Search results for: avalanche velocity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 841

Search results for: avalanche velocity

481 Application of He’s Parameter-Expansion Method to a Coupled Van Der Pol oscillators with Two Kinds of Time-delay Coupling

Authors: Mohammad Taghi Darvishi, Samad Kheybari

Abstract:

In this paper, the dynamics of a system of two van der Pol oscillators with delayed position and velocity is studied. We provide an approximate solution for this system using parameterexpansion method. Also, we obtain approximate values for frequencies of the system. The parameter-expansion method is more efficient than the perturbation method for this system because the method is independent of perturbation parameter assumption.

Keywords: Parameter-expansion method, coupled van der pol oscillator, time-delay system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
480 Ultrasonic Investigation of Molecular Interaction in Binary Liquid Mixture of Polyethylene Glycol with Ethanol

Authors: S. Grace Sahaya Sheba, R. Omegala Priakumari

Abstract:

Polyethylene glycol (PEG) is a condensation polymer of ethylene oxide and water. It is soluble in water and in many organic solvents. PEG is used to make emulsifying agents, detergents, soaps, plasticizers, ointments etc. Ethanol (C2H5OH) also known as ethyl alcohol is a well-known organic compound and has wide applications in chemical industry as it is used as a solvent for paint, varnish, in preserving biological specimens, used as a fuel mixed with petrol etc. Though their chemical and physical properties are already studied, still because of their uses in day to day life the authors thought it is better to study some more of their physical properties like ultrasonic velocity and hence adiabatic compressibility, free length, etc. A detailed study of such properties and some excess parameters like excess adiabatic compressibility, excess free volume and few more in the liquid mixtures of these two compounds with PEG as a solute and Ethanol as a solvent at various mole fractions may throw some light on deeper understanding of molecular interaction between the solute and the solvent supported by NMR, IR etc. Hence the present research work is on ultrasonics/allied studies on these two liquid mixtures. Ultrasonic velocity (U), density (ρ) and viscosity (η) at room temperature and at different mole fraction from 0 to 0.055 of ethanol in PEG have been experimentally carried out by the authors. Acoustical parameters such as adiabatic compressibility (β), free volume (Vf), acoustic impedance (Z), internal pressure (πi), intermolecular free length (Lf) and relaxation time (τ) were calculated from the experimental data. We have calculated excess parameters like excess adiabatic compressibility (βE), excess internal pressure (πiE) free length (LfE) and excess acoustic impedance (ZE) etc for these two chosen liquid mixtures. The excess compressibility is positive and maximum around a mole fraction 0.007 and excess internal pressure is negative and maximum at the same mole fraction and longer free length. The results are analyzed and it may be concluded that the molecular interactions between the solute and the solvent is not strong and it may be weak. Appropriate graphs are drawn.

Keywords: Adiabatic Compressibility, Binary mixture, Induce dipole, Polarizability, Ultrasonic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2782
479 Study on the Heat Transfer Performance of the Annular Fin under Condensing Conditions

Authors: Abdenour Bourabaa, Malika Fekih, Mohamed Saighi

Abstract:

A numerical investigation of the fin efficiency and temperature distribution of an annular fin under dehumidification has been presented in this paper. The non-homogeneous second order differential equation that describes the temperature distribution from the fin base to the fin tip has been solved using the central finite difference method. The effects of variations in parameters including relative humidity, air temperature, air face velocity on temperature distribution and fin efficiency are investigated and compared with those under fully dry fin conditions. Also, the effect of fin pitch on the dimensionless temperature has been studied.

Keywords: Annular fin, Dehumidification, Fin efficiency, Heat and mass transfer, Wet fin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4506
478 HPM Solution of Momentum Equation for Darcy-Brinkman Model in a Parallel Plates Channel Subjected to Lorentz Force

Authors: Asghar Shirazpour, Seyed Moein Rassoulinejad Mousavi, Hamid Reza Seyf

Abstract:

In this paper an analytical solution is presented for fully developed flow in a parallel plates channel under the action of Lorentz force, by use of Homotopy Perturbation Method (HPM). The analytical results are compared with exact solution and an excellent agreement has been observed between them for both Couette and Poiseuille flows. Moreover, the effects of key parameters have been studied on the dimensionless velocity profile.

