weiqiang Liu, Renjun Zhan

Abstract:

A CFD study on heat flux reduction in hypersonic flow with opposing jet has been conducted. Flowfield parameters, reattachment point position, surface pressure distributions and heat flux distributions are obtained and validated with experiments. The physical mechanism of heat reduction has been analyzed. When the opposing jet blows, the freestream is blocked off, flows to the edges and not interacts with the surface to form aerodynamic heating. At the same time, the jet flows back to form cool recirculation region, which reduces the difference in temperature between the surface and the nearby gas, and then reduces the heat flux. As the pressure ratio increases, the interface between jet and freestream is gradually pushed away from the surface. Larger the total pressure ratio is, lower the heat flux is. To study the effect of the intensity of opposing jet more reasonably, a new parameter RPA has been introduced by combining the flux and the total pressure ratio. The study shows that the same shock wave position and total heat load can be obtained with the same RPA with different fluxes and the total pressures, which means the new parameter could stand for the intensity of opposing jet and could be used to analyze the influence of opposing jet on flow field and aerodynamic heating.

Keywords: opposing jet, aerodynamic heating, total pressure ratio, thermal protection system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
968 Hybrid of Hunting Search and Modified Simplex Methods for Grease Position Parameter Design Optimisation

Authors: P. Luangpaiboon, S. Boonhao

Abstract:

This study proposes a multi-response surface optimization problem (MRSOP) for determining the proper choices of a process parameter design (PPD) decision problem in a noisy environment of a grease position process in an electronic industry. The proposed models attempts to maximize dual process responses on the mean of parts between failure on left and right processes. The conventional modified simplex method and its hybridization of the stochastic operator from the hunting search algorithm are applied to determine the proper levels of controllable design parameters affecting the quality performances. A numerical example demonstrates the feasibility of applying the proposed model to the PPD problem via two iterative methods. Its advantages are also discussed. Numerical results demonstrate that the hybridization is superior to the use of the conventional method. In this study, the mean of parts between failure on left and right lines improve by 39.51%, approximately. All experimental data presented in this research have been normalized to disguise actual performance measures as raw data are considered to be confidential.

Keywords: Grease Position Process, Multi-response Surfaces, Modified Simplex Method, Hunting Search Method, Desirability Function Approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
967 A Study on the Relationship between Transaction Fairness, Social Capital, Supply Chain Integration and Sustainability: Focusing on Manufacturing Companies of South Korea

Authors: Sung-Min Park, Chan Kwon Park, Chae-Bogk Kim

Abstract:

The purpose of this study is to analyze the relationship between transaction fairness, social capital, supply chain integration and sustainability. Based on the previous studies, measurement items were determined by using SPSS 22 and exploratory factor analysis was performed, and again, using AMOS 21 for confirmatory factor analysis and path analysis was performed by using study items that satisfy reliability, validity, and appropriateness of measurement model. It has shown that transaction fairness has a (+) significant effect on social capital, social capital on supply chain integration, supply chain integration on economic sustainability and social sustainability, and has a (+), but not significant effect on environmental sustainability. It has shown that supply chain integration has been proven to play a role as a parameter between social capital and economic and social sustainability, but not as a parameter between environmental sustainability. Through this study, it is suggested that clearly examining the relationship between fairness of trade, social capital, supply chain integration and sustainability, maintaining fairness of the transaction make formation of social capital, and further integration of supply chain, and achieve sustainability of entire supply chain.

Keywords: Transaction fairness, social capital, supply chain integration, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
966 Artificial Intelligence Model to Predict Surface Roughness of Ti-15-3 Alloy in EDM Process

Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama, M.A. Maleque, Rosli A. Bakar

Abstract:

Conventionally the selection of parameters depends intensely on the operator-s experience or conservative technological data provided by the EDM equipment manufacturers that assign inconsistent machining performance. The parameter settings given by the manufacturers are only relevant with common steel grades. A single parameter change influences the process in a complex way. Hence, the present research proposes artificial neural network (ANN) models for the prediction of surface roughness on first commenced Ti-15-3 alloy in electrical discharge machining (EDM) process. The proposed models use peak current, pulse on time, pulse off time and servo voltage as input parameters. Multilayer perceptron (MLP) with three hidden layer feedforward networks are applied. An assessment is carried out with the models of distinct hidden layer. Training of the models is performed with data from an extensive series of experiments utilizing copper electrode as positive polarity. The predictions based on the above developed models have been verified with another set of experiments and are found to be in good agreement with the experimental results. Beside this they can be exercised as precious tools for the process planning for EDM.

