Search results for: stereo vision
88 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks
Authors: Siddhant Rao
Abstract:
Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.Keywords: Object detection, histopathology, breast cancer, mitotic count, deep learning, computer vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 141487 Recognition Machine (RM) for On-line and Isolated Flight Deck Officer (FDO) Gestures
Authors: Deniz T. Sodiri, Venkat V S S Sastry
Abstract:
The paper presents an on-line recognition machine (RM) for continuous/isolated, dynamic and static gestures that arise in Flight Deck Officer (FDO) training. RM is based on generic pattern recognition framework. Gestures are represented as templates using summary statistics. The proposed recognition algorithm exploits temporal and spatial characteristics of gestures via dynamic programming and Markovian process. The algorithm predicts corresponding index of incremental input data in the templates in an on-line mode. Accumulated consistency in the sequence of prediction provides a similarity measurement (Score) between input data and the templates. The algorithm provides an intuitive mechanism for automatic detection of start/end frames of continuous gestures. In the present paper, we consider isolated gestures. The performance of RM is evaluated using four datasets - artificial (W TTest), hand motion (Yang) and FDO (tracker, vision-based ). RM achieves comparable results which are in agreement with other on-line and off-line algorithms such as hidden Markov model (HMM) and dynamic time warping (DTW). The proposed algorithm has the additional advantage of providing timely feedback for training purposes.Keywords: On-line Recognition Algorithm, IsolatedDynamic/Static Gesture Recognition, On-line Markovian/DynamicProgramming, Training in Virtual Environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146386 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks
Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha
Abstract:
Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs – Sigmoid, ReLU, and Tanh – have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment on multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLU-ReLU) combination. Our results show that on using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).
Keywords: Activation Function, Universal Approximation function, Neural Networks, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15485 Fuzzy Sequential Algorithm for Discrimination and Decision Maker in Sporting Events
Authors: Mourad Moussa, Ali Douik, Hassani Messaoud
Abstract:
Events discrimination and decision maker in sport field are the subject of many interesting studies in computer vision and artificial intelligence. A large volume of research has been conducted for automatic semantic event detection and summarization of sports videos. Indeed the results of these researches have a very significant contribution, as well to television broadcasts as to the football teams, since the result of sporting event can be reflected on the economic field. In this paper, we propose a novel fuzzy sequential technique which lead to discriminate events and specify the technico-tactics on going the game, nor the fuzzy system or the sequential one, may be able to respond to the asked question, in fact fuzzy process is not sufficient, it does not respect the chronological order according the time of various events, similarly the sequential process needs flexibility about the parameters used in this study, it may affect a membership degree of each parameter on the one hand and respect the sequencing of events for each frame on the other hand. Indeed this technique describes special events such as dribbling, headings, short sprints, rapid acceleration or deceleration, turning, jumping, kicking, ball occupation, and tackling according velocity vectors of the two players and the ball direction.