Keywords: Lorentz Force, Porous Media, Homotopy Perturbation method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
477 Predicting Depth of Penetration in Abrasive Waterjet Cutting of Polycrystalline Ceramics

Authors: S. Srinivas, N. Ramesh Babu

Abstract:

This paper presents a model to predict the depth of penetration in polycrystalline ceramic material cut by abrasive waterjet. The proposed model considered the interaction of cylindrical jet with target material in upper region and neglected the role of threshold velocity in lower region. The results predicted with the proposed model are validated with the experimental results obtained with Silicon Carbide (SiC) blocks.

Keywords: Abrasive waterjet cutting, analytical modeling, ceramics, microcutting and intergranular cracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
476 Flow Transformation: An Investigation on Theoretical Aspects and Numerical Computation

Authors: Abhisek Sarkar, Abhimanyu Gaur

Abstract:

In this report we have discussed the theoretical aspects of the flow transformation, occurring through a series of bifurcations. The parameters and their continuous diversion, the intermittent bursts in the transition zone, variation of velocity and pressure with time, effect of roughness in turbulent zone, and changes in friction factor and head loss coefficient as a function of Reynolds number for a transverse flow across a cylinder have been discussed. An analysis of the variation in the wake length with Reynolds number was done in FORTRAN.

Keywords: Attractor, Bifurcation, Energy cascade, Energy spectra, Intermittence, Vortex stretching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860
475 Semi-Analytic Solution and Hydrodynamics Behavior of Fluid Flow in Micro-Converging plates

Authors: A. Al-Shyyab, A. F. Khadrawi

Abstract:

The hydrodynamics behavior of fluid flow in microconverging plates is investigated analytically. Effects of Knudsen number () on the microchannel hydrodynamics behavior and the coefficient of friction are investigated. It is found that as  increases the slip in the hydrodynamic boundary condition increases. Also, the coefficient of friction decreases as  increases.

Keywords: Converging plates, hydrodynamic behavior, microplates, microchannel, slip velocity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
474 Residual Stresses in Thermally Sprayed Gas Turbine Components

Authors: M.Jalali Azizpour, S.Norouzi, D.Sajedipour, H.Mohammadi Majd

Abstract:

In this paper, the residual stress of thermal spray coatings in gas turbine component by curvature method has been studied. The samples and shaft were coated by hard WC-12Co cermets using high velocity oxy fuel (HVOF) after preparation in same conditions. The curvature of coated samples was measured by using of coordinate measurement machine (CMM). The metallurgical and Tribological studies has been made on the coated shaft using optical microscopy and scanning electron microscopy (SEM)

Keywords: Thermal spray, Residual stress, Wear mechanism, HVOF, Gas compressor shafts

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
473 3D CFD Modelling of the Airflow and Heat Transfer in Cold Room Filled with Dates

Authors: Zina Ghiloufi, Tahar Khir

Abstract:

A transient three-dimensional computational fluid dynamics (CFD) model is developed to determine the velocity and temperature distribution in different positions cold room during pre-cooling of dates. The turbulence model used is the k-ω Shear Stress Transport (SST) with the standard wall function, the air. The numerical results obtained show that cooling rate is not uniform inside the room; the product at the medium of room has a slower cooling rate. This cooling heterogeneity has a large effect on the energy consumption during cold storage.

Keywords: Numerical simulation, CFD, k-ω (SST), cold room, dates, cooling rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1103
472 The Effect of Impinging WC-12Co Particles Temperature on Thickness of HVOF Thermally Sprayed Coatings

Authors: M. Jalali Azizpour, H. Mohammadi Majd

Abstract:

In this paper, the effect of WC-12Co particle temperature in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose.

Keywords: HVOF, Temperature, Thickness, Velocity, WC- 12Co.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
471 Contaminant Transport Modeling Due to Thermal Diffusion Effects with the Effect of Biodegradation

Authors: Nirmala P. Ratchagar, S. Senthamilselvi

Abstract:

The heat and mass transfer characteristics of contaminants in groundwater subjected to a biodegradation reaction is analyzed by taking into account the thermal diffusion (Soret) effects. This phenomenon is modulated mathematically by a system of partial differential equations which govern the motion of fluid (groundwater) and solid (contaminants) particles. The numerical results are presented graphically for different values of the parameters entering into the problem on the velocity profiles of fluid, contaminants, temperature and concentration profile.

