Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Isospectral Hulthén Potential
Authors: Anil Kumar
Abstract:
Supersymmetric Quantum Mechanics is an interesting framework to analyze nonrelativistic quantal problems. Using these techniques, we construct a family of strictly isospectral Hulth´en potentials. Isospectral wave functions are generated and plotted for different values of the deformation parameter.
Keywords: Hulth´en potential, Isospectral Hamiltonian.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1091438
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3525References:
[1] C.S. Lam and Y.P. Varshni, ”Energies of s eigenstates in Static Screened Coulomb Potential,” Phys. Rev. A vol. 4, 1971, pp. 1875-1881.
[2] B.J. Falaye, ”Any l-state Solutions of the Eckart Potential via Asymptotic iteration method” Cent. Eur. J. Phys. vol. 10(4), 2012, pp. 960-965.
[3] S.M. Ikhdair and R. Sever, ”Approximate eigenvalue ans eigenfunction solutions for the generalized Hulth´en potential with any angular momentum,” J. Math. Chem. vol. 42(3), 2007, pp. 461-471.
[4] A.D. Antia, A.N. Ikot, EE Ituen and LE Akpabbio, ”Analytical Solution of Schrodinger equation with Eckart potential plus Hulth´en potential via Nikiforov-Uvarov method” Pal. J. Math. vol. 1(2), 2012, pp. 104-109.
[5] S. Meyur and S. Debnath, ”Solution of Schrodinger equation with Hulth´en plus Manning-Rosen potential” Lat. Am. J. Phys. Educ. vol. 3(2), 2009, pp. 300-306.
[6] H. feizi, MR Shojael and AA Rajabi, ”Shape-invariance Approach on the D-dimensional Hulth´en plus Coulomb potential for arbitrary l-state,” Adv. Studies Theor. Phys. vol. 6(10), 2012, pp. 477-484.
[7] A. Arda, O. Aydogdu and R. Sever, ”Scattering and Bound State Solutions of Asymmetric Hulth´en Potential,” Phys. Scr. vol. 84, 2011, pp. 025004.
[8] D.L. Pursey, ”New families of isospectral Hamiltonians” Phys. Rev. D, vol. 33, 1986, pp. 1048-1055.
[9] P.B. Abraham and H.E. Moses, ”Changes in potentials due to change in the point spectram: Anharmonic oscillators with exact solutionss,” Phys. Rev. A, vol. 22, 1980, pp. 1333-1340.
[10] A. Khare and U. Sukhatme, ”Phase equivalent potentials obtained from supersymmetry,” J. Phys. A: Math. Gen., vol. 22, 1989, pp. 2847-2860.
[11] B. Mielnik, ”Factorization method and new potentials with the oscillator spectrum,” J. Math. Phys. vol. 25, 1984, pp. 3387-3389.
[12] M.M. Neito, ”Relationship between supersymmetry and the inverse methods in quantum mechanics,” Phys. Lett. B, vol. 145, 1984, pp. 208- 210.
[13] F. Cooper, A. Khare and U. Sukhatme, ”Supersymmetry and quantum mechanics,” Phys. Rep., vol. 251, 1995, pp. 267-385.
[14] B. Chakrabarti, ”Use of supersymmetric isospectral formalism to realistic quantum many body problems,” Pramana: J. Phys., vol. 73, 2009, pp. 405-416.
[15] A. Kumar and C.N. Kumar, ”Information entropy for Isospectral Hydrogen atom” Int. J. Eng. & App. Sci., vol. 7(1), 2011, pp. 57-61.
[16] E.D. Filho, J. R. Ruggiero, ”H-bond simulation in DNA using a harmonic oscillator isospectral potential” Phys. Rev. E. vol. 56, 1997, pp. 4486-4488.
[17] T.K. Das, B. Chakrabarti, ”Calculation of resonances using isospectral potentials” Phys. Lett. A. vol. 288, 2001, pp. 4-8.
[18] A. Kumar, C.N. Kumar, ”Calculation of Franck-Condon Factors and rcentroids Using Isospectral Hamiltonian Approach” Ind. J. Pure & App. Phys. vol. 43, 2005, pp. 738-742.
[19] A. Kumar, ”Information Entropy for Isospectral Potential” Ind. J. Pure & App. Phys. vol. 43, 2005, pp. 958-963.
[20] M.A. Rayes, H.C. Rosu, ”Riccati-parameter solutions of nonlinear second-order ODEs” J.Phys.A: Math. Theor. vol. 41, 2008, pp. 285206(1- 6).
[21] C.N. Kumar, ”Isospectral Hamiltonians: Generation of the soliton profile,” J. Phys. A, vol. 20, 1987, pp. 5397-5401.
[22] A. Kumar, ”Generalization of Soliton Solutions” Int. J. Nonlinear Sci. vol. 13(2), 2012, pp. 170-176.
[23] B. Dey and C.N. Kumar, ”New set of kink bearing Hamiltonians,” Int. J. Mod. Phys. A, vol. 9, 1994, pp. 2699-2705.
[24] A. Kumar, ”Spectrum for Charged particle in a class of Non-Uniform Magnetic Fields” Int. J. Theor. & App. Sci., vol. 1, 2009, pp.15-24.
[25] A. Khare and C.N. Kumar, ”Landau level spectrum for charged particle in a class of non-uniform magnetic fields,” Mod. Phys. Lett. A, vol. 8, 1993, pp. 523-530.