Keywords: Ti-15l-3, surface roughness, copper, positive polarity, multi-layered perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
965 3D Objects Indexing with a Direct and Analytical Method for Calculating the Spherical Harmonics Coefficients

Authors: S. Hellam, Y. Oulahrir, F. El Mounchid, A. Sadiq, S. Mbarki

Abstract:

In this paper, we propose a new method for threedimensional object indexing based on D.A.M.C-S.H.C descriptor (Direct and Analytical Method for Calculating the Spherical Harmonics Coefficients). For this end, we propose a direct calculation of the coefficients of spherical harmonics with perfect precision. The aims of the method are to minimize, the processing time on the 3D objects database and the searching time of similar objects to a request object. Firstly we start by defining the new descriptor using a new division of 3-D object in a sphere. Then we define a new distance which will be tested and prove his efficiency in the search for similar objects in the database in which we have objects with very various and important size.

Keywords: 3D Object indexing, 3D shape descriptor, spherical harmonic, 3D Object similarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
964 Isospectral Hulthén Potential

Authors: Anil Kumar

Abstract:

Supersymmetric Quantum Mechanics is an interesting framework to analyze nonrelativistic quantal problems. Using these techniques, we construct a family of strictly isospectral Hulth´en potentials. Isospectral wave functions are generated and plotted for different values of the deformation parameter.

Keywords: Hulth´en potential, Isospectral Hamiltonian.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3492
963 Design and Manufacture of Non-Contact Moving Load for Experimental Analysis of Beams

Authors: FiroozBakhtiari-Nejad, Hamidreza Rostami, MeysamMirzaee, Mona Zandbaf

Abstract:

Dynamic tests are an important step of the design of engineering structures, because the accuracy of predictions of theoretical–numerical procedures can be assessed. In experimental test of moving loads that is one of the major research topics, the load is modeled as a simple moving mass or a small vehicle. This paper deals with the applicability of Non-contact Moving Load (NML) for vibration analysis. For this purpose, an experimental set-up is designed to generate the different types of NML including constant and harmonic. The proposed method relies on pressurized air which is useful, especially when dealing with fragile or sensitive structures. To demonstrate the performance of this system, the set-up is employedfor a modal analysis of a beam and detecting crack of the beam.The obtained results indicate that the experimental set-up for NML can be an attractive alternative to the moving load problems.

Keywords: Experimental analysis, Moving load, Non-contact excitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2354
962 Meandered Microstrip Open Circuited Stub with Bandstop Characteristic

Authors: Goh Chin Hock, Chandan Kumar Chakrabarty, Mohammad Hadi Badjian, Sanjay Devkumar

Abstract:

This paper presents a microstrip meandered open circuited stub with bandstop characteristic. The proposed structure is designed on a high frequency laminate with dielectric constant of 4.0 and board thickness of 0.508 millimeters. The scattering parameters and electromagnetic field distributions at various frequencies are investigated by modeling the structure with three dimensional electromagnetic simulation tool. In order to describe the resonant and bandstop characteristic of the meandered open circuited stub, a Smith chart as well as electric field at various frequencies and phases is illustrated accordingly. The structure can be an alternative method in suppressing the harmonic response of a bandpass filter.

Keywords: Bandstop, Equivalent Lumped Element Model, Electromagnetic Model, Meandered Open Circuited Stub

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072
961 Order Reduction by Least-Squares Methods about General Point ''a''

Authors: Integral square error, Least-squares, Markovparameters, Moment matching, Order reduction.

Abstract:

The concept of order reduction by least-squares moment matching and generalised least-squares methods has been extended about a general point ?a?, to obtain the reduced order models for linear, time-invariant dynamic systems. Some heuristic criteria have been employed for selecting the linear shift point ?a?, based upon the means (arithmetic, harmonic and geometric) of real parts of the poles of high order system. It is shown that the resultant model depends critically on the choice of linear shift point ?a?. The validity of the criteria is illustrated by solving a numerical example and the results are compared with the other existing techniques.

Keywords: Integral square error, Least-squares, Markovparameters, Moment matching, Order reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
960 Mixed Frequency Excitation of an Electrostatically Actuated Resonator

Authors: Mixed Frequency Excitation of an Electrostatically Actuated Resonator

Abstract:

We investigate experimentally and theoretically the dynamics of a capacitive resonator under mixed frequency excitation of two AC harmonic signals. The resonator is composed of a proof mass suspended by two cantilever beams. Experimental measurements are conducted using a laser Doppler Vibrometer to reveal the interesting dynamics of the system when subjected to twosource excitation. A nonlinear single-degree-of-freedom model is used for the theoretical investigation. The results reveal combination resonances of additive and subtractive type, which are shown to be promising to increase the bandwidth of the resonator near primary resonance frequency. Our results also demonstrate the ability to shift the combination resonances to much lower or much higher frequency ranges. We also demonstrate the dynamic pull-in instability under mixed frequency excitation.