Keywords: Sequential process, Event detection, Soccer videos analysis, Fuzzy process, Spatio-temporal parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188184 Efficient Boosting-Based Active Learning for Specific Object Detection Problems
Authors: Thuy Thi Nguyen, Nguyen Dang Binh, Horst Bischof
Abstract:
In this work, we present a novel active learning approach for learning a visual object detection system. Our system is composed of an active learning mechanism as wrapper around a sub-algorithm which implement an online boosting-based learning object detector. In the core is a combination of a bootstrap procedure and a semi automatic learning process based on the online boosting procedure. The idea is to exploit the availability of classifier during learning to automatically label training samples and increasingly improves the classifier. This addresses the issue of reducing labeling effort meanwhile obtain better performance. In addition, we propose a verification process for further improvement of the classifier. The idea is to allow re-update on seen data during learning for stabilizing the detector. The main contribution of this empirical study is a demonstration that active learning based on an online boosting approach trained in this manner can achieve results comparable or even outperform a framework trained in conventional manner using much more labeling effort. Empirical experiments on challenging data set for specific object deteciton problems show the effectiveness of our approach.Keywords: Computer vision, object detection, online boosting, active learning, labeling complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178483 Modeling Directional Thermal Radiance Anisotropy for Urban Canopy
Authors: Limin Zhao, Xingfa Gu, C. Tao Yu
Abstract:
one of the significant factors for improving the accuracy of Land Surface Temperature (LST) retrieval is the correct understanding of the directional anisotropy for thermal radiance. In this paper, the multiple scattering effect between heterogeneous non-isothermal surfaces is described rigorously according to the concept of configuration factor, based on which a directional thermal radiance model is built, and the directional radiant character for urban canopy is analyzed. The model is applied to a simple urban canopy with row structure to simulate the change of Directional Brightness Temperature (DBT). The results show that the DBT is aggrandized because of the multiple scattering effects, whereas the change range of DBT is smoothed. The temperature difference, spatial distribution, emissivity of the components can all lead to the change of DBT. The “hot spot" phenomenon occurs when the proportion of high temperature component in the vision field came to a head. On the other hand, the “cool spot" phenomena occur when low temperature proportion came to the head. The “spot" effect disappears only when the proportion of every component keeps invariability. The model built in this paper can be used for the study of directional effect on emissivity, the LST retrieval over urban areas and the adjacency effect of thermal remote sensing pixels.Keywords: Directional thermal radiance, multiple scattering, configuration factor, urban canopy, hot spot effect
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160582 Real-Time Fitness Monitoring with MediaPipe
Authors: Chandra Prayaga, Lakshmi Prayaga, Aaron Wade, Kyle Rank, Gopi Shankar Mallu, Sri Satya Harsha Pola
Abstract:
In today's tech-driven world, where connectivity shapes our daily lives, maintaining physical and emotional health is crucial. Athletic trainers play a vital role in optimizing athletes' performance and preventing injuries. However, a shortage of trainers impacts the quality of care. This study introduces a vision-based exercise monitoring system leveraging Google's MediaPipe library for precise tracking of bicep curl exercises and simultaneous posture monitoring. We propose a three-stage methodology: landmark detection, side detection, and angle computation. Our system calculates angles at the elbow, wrist, neck, and torso to assess exercise form. Experimental results demonstrate the system's effectiveness in distinguishing between good and partial repetitions and evaluating body posture during exercises, providing real-time feedback for precise fitness monitoring.
Keywords: Physical health, athletic trainers, fitness monitoring, technology driven solutions, Google's MediaPipe, landmark detection, angle computation, real-time feedback.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11481 Intelligent Video-Based Monitoring of Freeway Traffic
Authors: Saad M. Al-Garni, Adel A. Abdennour
Abstract:
Freeways are originally designed to provide high mobility to road users. However, the increase in population and vehicle numbers has led to increasing congestions around the world. Daily recurrent congestion substantially reduces the freeway capacity when it is most needed. Building new highways and expanding the existing ones is an expensive solution and impractical in many situations. Intelligent and vision-based techniques can, however, be efficient tools in monitoring highways and increasing the capacity of the existing infrastructures. The crucial step for highway monitoring is vehicle detection. In this paper, we propose one of such techniques. The approach is based on artificial neural networks (ANN) for vehicles detection and counting. The detection process uses the freeway video images and starts by automatically extracting the image background from the successive video frames. Once the background is identified, subsequent frames are used to detect moving objects through image subtraction. The result is segmented using Sobel operator for edge detection. The ANN is, then, used in the detection and counting phase. Applying this technique to the busiest freeway in Riyadh (King Fahd Road) achieved higher than 98% detection accuracy despite the light intensity changes, the occlusion situations, and shadows.Keywords: Background Extraction, Neural Networks, VehicleDetection, Freeway Traffic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191280 Providing a Secure, Reliable and Decentralized Document Management Solution Using Blockchain by a Virtual Identity Card
Authors: Meet Shah, Ankita Aditya, Dhruv Bindra, V. S. Omkar, Aashruti Seervi
Abstract:
In today's world, we need documents everywhere for a smooth workflow in the identification process or any other security aspects. The current system and techniques which are used for identification need one thing, that is ‘proof of existence’, which involves valid documents, for example, educational, financial, etc. The main issue with the current identity access management system and digital identification process is that the system is centralized in their network, which makes it inefficient. The paper presents the system which resolves all these cited issues. It is based on ‘blockchain’ technology, which is a 'decentralized system'. It allows transactions in a decentralized and immutable manner. The primary notion of the model is to ‘have everything with nothing’. It involves inter-linking required documents of a person with a single identity card so that a person can go anywhere without having the required documents with him/her. The person just needs to be physically present at a place wherein documents are necessary, and using a fingerprint impression and an iris scan print, the rest of the verification will progress. Furthermore, some technical overheads and advancements are listed. This paper also aims to layout its far-vision scenario of blockchain and its impact on future trends.
