Search results for: Signal Approach.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6011

Search results for: Signal Approach.

5651 An Application-Driven Procedure for Optimal Signal Digitization of Automotive-Grade Ultrasonic Sensors

Authors: Mohamed Shawki Elamir, Heinrich Gotzig, Raoul Zoellner, Patrick Maeder

Abstract:

In this work, a methodology is presented for identifying the optimal digitization parameters for the analog signal of ultrasonic sensors. These digitization parameters are the resolution of the analog to digital conversion and the sampling rate. This is accomplished though the derivation of characteristic curves based on Fano inequality and the calculation of the mutual information content over a given dataset. The mutual information is calculated between the examples in the dataset and the corresponding variation in the feature that needs to be estimated. The optimal parameters are identified in a manner that ensures optimal estimation performance while preventing inefficiency in using unnecessarily powerful analog to digital converters.

Keywords: Analog to digital conversion, digitization, sampling rate, ultrasonic sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 446
5650 Integration of Support Vector Machine and Bayesian Neural Network for Data Mining and Classification

Authors: Essam Al-Daoud

Abstract:

Several combinations of the preprocessing algorithms, feature selection techniques and classifiers can be applied to the data classification tasks. This study introduces a new accurate classifier, the proposed classifier consist from four components: Signal-to- Noise as a feature selection technique, support vector machine, Bayesian neural network and AdaBoost as an ensemble algorithm. To verify the effectiveness of the proposed classifier, seven well known classifiers are applied to four datasets. The experiments show that using the suggested classifier enhances the classification rates for all datasets.

Keywords: AdaBoost, Bayesian neural network, Signal-to-Noise, support vector machine, MCMC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
5649 LTE Performance Analysis in the City of Bogota Northern Zone for Two Different Mobile Broadband Operators over Qualipoc

Authors: Víctor D. Rodríguez, Edith P. Estupiñán, Juan C. Martínez

Abstract:

The evolution in mobile broadband technologies has allowed to increase the download rates in users considering the current services. The evaluation of technical parameters at the link level is of vital importance to validate the quality and veracity of the connection, thus avoiding large losses of data, time and productivity. Some of these failures may occur between the eNodeB (Evolved Node B) and the user equipment (UE), so the link between the end device and the base station can be observed. LTE (Long Term Evolution) is considered one of the IP-oriented mobile broadband technologies that work stably for data and VoIP (Voice Over IP) for those devices that have that feature. This research presents a technical analysis of the connection and channeling processes between UE and eNodeB with the TAC (Tracking Area Code) variables, and analysis of performance variables (Throughput, Signal to Interference and Noise Ratio (SINR)). Three measurement scenarios were proposed in the city of Bogotá using QualiPoc, where two operators were evaluated (Operator 1 and Operator 2). Once the data were obtained, an analysis of the variables was performed determining that the data obtained in transmission modes vary depending on the parameters BLER (Block Error Rate), performance and SNR (Signal-to-Noise Ratio). In the case of both operators, differences in transmission modes are detected and this is reflected in the quality of the signal. In addition, due to the fact that both operators work in different frequencies, it can be seen that Operator 1, despite having spectrum in Band 7 (2600 MHz), together with Operator 2, is reassigning to another frequency, a lower band, which is AWS (1700 MHz), but the difference in signal quality with respect to the establishment with data by the provider Operator 2 and the difference found in the transmission modes determined by the eNodeB in Operator 1 is remarkable.

Keywords: BLER, LTE, Network, Qualipoc, SNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 535
5648 Pattern Recognition Based Prosthesis Control for Movement of Forearms Using Surface and Intramuscular EMG Signals

Authors: Anjana Goen, D. C. Tiwari

Abstract:

Myoelectric control system is the fundamental component of modern prostheses, which uses the myoelectric signals from an individual’s muscles to control the prosthesis movements. The surface electromyogram signal (sEMG) being noninvasive has been used as an input to prostheses controllers for many years. Recent technological advances has led to the development of implantable myoelectric sensors which enable the internal myoelectric signal (MES) to be used as input to these prostheses controllers. The intramuscular measurement can provide focal recordings from deep muscles of the forearm and independent signals relatively free of crosstalk thus allowing for more independent control sites. However, little work has been done to compare the two inputs. In this paper we have compared the classification accuracy of six pattern recognition based myoelectric controllers which use surface myoelectric signals recorded using untargeted (symmetric) surface electrode arrays to the same controllers with multichannel intramuscular myolectric signals from targeted intramuscular electrodes as inputs. There was no significant enhancement in the classification accuracy as a result of using the intramuscular EMG measurement technique when compared to the results acquired using the surface EMG measurement technique. Impressive classification accuracy (99%) could be achieved by optimally selecting only five channels of surface EMG.

