Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30184
Application of He’s Parameter-Expansion Method to a Coupled Van Der Pol oscillators with Two Kinds of Time-delay Coupling

Authors: Mohammad Taghi Darvishi, Samad Kheybari

Abstract:

In this paper, the dynamics of a system of two van der Pol oscillators with delayed position and velocity is studied. We provide an approximate solution for this system using parameterexpansion method. Also, we obtain approximate values for frequencies of the system. The parameter-expansion method is more efficient than the perturbation method for this system because the method is independent of perturbation parameter assumption.

Keywords: Parameter-expansion method, coupled van der pol oscillator, time-delay system.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1333080

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1015

References:


[1] J.H. He, Variational iteration method-a kind of non-linear analytical technique: some examples, Int. J. Non-linear Mech. 34(4) (1999) 699- 708.
[2] M.T. Darvishi, F. Khani, A.A. Soliman, The numerical simulation for stiff systems of ordinary differential equations, Comput. Math. Appl. 54(7-8) (2007) 1055-1063.
[3] M.T. Darvishi, F. Khani, Numerical and explicit solutions of the fifth-order Korteweg-de Vries equations, Chaos, Solitons and Fractals 39 (2009) 2484-2490.
[4] S. Abbasbandy, M.T. Darvishi, A numerical solution of Burgers- equation by modified Adomian method, Appl. Math. Comput. 163 (2005) 1265- 1272.
[5] S. Abbasbandy, M.T. Darvishi, A numerical solution of Burgers- equation by time discretization of Adomian-s decomposition method, Appl. Math. Comput. 170 (2005) 95-102.
[6] J.H. He, New interpretation of homotopy perturbation method, Int. J. Mod. Phys. B 20(18) (2006) 2561-2568.
[7] J.H. He, Application of homotopy perturbation method to nonlinear wave equations, Chaos, Solitons and Fractals 26(3) (2005) 695-700.
[8] J.H. He, Homotopy perturbation method for bifurcation of nonlinear problems, Int. J. Nonlinear Sci. Numer. Simul. 6(2) (2005) 207-208.
[9] M.T. Darvishi, F. Khani, Application of He-s homotopy perturbation method to stiff systems of ordinary differential equations, Zeitschrift fur Naturforschung A, 63a (1-2) (2008) 19-23.
[10] M.T. Darvishi, F. Khani, S. Hamedi-Nezhad, S.-W. Ryu, New modification of the HPM for numerical solutions of the sine-Gordon and coupled sine-Gordon equations, Int. J. Comput. Math. 87(4) (2010) 908-919.
[11] M.T. Darvishi, Preconditioning and domain decomposition schemes to solve PDEs, Int-l J. of Pure and Applied Math. 1(4) (2004) 419-439.
[12] M.T. Darvishi, S. Kheybari, F. Khani, A numerical solution of the Korteweg-de Vries equation by pseudospectral method using Darvishi-s preconditionings, Appl. Math. Comput. 182(1) (2006) 98-105.
[13] M.T. Darvishi, M. Javidi, A numerical solution of Burgers- equation by pseudospectral method and Darvishi-s preconditioning, Appl. Math. Comput. 173(1) (2006) 421-429.
[14] M.T. Darvishi, F. Khani, S. Kheybari, Spectral collocation solution of a generalized Hirota-Satsuma KdV equation, Int. J. Comput. Math. 84(4) (2007) 541-551.
[15] M.T. Darvishi, F. Khani, S. Kheybari, Spectral collocation method and Darvishi-s preconditionings to solve the generalized Burgers-Huxley equation, Commun. Nonlinear Sci. Numer. Simul. 13(10) (2008) 2091- 2103.
[16] S.J. Liao, An explicit, totally analytic approximate solution for Blasius viscous flow problems, Int. J. Non-Linear Mech. 34 (1999) 759-778.
[17] S.J. Liao, Beyond perturbation: introduction to the homotopy analysis method, Chapman & Hall/CRC Press, Boca Raton, 2003.