Keywords: Blockchain, decentralized system, fingerprint impression, identity management, iris scan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 130379 SIFT Accordion: A Space-Time Descriptor Applied to Human Action Recognition
Authors: Olfa.Ben Ahmed, Mahmoud. Mejdoub, Chokri. Ben Amar
Abstract:
Recognizing human action from videos is an active field of research in computer vision and pattern recognition. Human activity recognition has many potential applications such as video surveillance, human machine interaction, sport videos retrieval and robot navigation. Actually, local descriptors and bag of visuals words models achieve state-of-the-art performance for human action recognition. The main challenge in features description is how to represent efficiently the local motion information. Most of the previous works focus on the extension of 2D local descriptors on 3D ones to describe local information around every interest point. In this paper, we propose a new spatio-temporal descriptor based on a spacetime description of moving points. Our description is focused on an Accordion representation of video which is well-suited to recognize human action from 2D local descriptors without the need to 3D extensions. We use the bag of words approach to represent videos. We quantify 2D local descriptor describing both temporal and spatial features with a good compromise between computational complexity and action recognition rates. We have reached impressive results on publicly available action data setKeywords: Accordion, Bag of Features, Human action, Motion, Moving point, Space-Time Descriptor, SIFT, Video.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210878 Integrating AI Visualization Tools to Enhance Student Engagement and Understanding in AI Education
Authors: Yong W. Foo, Lai M. Tang
Abstract:
Artificial Intelligence (AI), particularly the usage of deep neural networks for hierarchical representations from data, has found numerous complex applications across various domains, including computer vision, robotics, autonomous vehicles, and other scientific fields. However, their inherent “black box” nature can sometimes make it challenging for early researchers or school students of various levels to comprehend and trust the results they produce. Consequently, there has been a growing demand for reliable visualization tools in engineering and science education to help learners understand, trust, and explain a deep learning network. This has led to a notable emphasis on the visualization of AI in the research community in recent years. AI visualization tools are increasingly being adopted to significantly improve the comprehension of complex topics in deep learning. This paper presents an approach to empower students to actively explore the inner workings of deep neural networks by integrating the student-centered learning approach of flipped classroom models with the investigative capabilities of AI visualization tools, namely, the TensorFlow Playground, the Local Interpretable Model-agnostic Explanations (LIME), and the SHapley Additive exPlanations (SHAP), for delivering an AI education curriculum. Integrating these two factors is crucial for fostering ownership, responsibility, and critical thinking skills in the age of AI.