Keywords: Discriminant Locality Preserving Projections (DLPP), myoelectric signal (MES), Sparse Principal Component Analysis (SPCA), Time Frequency Representations (TFRs).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
5647 Efficient Realization of an ADFE with a New Adaptive Algorithm

Authors: N. Praveen Kumar, Abhijit Mitra, C. Ardil

Abstract:

Decision feedback equalizers are commonly employed to reduce the error caused by intersymbol interference. Here, an adaptive decision feedback equalizer is presented with a new adaptation algorithm. The algorithm follows a block-based approach of normalized least mean square (NLMS) algorithm with set-membership filtering and achieves a significantly less computational complexity over its conventional NLMS counterpart with set-membership filtering. It is shown in the results that the proposed algorithm yields similar type of bit error rate performance over a reasonable signal to noise ratio in comparison with the latter one.

Keywords: Decision feedback equalizer, Adaptive algorithm, Block based computation, Set membership filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
5646 Detection of Ultrasonic Images in the Presence of a Random Number of Scatterers: A Statistical Learning Approach

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of medical ultrasound images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to clinical ultrasound images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected ultrasound images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (detection hypotheses) in the original images.

Keywords: LS-SVM, medical ultrasound imaging, partially developed speckle, multi-look model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341
5645 Robust Detection of R-Wave Using Wavelet Technique

Authors: Awadhesh Pachauri, Manabendra Bhuyan

Abstract:

Electrocardiogram (ECG) is considered to be the backbone of cardiology. ECG is composed of P, QRS & T waves and information related to cardiac diseases can be extracted from the intervals and amplitudes of these waves. The first step in extracting ECG features starts from the accurate detection of R peaks in the QRS complex. We have developed a robust R wave detector using wavelets. The wavelets used for detection are Daubechies and Symmetric. The method does not require any preprocessing therefore, only needs the ECG correct recordings while implementing the detection. The database has been collected from MIT-BIH arrhythmia database and the signals from Lead-II have been analyzed. MatLab 7.0 has been used to develop the algorithm. The ECG signal under test has been decomposed to the required level using the selected wavelet and the selection of detail coefficient d4 has been done based on energy, frequency and cross-correlation analysis of decomposition structure of ECG signal. The robustness of the method is apparent from the obtained results.

Keywords: ECG, P-QRS-T waves, Wavelet Transform, Hard Thresholding, R-wave Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2474
5644 Metal-Oxide-Semiconductor-Only Process Corner Monitoring Circuit

Authors: Davit Mirzoyan, Ararat Khachatryan

Abstract:

A process corner monitoring circuit (PCMC) is presented in this work. The circuit generates a signal, the logical value of which depends on the process corner only. The signal can be used in both digital and analog circuits for testing and compensation of process variations (PV). The presented circuit uses only metal-oxide-semiconductor (MOS) transistors, which allow increasing its detection accuracy, decrease power consumption and area. Due to its simplicity the presented circuit can be easily modified to monitor parametrical variations of only n-type and p-type MOS (NMOS and PMOS, respectively) transistors, resistors, as well as their combinations. Post-layout simulation results prove correct functionality of the proposed circuit, i.e. ability to monitor the process corner (equivalently die-to-die variations) even in the presence of within-die variations.

Keywords: Detection, monitoring, process corner, process variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1325
5643 A New Approach for Flexible Document Categorization

Authors: Jebari Chaker, Ounelli Habib

Abstract:

In this paper we propose a new approach for flexible document categorization according to the document type or genre instead of topic. Our approach implements two homogenous classifiers: contextual classifier and logical classifier. The contextual classifier is based on the document URL, whereas, the logical classifier use the logical structure of the document to perform the categorization. The final categorization is obtained by combining contextual and logical categorizations. In our approach, each document is assigned to all predefined categories with different membership degrees. Our experiments demonstrate that our approach is best than other genre categorization approaches.