Keywords: Nonlinear electrostatically actuated resonator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
959 Dynamics Analyses of Swing Structure Subject to Rotational Forces

Authors: Buntheng Chhorn, WooYoung Jung

Abstract:

Large-scale swing has been used in entertainment and performance, especially in circus, for a very long time. To increase the safety of this type of structure, a thorough analysis for displacement and bearing stress was performed for an extreme condition where a full cycle swing occurs. Different masses, ranging from 40 kg to 220 kg, and velocities were applied on the swing. Then, based on the solution of differential dynamics equation, swing velocity response to harmonic force was obtained. Moreover, the resistance capacity was estimated based on ACI steel structure design guide. Subsequently, numerical analysis was performed in ABAQUS to obtain the stress on each frame of the swing. Finally, the analysis shows that the expansion of swing structure frame section was required for mass bigger than 150kg.

Keywords: Swing structure, displacement, bearing stress, dynamic loads response, finite element analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224
958 Diagnosing the Cause and its Timing of Changes in Multivariate Process Mean Vector from Quality Control Charts using Artificial Neural Network

Authors: Farzaneh Ahmadzadeh

Abstract:

Quality control charts are very effective in detecting out of control signals but when a control chart signals an out of control condition of the process mean, searching for a special cause in the vicinity of the signal time would not always lead to prompt identification of the source(s) of the out of control condition as the change point in the process parameter(s) is usually different from the signal time. It is very important to manufacturer to determine at what point and which parameters in the past caused the signal. Early warning of process change would expedite the search for the special causes and enhance quality at lower cost. In this paper the quality variables under investigation are assumed to follow a multivariate normal distribution with known means and variance-covariance matrix and the process means after one step change remain at the new level until the special cause is being identified and removed, also it is supposed that only one variable could be changed at the same time. This research applies artificial neural network (ANN) to identify the time the change occurred and the parameter which caused the change or shift. The performance of the approach was assessed through a computer simulation experiment. The results show that neural network performs effectively and equally well for the whole shift magnitude which has been considered.

Keywords: Artificial neural network, change point estimation, monte carlo simulation, multivariate exponentially weighted movingaverage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
957 A Compact Quasi-Zero Stiffness Vibration Isolator Using Flexure-Based Spring Mechanisms Capable of Tunable Stiffness

Authors: Thanh-Phong Dao, Shyh-Chour Huang

Abstract:

This study presents a quasi-zero stiffness (QZS) vibration isolator using flexure-based spring mechanisms which afford both negative and positive stiffness elements, which enable self-adjustment. The QZS property of the isolator is achieved at the equilibrium position. A nonlinear mathematical model is then developed, based on the pre-compression of the flexure-based spring mechanisms. The dynamics are further analyzed using the Harmonic Balance method. The vibration attention efficiency is illustrated using displacement transmissibility, which is then compared with the corresponding linear isolator. The effects of parameters on performance are also investigated by numerical solutions. The flexure-based spring mechanisms are subsequently designed using the concept of compliant mechanisms, with evaluation by ANSYS software, and simulations of the QZS isolator.

Keywords: Vibration isolator, quasi-zero stiffness, flexure-based spring mechanisms, compliant mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106
956 Spectroscopic Characterization of Indium-Tin Laser Ablated Plasma

Authors: M. Hanif, M. Salik

Abstract:

In the present research work we present the optical emission studies of the Indium (In) – Tin (Sn) plasma produced by the first (1064 nm) harmonic of an Nd: YAG nanosecond pulsed laser. The experimentally observed line profiles of neutral Indium (In I) and Tin (SnI) are used to extract the electron temperature (Te) using the Boltzmann plot method. Whereas, the electron number density (Ne) has been determined from the Stark broadening line profile method. The Te is calculated by varying the distance from the target surface along the line of propagation of plasma plume and also by varying the laser irradiance. Beside we have studied the variation of Ne as a function of laser irradiance as well as its variation with distance from the target surface.