Keywords: Heat and mass transfer, Soret number, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
470 A New Criterion Pose and Shape of Objects for Collision Risk Estimation

Authors: Do Hyeung Kim, Dae Hee Seo, Byung Doo Kim, Byung Gil Lee

Abstract:

As many recent researches being implemented in aviation and maritime aspects, strong doubts have been raised concerning the reliability of the estimation of collision risk. It is shown that using position and velocity of objects can lead to imprecise results. In this paper, therefore, a new approach to the estimation of collision risks using pose and shape of objects is proposed. Simulation results are presented validating the accuracy of the new criterion to adapt to collision risk algorithm based on fuzzy logic.

Keywords: Collision risk, Pose and shape, Fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
469 Study on the Particle Removal Efficiency of Multi Inner Stage Cyclone by CFD Simulation

Authors: Sang Won Han, Won Joo Lee, Sang Jun Lee

Abstract:

A new multi inner stage (MIS) cyclone was designed to remove the acidic gas and fine particles produced from electronic industry. To characterize gas flow in MIS cyclone, pressure and velocity distribution were calculated by means of CFD program. Also, the flow locus of fine particles and particle removal efficiency were analyzed by Lagrangian method. When outlet pressure condition was –100mmAq, the efficiency was the best in this study.

Keywords: Cyclone, SiO2 particle, Particle removal efficiency, CFD simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
468 Instability of Electron Plasma Waves in an Electron-Hole Bounded Quantum Dusty Plasma

Authors: Basudev Ghosh, Sailendranath Paul, Sreyasi Banerjee

Abstract:

Using quantum hydrodynamical (QHD) model the linear dispersion relation for the electron plasma waves propagating in a cylindrical waveguide filled with a dense plasma containing streaming electron, hole and stationary charged dust particles has been derived. It is shown that the effect of finite boundary and stream velocity of electrons and holes make some of the possible modes of propagation linearly unstable. The growth rate of this instability is shown to depend significantly on different plasma parameters.

Keywords: Electron Plasma wave, Quantum plasma, Quantum Hydrodynamical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
467 Enhancing Oscillation Amplitude Response Generated by Vortex Induced Vibrations Through Experimental Identification of Optimum Parameters

Authors: Mohammed F. Alhaddad

Abstract:

Vortex Induced Vibrations (VIV) is a phenomenon that occurs as a result of a flow passing by a bluff body. The aim of this paper is to identify factors for maximizing oscillation amplitude generated by VIV in order to enhance the energy harnessed through this method. The experimental study in this paper will examine the effect of oscillating cylinder diameter, surface roughness, the location of surface roughness with respect to the centreline of the oscillating cylinder and the velocity on the oscillation amplitude of the used module.

Keywords: Energy, renewable, electrostatic, vibration, vortex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 83
466 Using the V-Sphere Code for the Passive Scalar in the Wake of a Bluff Body

Authors: Y. Obikane, T. Nemoto , K. Ogura, M. Iwata, K. Ono

Abstract:

The objective of this research was to find the diffusion properties of vehicles on the road by using the V-Sphere Code. The diffusion coefficient and the size of the height of the wake were estimated with the LES option and the third order MUSCL scheme. We evaluated the code with the changes in the moments of Reynolds Stress along the mean streamline. The results show that at the leading part of a bluff body the LES has some advantages over the RNS since the changes in the strain rates are larger for the leading part. We estimated that the diffusion coefficient with the computed Reynolds stress (non-dimensional) was about 0.96 times the mean velocity.