Keywords: Categorization, combination, flexible, logicalstructure, genre, category, URL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484
5642 Analysis of Fixed Beamforming Algorithms for Smart Antenna Systems

Authors: Muhammad Umair Shahid, Abdul Rehman, Mudassir Mukhtar, Muhammad Nauman

Abstract:

The smart antenna is the prominent technology that has become known in recent years to meet the growing demands of wireless communications. In an overcrowded atmosphere, its application is growing gradually. A methodical evaluation of the performance of Fixed Beamforming algorithms for smart antennas such as Multiple Sidelobe Canceller (MSC), Maximum Signal-to-interference ratio (MSIR) and minimum variance (MVDR) has been comprehensively presented in this paper. Simulation results show that beamforming is helpful in providing optimized response towards desired directions. MVDR beamformer provides the most optimal solution.

Keywords: Fixed weight beamforming, array pattern, signal to interference ratio, power efficiency, element spacing, array elements, optimum weight vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
5641 Real Time Force Sensing Mat for Human Gait Analysis

Authors: Darwin Gouwanda, S. M. N. Arosha Senanayake, M. M. Danushka Ranjana Marasinghe, Mervin Chandrapal, Jeya Mithra Kumar, Tung Mun Hon, Yulius

Abstract:

This paper presents a real time force sensing instrument that is designed for human gait analysis purposes. This instrument mainly consists of three main elements: the force sensing mat, signal conditioning and switching circuit and data acquisition device. In order to control and to process the incoming signals from the force sensing mat, Force-Logger and Force-Reloader program are developed using Labview 8.0. This paper describes the architecture of the force sensing mat, signal conditioning and switching circuit and the real time streaming of the incoming data from the force sensing mat.

Keywords: Force platform, Force sensing resistor, human gait analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2482
5640 Simultaneous Optimization of Machining Parameters and Tool Geometry Specifications in Turning Operation of AISI1045 Steel

Authors: Farhad Kolahan, Mohsen Manoochehri, Abbas Hosseini

Abstract:

Machining is an important manufacturing process used to produce a wide variety of metallic parts. Among various machining processes, turning is one of the most important one which is employed to shape cylindrical parts. In turning, the quality of finished product is measured in terms of surface roughness. In turn, surface quality is determined by machining parameters and tool geometry specifications. The main objective of this study is to simultaneously model and optimize machining parameters and tool geometry in order to improve the surface roughness for AISI1045 steel. Several levels of machining parameters and tool geometry specifications are considered as input parameters. The surface roughness is selected as process output measure of performance. A Taguchi approach is employed to gather experimental data. Then, based on signal-to-noise (S/N) ratio, the best sets of cutting parameters and tool geometry specifications have been determined. Using these parameters values, the surface roughness of AISI1045 steel parts may be minimized. Experimental results are provided to illustrate the effectiveness of the proposed approach.

Keywords: Taguchi method, turning parameters, tool geometry specifications, S/N ratio, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325
5639 Optimization of Quantization in Higher Order Modulations for LDPC-Coded Systems

Authors: M.Sushanth Babu, P.Krishna, U.Venu, M.Ranjith

Abstract:

In this paper, we evaluate the choice of suitable quantization characteristics for both the decoder messages and the received samples in Low Density Parity Check (LDPC) coded systems using M-QAM (Quadrature Amplitude Modulation) schemes. The analysis involves the demapper block that provides initial likelihood values for the decoder, by relating its quantization strategy of the decoder. A mapping strategy refers to the grouping of bits within a codeword, where each m-bit group is used to select a 2m-ary signal in accordance with the signal labels. Further we evaluate the system with mapping strategies like Consecutive-Bit (CB) and Bit-Reliability (BR). A new demapper version, based on approximate expressions, is also presented to yield a low complexity hardware implementation.