[18] S.J. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput. 147 (2004) 499-513.
[19] S.J. Liao, A new branch of solutions of boundary-layer flows over an impermeable stretched plate, Int. J. Heat Mass Transfer 48 (2005) 2529- 2539.
[20] S.J. Liao, A general approach to get series solution of non-similarity boundary-layer flows, Commun. Nonlinear Sci. Numer. Simul. 14(5) (2009) 2144-2159.
[21] M.T. Darvishi, F. Khani, A series solution of the foam drainage equation, Comput. Math. Appl. 58 (2009) 360-368.
[22] A. Aziz, F. Khani, M.T. Darvishi, Homotopy analysis method for variable thermal conductivity heat flux gage with edge contact resistance, Zeitschrift fuer Naturforschung A, 65a(10) (2010) 771-776.
[23] J.H. He, M.A. Abdou, New periodic solutions for nonlinear evolution equations using Exp-function method, Chaos, Solitons and Fractals 34 (2007) 1421-1429.
[24] J.H. He, X.H. Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons and Fractals 30(3) (2006) 700-708.
[25] J.H. He, X.H. Wu, Construction of solitary solution and compacton-like solution by variational iteration method, Chaos, Solitons and Fractals 29 (2006) 108-113.
[26] F. Khani, S. Hamedi-Nezhad, M.T. Darvishi, S.-W. Ryu, New solitary wave and periodic solutions of the foam drainage equation using the Expfunction method, Nonlin. Anal.: Real World Appl. 10 (2009) 1904-1911.
[27] B.-C. Shin, M.T. Darvishi, A. Barati, Some exact and new solutions of the Nizhnik-Novikov-Vesselov equation using the Exp-function method, Comput. Math. Appl. 58(11/12) (2009) 2147-2151.
[28] X.H. Wu, J.H. He, Exp-function method and its application to nonlinear equations, Chaos, Solitons and Fractals 38(3) (2008) 903-910.
[29] X. Li., J.C. Ji, C.H. Hansen, Dynamics of two delay coupled van der Pol oscillators, Mechanics Research Communications 33 (2006) 614-627.
[30] J.H. He, Bookkeeping parameter in perturbation methods, Int. J. Nonlinear Sci. Numer. Simul. 2 (2001) 257-264.
[31] M.T. Darvishi, A. Karami, B.-C. Shin, Application of He-s parameterexpansion method for oscillators with smooth odd nonlinearities, Phys. Lett. A 372(33) (2008) 5381-5384.
[32] B.-C. Shin, M.T. Darvishi, A. Karami, Application of He-s parameterexpansion method to a nonlinear self-excited oscillator system, Int. J. Nonlin. Sci. Num. Simulation 10(1) (2009) 137-143.
[33] S.T. Mohyud-Din, M.A. Noor, K.I. Noor, Parameter-expansion techniques for strongly nonlinear oscillators, Int. J. Nonlin. Sci. Num. Simulation 10(5) (2009) 581-583.
[34] N.H. Sweilam, R.F. Al-Bar, Implementation of the parameter-expansion method for the coupled van der Pol oscillators, Int. J. Nonlin. Sci. Num. Simulation 10(2) (2009) 259-264.
[35] N.H. Sweilam, M.M. Khader, Application of He-s parameter-expansion method for the nonlinear differential equations, Int. J. Nonlin. Sci. Num. Simulation 10(2) (2009) 265-272.
[36] F.O. Zengin, M.O. Kaya, S.A. Demirbag, Application of parameterexpansion method to nonlinear oscillators with discontinuities, Int. J. Nonlin. Sci. Num. Simulation 9(3) (2008) 267-270.
[37] L. Xu, He-s parameter-expanding methods for strongly nonlinear oscillators, J. Comput. Appl. Math. 207(1) (2007) 148-154.
[38] L. Xu, Application of He-s parameter-expansion method to an oscillation of a mass attached to a stretched elastic wire, Phys. Lett. A 368(3-4) (2007) 259-262.
[39] L. Xu, Determination of limit cycle by He-s parameter-expanding method for strongly nonlinear oscillators, J. of Sound and Vibration 302(1-2) (2007) 178-184.
[40] L.N. Zhang, L. Xu, Determination of the limit cycle by He-s parameterexpansion for oscillators in a u(3)/(1+u(2)) potential, Zeitschrift fur Naturforschung Section A 62(7-8) (2007) 396-398.