Keywords: Deep Learning, Explainable AI, AI Visualization, Representation Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2577 View-Point Insensitive Human Pose Recognition using Neural Network
Authors: Sanghyeok Oh, Yunli Lee, Kwangjin Hong, Kirak Kim, Keechul Jung
Abstract:
This paper proposes view-point insensitive human pose recognition system using neural network. Recognition system consists of silhouette image capturing module, data driven database, and neural network. The advantages of our system are first, it is possible to capture multiple view-point silhouette images of 3D human model automatically. This automatic capture module is helpful to reduce time consuming task of database construction. Second, we develop huge feature database to offer view-point insensitivity at pose recognition. Third, we use neural network to recognize human pose from multiple-view because every pose from each model have similar feature patterns, even though each model has different appearance and view-point. To construct database, we need to create 3D human model using 3D manipulate tools. Contour shape is used to convert silhouette image to feature vector of 12 degree. This extraction task is processed semi-automatically, which benefits in that capturing images and converting to silhouette images from the real capturing environment is needless. We demonstrate the effectiveness of our approach with experiments on virtual environment.Keywords: Computer vision, neural network, pose recognition, view-point insensitive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132876 3D Star Skeleton for Fast Human Posture Representation
Authors: Sungkuk Chun, Kwangjin Hong, Keechul Jung
Abstract:
In this paper, we propose an improved 3D star skeleton technique, which is a suitable skeletonization for human posture representation and reflects the 3D information of human posture. Moreover, the proposed technique is simple and then can be performed in real-time. The existing skeleton construction techniques, such as distance transformation, Voronoi diagram, and thinning, focus on the precision of skeleton information. Therefore, those techniques are not applicable to real-time posture recognition since they are computationally expensive and highly susceptible to noise of boundary. Although a 2D star skeleton was proposed to complement these problems, it also has some limitations to describe the 3D information of the posture. To represent human posture effectively, the constructed skeleton should consider the 3D information of posture. The proposed 3D star skeleton contains 3D data of human, and focuses on human action and posture recognition. Our 3D star skeleton uses the 8 projection maps which have 2D silhouette information and depth data of human surface. And the extremal points can be extracted as the features of 3D star skeleton, without searching whole boundary of object. Therefore, on execution time, our 3D star skeleton is faster than the “greedy" 3D star skeleton using the whole boundary points on the surface. Moreover, our method can offer more accurate skeleton of posture than the existing star skeleton since the 3D data for the object is concerned. Additionally, we make a codebook, a collection of representative 3D star skeletons about 7 postures, to recognize what posture of constructed skeleton is.Keywords: computer vision, gesture recognition, skeletonization, human posture representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212275 Multi-Layer Multi-Feature Background Subtraction Using Codebook Model Framework
Authors: Yun-Tao Zhang, Jong-Yeop Bae, Whoi-Yul Kim
Abstract:
Background modeling and subtraction in video analysis has been widely used as an effective method for moving objects detection in many computer vision applications. Recently, a large number of approaches have been developed to tackle different types of challenges in this field. However, the dynamic background and illumination variations are the most frequently occurred problems in the practical situation. This paper presents a favorable two-layer model based on codebook algorithm incorporated with local binary pattern (LBP) texture measure, targeted for handling dynamic background and illumination variation problems. More specifically, the first layer is designed by block-based codebook combining with LBP histogram and mean value of each RGB color channel. Because of the invariance of the LBP features with respect to monotonic gray-scale changes, this layer can produce block wise detection results with considerable tolerance of illumination variations. The pixel-based codebook is employed to reinforce the precision from the output of the first layer which is to eliminate false positives further. As a result, the proposed approach can greatly promote the accuracy under the circumstances of dynamic background and illumination changes. Experimental results on several popular background subtraction datasets demonstrate very competitive performance compared to previous models.Keywords: Background subtraction, codebook model, local binary pattern, dynamic background, illumination changes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196574 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals
Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer
Abstract:
Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).