Keywords: Wake , bluff body, V-CAD, turbulence diffusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
465 An Overview of Some High Order and Multi-Level Finite Difference Schemes in Computational Aeroacoustics

Authors: Appanah Rao Appadu, Muhammad Zaid Dauhoo

Abstract:

In this paper, we have combined some spatial derivatives with the optimised time derivative proposed by Tam and Webb in order to approximate the linear advection equation which is given by = 0. Ôêé Ôêé + Ôêé Ôêé x f t u These spatial derivatives are as follows: a standard 7-point 6 th -order central difference scheme (ST7), a standard 9-point 8 th -order central difference scheme (ST9) and optimised schemes designed by Tam and Webb, Lockard et al., Zingg et al., Zhuang and Chen, Bogey and Bailly. Thus, these seven different spatial derivatives have been coupled with the optimised time derivative to obtain seven different finite-difference schemes to approximate the linear advection equation. We have analysed the variation of the modified wavenumber and group velocity, both with respect to the exact wavenumber for each spatial derivative. The problems considered are the 1-D propagation of a Boxcar function, propagation of an initial disturbance consisting of a sine and Gaussian function and the propagation of a Gaussian profile. It is known that the choice of the cfl number affects the quality of results in terms of dissipation and dispersion characteristics. Based on the numerical experiments solved and numerical methods used to approximate the linear advection equation, it is observed in this work, that the quality of results is dependent on the choice of the cfl number, even for optimised numerical methods. The errors from the numerical results have been quantified into dispersion and dissipation using a technique devised by Takacs. Also, the quantity, Exponential Error for Low Dispersion and Low Dissipation, eeldld has been computed from the numerical results. Moreover, based on this work, it has been found that when the quantity, eeldld can be used as a measure of the total error. In particular, the total error is a minimum when the eeldld is a minimum.

Keywords: Optimised time derivative, dissipation, dispersion, cfl number, Nomenclature: k : time step, h : spatial step, β :advection velocity, r: cfl/Courant number, hkrβ= , w =θ, h : exact wave number, n :time level, RPE : Relative phase error per unit time step, AFM :modulus of amplification factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
464 Development of a Feedback Control System for a Lab-Scale Biomass Combustion System Using Programmable Logic Controller

Authors: Samuel O. Alamu, Seong W. Lee, Blaise Kalmia, Marc J. Louise Caballes, Xuejun Qian

Abstract:

The application of combustion technologies for thermal conversion of biomass and solid wastes to energy has been a major solution to the effective handling of wastes over a long period of time. Lab-scale biomass combustion systems have been observed to be economically viable and socially acceptable, but major concerns are the environmental impacts of the process and deviation of temperature distribution within the combustion chamber. Both high and low combustion chamber temperature may affect the overall combustion efficiency and gaseous emissions. Therefore, there is an urgent need to develop a control system which measures the deviations of chamber temperature from set target values, sends these deviations (which generates disturbances in the system) in the form of feedback signal (as input), and control operating conditions for correcting the errors. In this research study, major components of the feedback control system were determined, assembled, and tested. In addition, control algorithms were developed to actuate operating conditions (e.g., air velocity, fuel feeding rate) using ladder logic functions embedded in the Programmable Logic Controller (PLC). The developed control algorithm having chamber temperature as a feedback signal is integrated into the lab-scale swirling fluidized bed combustor (SFBC) to investigate the temperature distribution at different heights of the combustion chamber based on various operating conditions. The air blower rates and the fuel feeding rates obtained from automatic control operations were correlated with manual inputs. There was no observable difference in the correlated results, thus indicating that the written PLC program functions were adequate in designing the experimental study of the lab-scale SFBC. The experimental results were analyzed to study the effect of air velocity operating at 222-273 ft/min and fuel feeding rate of 60-90 rpm on the chamber temperature. The developed temperature-based feedback control system was shown to be adequate in controlling the airflow and the fuel feeding rate for the overall biomass combustion process as it helps to minimize the steady-state error.

Keywords: Air flow, biomass combustion, feedback control system, fuel feeding, ladder logic, programmable logic controller, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 584
463 Finite Element Modelling of Ground Vibrations Due to Tunnelling Activities

Authors: Muhammad E. Rahman, Trevor Orr

Abstract:

This paper presents the use of three-dimensional finite elements coupled with infinite elements to investigate the ground vibrations at the surface in terms of the peak particle velocity (PPV) due to construction of the first bore of the Dublin Port Tunnel. This situation is analysed using a commercially available general-purpose finite element package ABAQUS. A series of parametric studies is carried out to examine the sensitivity of the predicted vibrations to variations in the various input parameters required by finite element method, including the stiffness and the damping of ground. The results of this study show that stiffness has a more significant effect on the PPV rather than the damping of the ground.

