Ultraviolet Lasing from Vertically-Aligned ZnO Nanowall Array
Authors: Masahiro Takahashi, Kosuke Harada, Shihomi Nakao, Mitsuhiro Higashihata, Hiroshi Ikenoue, Daisuke Nakamura, Tatsuo Okada
Abstract:
Zinc oxide (ZnO) is one of the light emitting materials in ultraviolet (UV) region. In addition, ZnO nanostructures are also attracting increasing research interest as buildingblocks for UV optoelectronic applications. We have succeeded in synthesizing vertically-aligned ZnO nanostructures by laser interference patterning, which is catalyst-free and non-contact technique. In this study, vertically-aligned ZnO nanowall arrays were synthesized using two-beam interference. The maximum height and average thickness of the ZnO nanowalls were about 4.5µm and 200 nm, respectively.UV lasing from a piece of the ZnO nanowall was obtained under the third harmonic of a Q-switched Nd:YAG laser excitation, and the estimated threshold power density for lasing was about 150 kW/cm2. Furthermore, UV lasing from the vertically-aligned ZnO nanowall was also achieved. The results indicate that ZnO nanowalls can be applied to random laser.
Keywords: Zinc Oxide, nanowall, interference laser, UV lasing.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1099970
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080References:
[1] Y. Chen, D. M. Bagnall, H-J. Koh, K-T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998)
[2] W. I. Park, G. C. Yi, Adv. Mater. 16, 87 (2004)
[3] Y. Choi, J. Kang, D. Hwang, S. Park, IEEE Trans. Elec. Devices 57, 26-41 (2010)
[4] X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, and Z. L. Wang, Adv. Mater. 21, 2767-2770 (2009)
[5] M. A. Zimmler, J. Bao, F. Capasso, S. Müller, C. Ronning, Appl. Phys. Lett., 93,051101 (2008)
[6] C. Czekalla, T. Nobis, A. Rahm, B. Cao, J. Z-Perez, C. Sturm, R. Schmidt-Grund, M. Lorenz, M. Grundmann, Phys. Status Solidi B 247, 1282 (2010)
[7] P. Chang, Z. Fan, D. Wang, W. Tseng, W. Chiou, J. Hong, and J. G. Lu, Chem. Mater. 16, 5133-5137 (2004)
[8] J. Wang, L. Gao, Slid State Commun. 132, 269-271 (2004)
[9] T. Okada, K. Kawashima, Y. Nakata, and X. Ning, JPN. J. Appl. Phys. 44, 1B, 688-691 (2005)
[10] M. Kawakami, A. B. Hartanto, Y. Nakata, T. Okada, Jpn. J. Appl. Phys. 42, L33 (2003)
[11] Q. Ahsanulhaq, S.H.Kim, Y.B.Hahn, J. Alloys Comp. 484, 17-20 (2009)
[12] H.J. Fan, F. Fleischer, W. Lee, K. Nielsch, R. Scholz, M. Zacharias, U. Gösele, A. Dadgar, A. Krost, Superlattice. Microst. 36, 95-105 (2004)
[13] S. H.Ko, D. Lee, N.Hotz, J. Yeo, S. Hong, K. H. Nam, and C. P. Grigoropoulos, Langmuir 28, 4787-4792 (2012)
[14] X. Wang, C. J. Summers, and Z. L. Wang, Nano Lett. 4, 3, 423-426 (2004)
[15] S. Nakao, Y. Muraoka, M. Higashihata, D. Nakamura, Y. Nakata, T. Okada, Appl. Phys. A, 117, 63 (2014)
[16] D. Nakamura, T. Shimogaki, S. Nakao, K. Harada, Y. Muraoka, H. Ikenoue, T. Okada, J. Phys. D: Appl. Phys., 47, 034014 (2014)