Keywords: Diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 134673 Enlightening Malaysia's Energy Policies and Strategies for Modernization and Sustainable Development
Authors: Hussain Ali Bekhet, Nor Salwati Othman
Abstract:
Malaysia has achieved remarkable economic growth since 1957, moving toward modernization from a predominantly agriculture base to manufacturing and—now—modern services. The development policies (i.e., New Economic Policy [1970–1990], the National Development Policy [1990–2000], and Vision 2020) have been recognized as the most important drivers of this transformation. The transformation of the economic structure has moved along with rapid gross domestic product (GDP) growth, urbanization growth, and greater demand for energy from mainly fossil fuel resources, which in turn, increase CO2 emissions. Malaysia faced a great challenge to bring down the CO2 emissions without compromising economic development. Solid policies and a strategy to reduce dependencies on fossil fuel resources and reduce CO2 emissions are needed in order to achieve sustainable development. This study provides an overview of the Malaysian economic, energy, and environmental situation, and explores the existing policies and strategies related to energy and the environment. The significance is to grasp a clear picture on what types of policies and strategies Malaysia has in hand. In the future, this examination should be extended by drawing a comparison with other developed countries and highlighting several options for sustainable development.Keywords: Energy policies, energy efficiency, renewable energy, green building, Malaysia, sustainable development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 266372 SVM-based Multiview Face Recognition by Generalization of Discriminant Analysis
Authors: Dakshina Ranjan Kisku, Hunny Mehrotra, Jamuna Kanta Sing, Phalguni Gupta
Abstract:
Identity verification of authentic persons by their multiview faces is a real valued problem in machine vision. Multiview faces are having difficulties due to non-linear representation in the feature space. This paper illustrates the usability of the generalization of LDA in the form of canonical covariate for face recognition to multiview faces. In the proposed work, the Gabor filter bank is used to extract facial features that characterized by spatial frequency, spatial locality and orientation. Gabor face representation captures substantial amount of variations of the face instances that often occurs due to illumination, pose and facial expression changes. Convolution of Gabor filter bank to face images of rotated profile views produce Gabor faces with high dimensional features vectors. Canonical covariate is then used to Gabor faces to reduce the high dimensional feature spaces into low dimensional subspaces. Finally, support vector machines are trained with canonical sub-spaces that contain reduced set of features and perform recognition task. The proposed system is evaluated with UMIST face database. The experiment results demonstrate the efficiency and robustness of the proposed system with high recognition rates.
Keywords: Biometrics, Multiview face Recognition, Gaborwavelets, LDA, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150371 FSM-based Recognition of Dynamic Hand Gestures via Gesture Summarization Using Key Video Object Planes
Authors: M. K. Bhuyan
Abstract:
The use of human hand as a natural interface for humancomputer interaction (HCI) serves as the motivation for research in hand gesture recognition. Vision-based hand gesture recognition involves visual analysis of hand shape, position and/or movement. In this paper, we use the concept of object-based video abstraction for segmenting the frames into video object planes (VOPs), as used in MPEG-4, with each VOP corresponding to one semantically meaningful hand position. Next, the key VOPs are selected on the basis of the amount of change in hand shape – for a given key frame in the sequence the next key frame is the one in which the hand changes its shape significantly. Thus, an entire video clip is transformed into a small number of representative frames that are sufficient to represent a gesture sequence. Subsequently, we model a particular gesture as a sequence of key frames each bearing information about its duration. These constitute a finite state machine. For recognition, the states of the incoming gesture sequence are matched with the states of all different FSMs contained in the database of gesture vocabulary. The core idea of our proposed representation is that redundant frames of the gesture video sequence bear only the temporal information of a gesture and hence discarded for computational efficiency. Experimental results obtained demonstrate the effectiveness of our proposed scheme for key frame extraction, subsequent gesture summarization and finally gesture recognition.
Keywords: Hand gesture, MPEG-4, Hausdorff distance, finite state machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202770 Scenarios for a Sustainable Energy Supply Results of a Case Study for Austria
Authors: Petra Wächter
Abstract:
A comprehensive discussion of feasible strategies for sustainable energy supply is urgently needed to achieve a turnaround of the current energy situation. The necessary fundamentals required for the development of a long term energy vision are lacking to a great extent due to the absence of reasonable long term scenarios that fulfill the requirements of climate protection and sustainable energy use. The contribution of the study is based on a search for sustainable energy paths in the long run for Austria. The analysis makes use of secondary data predominantly. The measures developed to avoid CO2 emissions and other ecological risk factors vary to a great extent among all economic sectors. This is shown by the calculation of CO2 cost of abatement curves. In this study it is demonstrated that the most effective technical measures with the lowest CO2 abatement costs yield solutions to the current energy problems. Various scenarios are presented concerning the question how the technological and environmental options for a sustainable energy system for Austria could look like in the long run. It is shown how sustainable energy can be supplied even with today-s technological knowledge and options available. The scenarios developed include an evaluation of the economic costs and ecological impacts. The results are not only applicable to Austria but demonstrate feasible and cost efficient ways towards a sustainable future.