Keywords: Finite Elements, PPV, Tunnelling, Vibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3255
462 A Numerical Model for Studying Convectional Lifting Processes in the Tropics

Authors: Chantawan Noisri, Robert Harold Buchanan Exell

Abstract:

A simple model for studying convectional lifting processes in the tropics is described in this paper with some tests of the model in dry air. The model consists of the density equation, the wind equation, the vertical velocity equation, and the temperature equation. The model domain is two-dimensional with length 100 km and height 17.5 km. Plan for experiments to investigate the effects of the heating surface, the deep convection approximation and the treatment of velocities at the boundaries are discussed. Equations for the simplified treatment of moisture in the atmosphere in future numerical experiments are also given.

Keywords: Numerical weather prediction, Finite differences, Convection lifting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291
461 Statistical Description in the Turbulent Near Wake of a Rotating Circular Cylinder

Authors: Sharul S. Dol, U. Azimov, Robert J. Martinuzzi

Abstract:

Turbulence studies were made in the wake of a rotating circular cylinder in a uniform free stream. The interest was to examine the turbulence properties at the suppression of periodicity in vortex formation process. An experimental study of the turbulent near wake of a rotating circular cylinder was made at a Reynolds number of 9000 for velocity ratios, λ between 0 and 2.7. Hot-wire anemometry and particle image velocimetry results indicate that the rotation of the cylinder causes significant changes in the vortical activities. The turbulence quantities are getting smaller as λ increases due to suppression of coherent vortex structures.

Keywords: Rotating circular cylinder, Reynolds stress, vortex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
460 DPSO Based SEPIC Converter in PV System under Partial Shading Condition

Authors: K. Divya, G. Sugumaran

Abstract:

This paper proposes an improved Maximum Power Point Tracking of PhotoVoltaic system using Deterministic Partical Swarm Optimization technique. This method has the ability to track the maximum power under varying environmental conditions i.e. partial shading conditions. The advantage of this method, particles moves in the restricted value of velocity to achieve the maximum power. SEPIC converter is employed to boost up the voltage of PV system. To estimate the value of the proposed method, MATLAB simulation carried out under partial shading condition.

Keywords: DPSO, Partial shading condition, P&O, PV, SEPIC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274
459 Direct Measurements of Wind Data over 100 Meters above the Ground in the Site of Lendinara, Italy

Authors: A. Dal Monte, M. Raciti Castelli, G. B. Bellato, L. Stevanato, E. Benini

Abstract:

The wind resource in the Italian site of Lendinara (RO) is analyzed through a systematic anemometric campaign performed on the top of the bell tower, at an altitude of over 100 m above the ground. Both the average wind speed and the Weibull distribution are computed. The resulting average wind velocity is in accordance with the numerical predictions of the Italian Wind Atlas, confirming the accuracy of the extrapolation of wind data adopted for the evaluation of wind potential at higher altitudes with respect to the commonly placed measurement stations.

Keywords: Anemometric campaign, wind resource, Weibull distribution, wind atlas

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
458 Experimental Study of Dynamic Characteristics of the Electromagnet Actuators with Linear Movement

Authors: Vultchan T. Gueorgiev, Racho M. Ivanov, Ivan S. Yatchev, Krastyo L. Hinov

Abstract:

An approach for experimental measurement of the dynamic characteristics of linear electromagnet actuators is presented. It uses accelerometer sensor to register the armature acceleration. The velocity and displacement of the moving parts can be obtained by integration of the acceleration results. The armature movement of permanent magnet linear actuator is acquired using this technique. The results are analyzed and the performance of the supposed approach is compared with the most commonly used experimental setup where the displacement of the armature vs. time is measured instead of its acceleration.