Keywords: Low Density parity Check, Mapping, Demapping, Quantization, Quadrature Amplitude Modulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
5638 A Time-Reducible Approach to Compute Determinant |I-X|

Authors: Wang Xingbo

Abstract:

Computation of determinant in the form |I-X| is primary and fundamental because it can help to compute many other determinants. This article puts forward a time-reducible approach to compute determinant |I-X|. The approach is derived from the Newton’s identity and its time complexity is no more than that to compute the eigenvalues of the square matrix X. Mathematical deductions and numerical example are presented in detail for the approach. By comparison with classical approaches the new approach is proved to be superior to the classical ones and it can naturally reduce the computational time with the improvement of efficiency to compute eigenvalues of the square matrix.

Keywords: Algorithm, determinant, computation, eigenvalue, time complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
5637 The Selection of the Nearest Anchor Using Received Signal Strength Indication (RSSI)

Authors: Hichem Sassi, Tawfik Najeh, Noureddine Liouane

Abstract:

The localization information is crucial for the operation of WSN. There are principally two types of localization algorithms. The Range-based localization algorithm has strict requirements on hardware, thus is expensive to be implemented in practice. The Range-free localization algorithm reduces the hardware cost. However, it can only achieve high accuracy in ideal scenarios. In this paper, we locate unknown nodes by incorporating the advantages of these two types of methods. The proposed algorithm makes the unknown nodes select the nearest anchor using the Received Signal Strength Indicator (RSSI) and choose two other anchors which are the most accurate to achieve the estimated location. Our algorithm improves the localization accuracy compared with previous algorithms, which has been demonstrated by the simulating results.

Keywords: WSN, localization, DV-hop, RSSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
5636 Angle of Arrival Estimation Using Maximum Likelihood Method

Authors: H. K. Hwang, Zekeriya Aliyazicioglu, Solomon Wu, Hung Lu, Nick Wilkins, Daniel Kerr

Abstract:

Multiple-input multiple-output (MIMO) radar has received increasing attention in recent years. MIMO radar has many advantages over conventional phased array radar such as target detection,resolution enhancement, and interference suppression. In this paper, the results are presented from a simulation study of MIMO uniformly-spaced linear array (ULA) antennas. The performance is investigated under varied parameters, including varied array size, pseudo random (PN) sequence length, number of snapshots, and signal to noise ratio (SNR). The results of MIMO are compared to a traditional array antenna.

Keywords: Multiple-input multiple-output (MIMO) radar, phased array antenna, target detection, radar signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2806
5635 Detecting the Nonlinearity in Time Series from Continuous Dynamic Systems Based on Delay Vector Variance Method

Authors: Shumin Hou, Yourong Li, Sanxing Zhao

Abstract:

Much time series data is generally from continuous dynamic system. Firstly, this paper studies the detection of the nonlinearity of time series from continuous dynamics systems by applying the Phase-randomized surrogate algorithm. Then, the Delay Vector Variance (DVV) method is introduced into nonlinearity test. The results show that under the different sampling conditions, the opposite detection of nonlinearity is obtained via using traditional test statistics methods, which include the third-order autocovariance and the asymmetry due to time reversal. Whereas the DVV method can perform well on determining nonlinear of Lorenz signal. It indicates that the proposed method can describe the continuous dynamics signal effectively.

Keywords: Nonlinearity, Time series, continuous dynamics system, DVV method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
5634 A Fast Directionally Constrained Minimization of Power Algorithm for Extracting a Speech Signal Perpendicular to a Microphone Array

Authors: Yasuhiko Okuma, Yuichi Suzuki, Takahiro Murakami, Yoshihisa Ishida

Abstract:

In this paper, an extended method of the directionally constrained minimization of power (DCMP) algorithm for broadband signals is proposed. The DCMP algorithm is one of the useful techniques of extracting a target signal from observed signals of a microphone array system. In the DCMP algorithm, output power of the microphone array is minimized under a constraint of constant responses to directions of arrival (DOAs) of specific signals. In our algorithm, by limiting the directional constraint to the perpendicular direction to the sensor array system, the calculating time is reduced.