Keywords: Cost of CO2 Abatement, Energy Economics, Energy Efficiency, Renewable Energy Technologies, Sustainable Energy and Development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166369 Extraction of Data from Web Pages: A Vision Based Approach
Authors: P. S. Hiremath, Siddu P. Algur
Abstract:
With the explosive growth of information sources available on the World Wide Web, it has become increasingly difficult to identify the relevant pieces of information, since web pages are often cluttered with irrelevant content like advertisements, navigation-panels, copyright notices etc., surrounding the main content of the web page. Hence, tools for the mining of data regions, data records and data items need to be developed in order to provide value-added services. Currently available automatic techniques to mine data regions from web pages are still unsatisfactory because of their poor performance and tag-dependence. In this paper a novel method to extract data items from the web pages automatically is proposed. It comprises of two steps: (1) Identification and Extraction of the data regions based on visual clues information. (2) Identification of data records and extraction of data items from a data region. For step1, a novel and more effective method is proposed based on visual clues, which finds the data regions formed by all types of tags using visual clues. For step2 a more effective method namely, Extraction of Data Items from web Pages (EDIP), is adopted to mine data items. The EDIP technique is a list-based approach in which the list is a linear data structure. The proposed technique is able to mine the non-contiguous data records and can correctly identify data regions, irrespective of the type of tag in which it is bound. Our experimental results show that the proposed technique performs better than the existing techniques.
Keywords: Web data records, web data regions, web mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190168 Implementing a Visual Servoing System for Robot Controlling
Authors: Maryam Vafadar, Alireza Behrad, Saeed Akbari
Abstract:
Nowadays, with the emerging of the new applications like robot control in image processing, artificial vision for visual servoing is a rapidly growing discipline and Human-machine interaction plays a significant role for controlling the robot. This paper presents a new algorithm based on spatio-temporal volumes for visual servoing aims to control robots. In this algorithm, after applying necessary pre-processing on video frames, a spatio-temporal volume is constructed for each gesture and feature vector is extracted. These volumes are then analyzed for matching in two consecutive stages. For hand gesture recognition and classification we tested different classifiers including k-Nearest neighbor, learning vector quantization and back propagation neural networks. We tested the proposed algorithm with the collected data set and results showed the correct gesture recognition rate of 99.58 percent. We also tested the algorithm with noisy images and algorithm showed the correct recognition rate of 97.92 percent in noisy images.Keywords: Back propagation neural network, Feature vector, Hand gesture recognition, k-Nearest Neighbor, Learning vector quantization neural network, Robot control, Spatio-temporal volume, Visual servoing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167067 The Effect of Sport Specific Exercises on the Visual Skills of Rugby Players
Authors: P.J. Du Toit, P. Janse Van Vuuren , S. Le Roux , E. Henning, M. Kleynhans, H.C. Terblanche, D. Crafford, C. Grobbelaar, P.S. Wood, C.C. Grant, L. Fletcher
Abstract:
Introduction: Visual performance is an important factor in sport excellence. Visual involvement in a sport varies according to environmental demands associated with that sport. These environmental demands are matched by a task specific motor response. The purpose of this study was to determine if sport specific exercises will improve the visual performance of male rugby players, in order to achieve maximal results on the sports field. Materials & Methods: Twenty six adult male rugby players, aged 16-22, were chosen as subjects. In order to evaluate the effect of sport specific exercises on visual skills, a pre-test - post-test experimental group design was adopted for the study. Results: Significant differences (p≤0.05) were seen in the focussing, tracking, vergence, sequencing, eye-hand coordination and visualisation components Discussion & Conclusions: Sport specific exercises improved visual skills in rugby players which may provide them with an advantage over their opponents. This study suggests that these training programs and participation in regular on-line EyeDrills sports vision exercises (www.eyedrills.co.za) aimed at improving the athlete-s visual coordination, concentration, focus, hand-eye co-ordination, anticipation and motor response should be incorpotated in the rugby players exercise regime.