Keywords: Dynamic characteristics, dynamic simulation, linearactuators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
457 Comparison of Frequency Estimation Methods for Reflected Signals in Mobile Platforms

Authors: Kathrin Reinhold

Abstract:

Precise frequency estimation methods for pulseshaped echoes are a prerequisite to determine the relative velocity between sensor and reflector. Signal frequencies are analysed using three different methods: Fourier Transform, Chirp ZTransform and the MUSIC algorithm. Simulations of echoes are performed varying both the noise level and the number of reflecting points. The superposition of echoes with a random initial phase is found to influence the precision of frequency estimation severely for FFT and MUSIC. The standard deviation of the frequency using FFT is larger than for MUSIC. However, MUSIC is more noise-sensitive. The distorting effect of superpositions is less pronounced in experimental data.

Keywords: Frequency estimation, pulse-echo-method, superposition, echoes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1167
456 Effect of Band Contact on the Temperature Distribution for Dry Friction Clutch

Authors: Oday I. Abdullah, J. Schlattmann

Abstract:

In this study, the two dimensional heat conduction problem for the dry friction clutch disc is modeled mathematically analysis and is solved numerically using finite element method, to determine the temperature field when band contacts occurs between the rubbing surfaces during the operation of an automotive clutch. Temperature calculation have been made for contact area of different band width and the results obtained compared with these attained when complete contact occurs. Furthermore, the effects of slipping time and sliding velocity function are investigated as well. Both single and repeated engagements made at regular interval are considered.

Keywords: Band contact, dry friction clutch, frictional heating, temperature field, 2D FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3628
455 A Physically-Based Analytical Model for Reduced Surface Field Laterally Double Diffused MOSFETs

Authors: M. Abouelatta, A. Shaker, M. El-Banna, G. T. Sayah, C. Gontrand, A. Zekry

Abstract:

In this paper, a methodology for physically modeling the intrinsic MOS part and the drift region of the n-channel Laterally Double-diffused MOSFET (LDMOS) is presented. The basic physical effects like velocity saturation, mobility reduction, and nonuniform impurity concentration in the channel are taken into consideration. The analytical model is implemented using MATLAB. A comparison of the simulations from technology computer aided design (TCAD) and that from the proposed analytical model, at room temperature, shows a satisfactory accuracy which is less than 5% for the whole voltage domain.

Keywords: LDMOS, MATLAB, RESURF, modeling, TCAD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1061
454 Derivation of Darcy’s Law using Homogenization Method

Authors: Kannanut Chamsri

Abstract:

Darcy’s Law is a well-known constitutive equation describing the flow of a fluid through a porous medium. The equation shows a relationship between the superficial or Darcy velocity and the pressure gradient which was first experimentally observed by Henry Darcy in 1855-1856. In this study, we apply homogenization method to Stokes equation in order to derive Darcy’s Law. The process of deriving the equation is complicated, especially in multidimensional domain. Thus, for the sake of simplicity, we use the indicial notation as well as the homogenization. This combination provides a smooth, simple and easy technique to derive Darcy’s Law.

Keywords: Darcy’s Law, Homogenization method, Indicial notation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5017
453 Group Similarity Transformation of a Time Dependent Chemical Convective Process

Authors: M. M. Kassem, A. S. Rashed

Abstract:

The time dependent progress of a chemical reaction over a flat horizontal plate is here considered. The problem is solved through the group similarity transformation method which reduces the number of independent by one and leads to a set of nonlinear ordinary differential equation. The problem shows a singularity at the chemical reaction order n=1 and is analytically solved through the perturbation method. The behavior of the process is then numerically investigated for n≠1 and different Schmidt numbers. Graphical results for the velocity and concentration of chemicals based on the analytical and numerical solutions are presented and discussed.

Keywords: Time dependent, chemical convection, grouptransformation method, perturbation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
452 Response of a Bridge Crane during an Earthquake

Authors: F. Fekak, A. Gravouil, M. Brun, B. Depale

Abstract:

During an earthquake, a bridge crane may be subjected to multiple impacts between crane wheels and rail. In order to model such phenomena, a time-history dynamic analysis with a multi-scale approach is performed. The high frequency aspect of the impacts between wheels and rails is taken into account by a Lagrange explicit event-capturing algorithm based on a velocity-impulse formulation to resolve contacts and impacts. An implicit temporal scheme is used for the rest of the structure. The numerical coupling between the implicit and the explicit schemes is achieved with a heterogeneous asynchronous time-integrator.

Keywords: Earthquake, bridge crane, heterogeneous asynchronous time-integrator, impacts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430