Keywords: Beamformer, directionally constrained minimizationof power, direction of arrival, microphone array.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
5633 Spectrum Sensing Based On the Cyclostationarity of PU Signals in High Traffic Environments

Authors: Keunhong Chae, Youngpo Lee, Seokho Yoon

Abstract:

In cognitive radio (CR) systems, the primary user (PU) signal would randomly depart or arrive during the sensing period of a CR user, which is referred to as the high traffic environment. In this paper, we propose a novel spectrum sensing scheme based on the cyclostationarity of PU signals in high traffic environments. Specifically, we obtain a test statistic by applying an estimate of spectral autocoherence function of the PU signal to the generalized- likelihood ratio. From numerical results, it is confirmed that the proposed scheme provides a better spectrum sensing performance compared with the conventional spectrum sensing scheme based on the energy of the PU signals in high traffic environments.

Keywords: Spectrum sensing, cyclostationarity, high traffic environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
5632 Efficient Signal Detection Using QRD-M Based On Channel Condition in MIMO-OFDM System

Authors: Jae-Jeong Kim, Ki-Ro Kim, Hyoung-Kyu Song

Abstract:

In this paper, we propose an efficient signal detector that switches M parameter of QRD-M detection scheme is proposed for MIMO-OFDM system. The proposed detection scheme calculates the threshold by 1-norm condition number and then switches M parameter of QRD-M detection scheme according to channel information. If channel condition is bad, the parameter M is set to high value to increase the accuracy of detection. If channel condition is good, the parameter M is set to low value to reduce complexity of detection. Therefore, the proposed detection scheme has better tradeoff between BER performance and complexity than the conventional detection scheme. The simulation result shows that the complexity of proposed detection scheme is lower than QRD-M detection scheme with similar BER performance.

Keywords: MIMO-OFDM, QRD-M, Channel condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
5631 Characterization and Modeling of Piezoelectric Integrated Micro Speakers for Audio Acoustic Actuation

Authors: J. Mendoza-López, S. Sánchez-Solano, J. L. Huertas-Díaz

Abstract:

An array of piezoelectric micro actuators can be used for radiation of an ultrasonic carrier signal modulated in amplitude with an acoustic signal, which yields audio frequency applications as the air acts as a self-demodulating medium. This application is known as the parametric array. We propose a parametric array with array elements based on existing piezoelectric micro ultrasonic transducer (pMUT) design techniques. In order to reach enough acoustic output power at a desired operating frequency, a proper ratio between number of array elements and array size needs to be used, with an array total area of the order of one cm square. The transducers presented are characterized via impedance, admittance, noise figure, transducer gain and frequency responses.

Keywords: Pizeoelectric, Microspeaker, MEMS, pMUT, Parametric Array

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2248
5630 Blind Source Separation Using Modified Gaussian FastICA

Authors: V. K. Ananthashayana, Jyothirmayi M.

Abstract:

This paper addresses the problem of source separation in images. We propose a FastICA algorithm employing a modified Gaussian contrast function for the Blind Source Separation. Experimental result shows that the proposed Modified Gaussian FastICA is effectively used for Blind Source Separation to obtain better quality images. In this paper, a comparative study has been made with other popular existing algorithms. The peak signal to noise ratio (PSNR) and improved signal to noise ratio (ISNR) are used as metrics for evaluating the quality of images. The ICA metric Amari error is also used to measure the quality of separation.

Keywords: Amari error, Blind Source Separation, Contrast function, Gaussian function, Independent Component Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
5629 A Novel SVM-Based OOK Detector in Low SNR Infrared Channels

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.

Keywords: Least square-support vector machine, on-off keying, matched filter, maximum likelihood detector, wireless infrared communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
5628 Frequency Modulation in Vibro-Acoustic Modulation Method

Authors: D. Liu, D. M. Donskoy

Abstract:

The vibroacoustic modulation method is based on the modulation effect of high-frequency ultrasonic wave (carrier) by low-frequency vibration in the presence of various defects, primarily contact-type such as cracks, delamination, etc. The presence and severity of the defect are measured by the ratio of the spectral sidebands and the carrier in the spectrum of the modulated signal. This approach, however, does not differentiate between amplitude and frequency modulations, AM and FM, respectfully. This paper is an attempt to explain the generation mechanisms of FM and its correlation with the flaw properties. Here we proposed two possible mechanisms leading to FM modulation based on nonlinear local defect resonance and dynamic acoustoelastic models.