Keywords: Rugby players, sport specific exercises, visual skills.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 225766 Low-Cost Mechatronic Design of an Omnidirectional Mobile Robot
Authors: S. Cobos-Guzman
Abstract:
This paper presents the results of a mechatronic design based on a 4-wheel omnidirectional mobile robot that can be used in indoor logistic applications. The low-level control has been selected using two open-source hardware (Raspberry Pi 3 Model B+ and Arduino Mega 2560) that control four industrial motors, four ultrasound sensors, four optical encoders, a vision system of two cameras, and a Hokuyo URG-04LX-UG01 laser scanner. Moreover, the system is powered with a lithium battery that can supply 24 V DC and a maximum current-hour of 20Ah.The Robot Operating System (ROS) has been implemented in the Raspberry Pi and the performance is evaluated with the selection of the sensors and hardware selected. The mechatronic system is evaluated and proposed safe modes of power distribution for controlling all the electronic devices based on different tests. Therefore, based on different performance results, some recommendations are indicated for using the Raspberry Pi and Arduino in terms of power, communication, and distribution of control for different devices. According to these recommendations, the selection of sensors is distributed in both real-time controllers (Arduino and Raspberry Pi). On the other hand, the drivers of the cameras have been implemented in Linux and a python program has been implemented to access the cameras. These cameras will be used for implementing a deep learning algorithm to recognize people and objects. In this way, the level of intelligence can be increased in combination with the maps that can be obtained from the laser scanner.
Keywords: Autonomous, indoor robot, mechatronic, omnidirectional robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58665 Resilient Manufacturing: Use of Augmented Reality to Advance Training and Operating Practices in Manual Assembly
Authors: L. C. Moreira, M. Kauffman
Abstract:
This paper outlines the results of an experimental research on deploying an emerging augmented reality (AR) system for real-time task assistance (or work instructions) of highly customised and high-risk manual operations. The focus is on human operators’ training effectiveness and performance and the aim is to test if such technologies can support enhancing the knowledge retention levels and accuracy of task execution to improve health and safety (H&S). An AR enhanced assembly method is proposed and experimentally tested using a real industrial process as case study for electric vehicles’ (EV) battery module assembly. The experimental results revealed that the proposed method improved the training practices and performance through increases in the knowledge retention levels from 40% to 84%, and accuracy of task execution from 20% to 71%, when compared to the traditional paper-based method. The results of this research validate and demonstrate how emerging technologies are advancing the choice for manual, hybrid or fully automated processes by promoting the XR-assisted processes, and the connected worker (a vision for Industry 4 and 5.0), and supporting manufacturing become more resilient in times of constant market changes.
Keywords: Augmented reality, extended reality, connected worker, XR-assisted operator, manual assembly 4.0, industry 5.0, smart training, battery assembly.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37964 Effect of Sensory Manipulations on Human Joint Stiffness Strategy and Its Adaptation for Human Dynamic Stability
Authors: Aizreena Azaman, Mai Ishibashi, Masanori Ishizawa, Shin-Ichiroh Yamamoto
Abstract:
Sensory input plays an important role to human posture control system to initiate strategy in order to counterpart any unbalance condition and thus, prevent fall. In previous study, joint stiffness was observed able to describe certain issues regarding to movement performance. But, correlation between balance ability and joint stiffness is still remains unknown. In this study, joint stiffening strategy at ankle and hip were observed under different sensory manipulations and its correlation with conventional clinical test (Functional Reach Test) for balance ability was investigated. In order to create unstable condition, two different surface perturbations (tilt up-tilt (TT) down and forward-backward (FB)) at four different frequencies (0.2, 0.4, 0.6 and 0.8 Hz) were introduced. Furthermore, four different sensory manipulation conditions (include vision and vestibular system) were applied to the subject and they were asked to maintain their position as possible. The results suggested that joint stiffness were high during difficult balance situation. Less balance people generated high average joint stiffness compared to balance people. Besides, adaptation of posture control system under repetitive external perturbation also suggested less during sensory limited condition. Overall, analysis of joint stiffening response possible to predict unbalance situation faced by human
Keywords: Balance ability, joint stiffness, sensory, adaptation, dynamic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195363 Investigating the Usability of a University Website from the Users’ Perspective: An Empirical Study of Benue State University Website
Authors: Abraham Undu, Stephen Akuma
Abstract:
Websites are becoming a major component of an organization’s success in our ever globalizing competitive world. The website symbolizes an organization, interacting or projecting an organization’s principles, culture, values, vision, and perspectives. It is an interface connecting organizations and their clients. The university, as an academic institution, makes use of a website to communicate and offer computing services to its stakeholders (students, staff, host community, university management etc). Unfortunately, website designers often give more consideration to the technology, organizational structure and business objectives of the university than to the usability of the site. Website designers end up designing university websites which do not meet the needs of the primary users. This empirical study investigated the Benue State University website from the point view of students. This research was realized by using a standardized website usability questionnaire based on the five factors of usability defined by WAMMI (Website Analysis and Measurement Inventory): attractiveness, controllability, efficiency, learnability and helpfulness. The result of the investigation showed that the university website (https://portal.bsum.edu.ng/) has neutral usability level because of the usability issues associated with the website. The research recommended feasible solutions to improve the usability of the website from the users’ perspective and also provided a modified usability model that will be used for better evaluation of the Benue State University website.