Keywords: Indium – Tin plasma, laser ablation, optical emission spectroscopy, electron temperature, and electron number density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264
955 A Two-Species Model for a Fishing System with Marine Protected Areas

Authors: Felicia Magpantay, Kenzu Abdella

Abstract:

A model of a system concerning one species of demersal (inshore) fish and one of pelagic (offshore) fish undergoing fishing restricted by marine protected areas is proposed in this paper. This setup was based on the FISH-BE model applied to the Tabina fishery in Zamboanga del Sur, Philippines. The components of the model equations have been adapted from widely-accepted mechanisms in population dynamics. The model employs Gompertz-s law of growth and interaction on each type of protected and unprotected subpopulation. Exchange coefficients between protected and unprotected areas were assumed to be proportional to the relative area of the entry region. Fishing harvests were assumed to be proportional to both the number of fishers and the number of unprotected fish. An extra term was included for the pelagic population to allow for the exchange between the unprotected area and the outside environment. The systems were found to be bounded for all parameter values. The equations for the steady state were unsolvable analytically but the existence and uniqueness of non-zero steady states can be proven. Plots also show that an MPA size yielding the maximum steady state of the unprotected population can be found. All steady states were found to be globally asymptotically stable for the entire range of parameter values.

Keywords: fisheries modelling, marine protected areas, sustainablefisheries, Gompertz Law

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
954 A Thirteen-Level Asymmetrical Cascaded H-Bridge Single Phase Inverter

Authors: P. Varalaxmi, A. Kirubakaran

Abstract:

This paper presents a thirteen-level asymmetrical cascaded H-bridge single phase inverter. In this configuration, the desired output voltage level is achieved by connecting the DC sources in different combinations by triggering the switches. The modes of operation are explained well for positive level generations. Moreover, a comparison is made with conventional topologies of diode clamped, flying capacitors and cascaded-H-bridge and some recently proposed topologies to show the significance of the proposed topology in terms of reduced part counts. The simulation work has been carried out in MATLAB/Simulink environment. The experimental work is also carried out for lower rating to verify the performance and feasibility of the proposed topology. Further the results are presented for different loading conditions.

Keywords: Multilevel inverter, pulse width modulation, total harmonic distortion, THD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 639
953 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model

Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong

Abstract:

In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.

Keywords: Artificial Neural Network, Taguchi Method, Real Estate Valuation Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3036
952 DC Link Floating for Grid Connected PV Converters

Authors: Attila Balogh, Eszter Varga, István Varjasi

Abstract:

Nowadays there are several grid connected converter in the grid system. These grid connected converters are generally the converters of renewable energy sources, industrial four quadrant drives and other converters with DC link. These converters are connected to the grid through a three phase bridge. The standards prescribe the maximal harmonic emission which could be easily limited with high switching frequency. The increased switching losses can be reduced to the half with the utilization of the wellknown Flat-top modulation. The suggested control method is the expansion of the Flat-top modulation with which the losses could be also reduced to the half compared to the Flat-top modulation. Comparing to traditional control these requirements can be simultaneously satisfied much better with the DLF (DC Link Floating) method.

Keywords: DC link floating, high efficiency, PV converter, control method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
951 A Fixed Band Hysteresis Current Controller for Voltage Source AC Chopper

Authors: K. Derradji Belloum, A. Moussi

Abstract:

Most high-performance ac drives utilize a current controller. The controller switches a voltage source inverter (VSI) such that the motor current follows a set of reference current waveforms. Fixed-band hysteresis (FBH) current control has been widely used for the PWM inverter. We want to apply the same controller for the PWM AC chopper. The aims of the controller is to optimize the harmonic content at both input and output sides, while maintaining acceptable losses in the ac chopper and to control in wide range the fundamental output voltage. Fixed band controller has been simulated and analyzed for a single-phase AC chopper and are easily extended to three-phase systems. Simulation confirmed the advantages and the excellent performance of the modulation method applied for the AC chopper.

Keywords: AC chopper, Current controller, Distortion factor, Hysteresis, Input Power Factor, PWM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3552
950 Modeling and Optimization of Abrasive Waterjet Parameters using Regression Analysis

Authors: Farhad Kolahan, A. Hamid Khajavi

Abstract:

Abrasive waterjet is a novel machining process capable of processing wide range of hard-to-machine materials. This research addresses modeling and optimization of the process parameters for this machining technique. To model the process a set of experimental data has been used to evaluate the effects of various parameter settings in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. Depth of cut, as one of the most important output characteristics, has been evaluated based on different parameter settings. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. The pairwise effects of process parameters settings on process response outputs are also shown graphically. The proposed model is then embedded into a Simulated Annealing algorithm to optimize the process parameters. The optimization is carried out for any desired values of depth of cut. The objective is to determine proper levels of process parameters in order to obtain a certain level of depth of cut. Computational results demonstrate that the proposed solution procedure is quite effective in solving such multi-variable problems.