Keywords: Non-destructive testing, nonlinear acoustics, structural health monitoring, acoustoelasticity, local defect resonance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 500
5627 Unified Power Flow Controller Placement to Improve Damping of Power Oscillations

Authors: M. Salehi, A. A. Motie Birjandi, F. Namdari

Abstract:

Weak damping of low frequency oscillations is a frequent phenomenon in electrical power systems. These frequencies can be damped by power system stabilizers. Unified power flow controller (UPFC), as one of the most important FACTS devices, can be applied to increase the damping of power system oscillations and the more effect of this controller on increasing the damping of oscillations depends on its proper placement in power systems. In this paper, a technique based on controllability is proposed to select proper location of UPFC and the best input control signal in order to enhance damping of power oscillations. The effectiveness of the proposed technique is demonstrated in IEEE 9 bus power system.

Keywords: Unified power flow controller (UPFC), controllability, small signal analysis, eigenvalues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
5626 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: Artificial Neural Network, Data Mining, Electroencephalogram, Epilepsy, Feature Extraction, Seizure Detection, Signal Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
5625 An Adequate Choice of Initial Sample Size for Selection Approach

Authors: Mohammad H. Almomani, Rosmanjawati Abdul Rahman

Abstract:

In this paper, we consider the effect of the initial sample size on the performance of a sequential approach that used in selecting a good enough simulated system, when the number of alternatives is very large. We implement a sequential approach on M=M=1 queuing system under some parameter settings, with a different choice of the initial sample sizes to explore the impacts on the performance of this approach. The results show that the choice of the initial sample size does affect the performance of our selection approach.

Keywords: Ranking and Selection, Ordinal Optimization, Optimal Computing Budget Allocation, Subset Selection, Indifference-Zone, Initial Sample Size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1307
5624 Probabilistic Wavelet Neural Network Based Vibration Analysis of Induction Motor Drive

Authors: K. Jayakumar, S. Thangavel

Abstract:

In this paper proposed the effective fault detection of industrial drives by using Biorthogonal Posterior Vibration Signal-Data Probabilistic Wavelet Neural Network (BPPVS-WNN) system. This system was focused to reducing the current flow and to identify faults with lesser execution time with harmonic values obtained through fifth derivative. Initially, the construction of Biorthogonal vibration signal-data based wavelet transform in BPPVS-WNN system localizes the time and frequency domain. The Biorthogonal wavelet approximates the broken bearing using double scaling and factor, identifies the transient disturbance due to fault on induction motor through approximate coefficients and detailed coefficient. Posterior Probabilistic Neural Network detects the final level of faults using the detailed coefficient till fifth derivative and the results obtained through it at a faster rate at constant frequency signal on the industrial drive. Experiment through the Simulink tool detects the healthy and unhealthy motor on measuring parametric factors such as fault detection rate based on time, current flow rate, and execution time.

Keywords: Biorthogonal Wavelet Transform, Posterior Probabilistic Neural Network, Induction Motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018
5623 The Usefulness of Logical Structure in Flexible Document Categorization

Authors: Jebari Chaker, Ounalli Habib

Abstract:

This paper presents a new approach for automatic document categorization. Exploiting the logical structure of the document, our approach assigns a HTML document to one or more categories (thesis, paper, call for papers, email, ...). Using a set of training documents, our approach generates a set of rules used to categorize new documents. The approach flexibility is carried out with rule weight association representing your importance in the discrimination between possible categories. This weight is dynamically modified at each new document categorization. The experimentation of the proposed approach provides satisfactory results.

Keywords: categorization rule, document categorization, flexible categorization, logical structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
5622 A Novel Approach to Image Compression of Colour Images by Plane Reduction Technique

Authors: K.Sowmyan, A.Siddarth, D.Menaka

Abstract:

Several methods have been proposed for color image compression but the reconstructed image had very low signal to noise ratio which made it inefficient. This paper describes a lossy compression technique for color images which overcomes the drawbacks. The technique works on spatial domain where the pixel values of RGB planes of the input color image is mapped onto two dimensional planes. The proposed technique produced better results than JPEG2000, 2DPCA and a comparative study is reported based on the image quality measures such as PSNR and MSE.Experiments on real time images are shown that compare this methodology with previous ones and demonstrate its advantages.

Keywords: Color Image compression, spatial domain, planereduction, root mean square, image restoration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633