Keywords: AWJ cutting, Mathematical modeling, Simulated Annealing, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
949 Elimination of Low Order Harmonics in Multilevel Inverter Using Nature-Inspired Metaheuristic Algorithm

Authors: N. Ould Cherchali, A. Tlemçani, M. S. Boucherit, A. Morsli

Abstract:

Nature-inspired metaheuristic algorithms, particularly those founded on swarm intelligence, have attracted much attention over the past decade. Firefly algorithm has appeared in approximately seven years ago, its literature has enlarged considerably with different applications. It is inspired by the behavior of fireflies. The aim of this paper is the application of firefly algorithm for solving a nonlinear algebraic system. This resolution is needed to study the Selective Harmonic Eliminated Pulse Width Modulation strategy (SHEPWM) to eliminate the low order harmonics; results have been applied on multilevel inverters. The final results from simulations indicate the elimination of the low order harmonics as desired. Finally, experimental results are presented to confirm the simulation results and validate the efficaciousness of the proposed approach.

Keywords: Firefly algorithm, metaheuristic algorithm, multilelvel inverter, SHEPWM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 660
948 Ultraviolet Lasing from Vertically-Aligned ZnO Nanowall Array

Authors: Masahiro Takahashi, Kosuke Harada, Shihomi Nakao, Mitsuhiro Higashihata, Hiroshi Ikenoue, Daisuke Nakamura, Tatsuo Okada

Abstract:

Zinc oxide (ZnO) is one of the light emitting materials in ultraviolet (UV) region. In addition, ZnO nanostructures are also attracting increasing research interest as buildingblocks for UV optoelectronic applications. We have succeeded in synthesizing vertically-aligned ZnO nanostructures by laser interference patterning, which is catalyst-free and non-contact technique. In this study, vertically-aligned ZnO nanowall arrays were synthesized using two-beam interference. The maximum height and average thickness of the ZnO nanowalls were about 4.5µm and 200 nm, respectively.UV lasing from a piece of the ZnO nanowall was obtained under the third harmonic of a Q-switched Nd:YAG laser excitation, and the estimated threshold power density for lasing was about 150 kW/cm2. Furthermore, UV lasing from the vertically-aligned ZnO nanowall was also achieved. The results indicate that ZnO nanowalls can be applied to random laser.

Keywords: Zinc Oxide, nanowall, interference laser, UV lasing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046
947 Optimization of Surface Roughness in Additive Manufacturing Processes via Taguchi Methodology

Authors: Anjian Chen, Joseph C. Chen

Abstract:

This paper studies a case where the targeted surface roughness of fused deposition modeling (FDM) additive manufacturing process is improved. The process is designing to reduce or eliminate the defects and improve the process capability index Cp and Cpk for an FDM additive manufacturing process. The baseline Cp is 0.274 and Cpk is 0.654. This research utilizes the Taguchi methodology, to eliminate defects and improve the process. The Taguchi method is used to optimize the additive manufacturing process and printing parameters that affect the targeted surface roughness of FDM additive manufacturing. The Taguchi L9 orthogonal array is used to organize the parameters' (four controllable parameters and one non-controllable parameter) effectiveness on the FDM additive manufacturing process. The four controllable parameters are nozzle temperature [°C], layer thickness [mm], nozzle speed [mm/s], and extruder speed [%]. The non-controllable parameter is the environmental temperature [°C]. After the optimization of the parameters, a confirmation print was printed to prove that the results can reduce the amount of defects and improve the process capability index Cp from 0.274 to 1.605 and the Cpk from 0.654 to 1.233 for the FDM additive manufacturing process. The final results confirmed that the Taguchi methodology is sufficient to improve the surface roughness of FDM additive manufacturing process.

Keywords: Additive manufacturing, fused deposition modeling, surface roughness, Six-Sigma, Taguchi method, 3D printing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
946 The Survey of the Buckling Effect of Laminated Plate under the Thermal Load using Complex Finite Strip Method

Authors: A.R.Nezamabadi, M.Mansouri Gavari, S.Mansouri, M.Mansouri Gavari

Abstract:

This article considers the positional buckling of composite thick plates under thermal loading . For this purpose , the complex finite strip method is used . In analysis of complex finite strip, harmonic complex function in longitudinal direction , cubic functions in transversal direction and parabola distribution of transverse shear strain in thickness of thick plate based on higherorder shear deformation theory are used . In given examples , the effect of angles of stratification , number of layers , dimensions ratio and length – to – thick ratio across critical temperature are considered.

Keywords: Thermal buckling , Thick plate , Complex finite strip , Higher – order shear deformation theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508