Keywords: Usability, usability factors, university websites, user’s perspective, WAMMI, modified usability model, Benue State University.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 106262 A Framework for University Social Responsibility and Sustainability: The Case of South Valley University, Egypt
Authors: Alaa Tag Eldin Mohamed
Abstract:
The environmental, cultural, social, and technological changes have led higher education institutes to question their traditional roles. Many declarations and frameworks highlight the importance of fulfilling social responsibility of higher education institutes. The study aims at developing a framework of university social responsibility and sustainability (USR&S) with focus on South Valley University (SVU) as a case study of Egyptian Universities. The study used meetings with 12 vice deans of community services and environmental affairs on social responsibility and environmental issues. The proposed framework integrates social responsibility with strategic management through the establishment and maintenance of the vision, mission, values, goals and management systems; elaboration of policies; provision of actions; evaluation of services and development of social collaboration with stakeholders to meet current and future needs of the community and environment. The framework links between different stakeholders internally and externally using communication and reporting tools. The results show that SVU integrates social responsibility and sustainability in its strategic plans. It has policies and actions however fragmented and lack of appropriate structure and budgeting. The proposed framework could be valuable for researchers and decision makers of the Egyptian Universities. The study proposed recommendations and highlighted building on the results and conducting future research.Keywords: Corporate social responsibility (CSR), South Valley University, Sustainable University, university social responsibility and sustainability (USR&S).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 410761 Nuclear Medical Image Treatment System Based On FPGA in Real Time
Authors: B. Mahmoud, M.H. Bedoui, R. Raychev, H. Essabbah
Abstract:
We present in this paper an acquisition and treatment system designed for semi-analog Gamma-camera. It consists of a nuclear medical Image Acquisition, Treatment and Display chain(IATD) ensuring the acquisition, the treatment of the signals(resulting from the Gamma-camera detection head) and the scintigraphic image construction in real time. This chain is composed by an analog treatment board and a digital treatment board. We describe the designed systems and the digital treatment algorithms in which we have improved the performance and the flexibility. The digital treatment algorithms are implemented in a specific reprogrammable circuit FPGA (Field Programmable Gate Array).interface for semi-analog cameras of Sopha Medical Vision(SMVi) by taking as example SOPHY DS7. The developed system consists of an Image Acquisition, Treatment and Display (IATD) ensuring the acquisition and the treatment of the signals resulting from the DH. The developed chain is formed by a treatment analog board and a digital treatment board designed around a DSP [2]. In this paper we have presented the architecture of a new version of our chain IATD in which the integration of the treatment algorithms is executed on an FPGA (Field Programmable Gate Array)
Keywords: Nuclear medical image, scintigraphic image, digitaltreatment, linearity, spectrometry, FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167660 Proposing of an Adaptable Land Readjustment Model for Developing of the Informal Settlements in Kabul City
Authors: Habibi Said Mustafa, Hiroko Ono
Abstract:
Since 2006, Afghanistan is dealing with one of the most dramatic trend of urban movement in its history, cities and towns are expanding in size and number. Kabul is the capital of Afghanistan and as well as the fast-growing city in the Asia. The influx of the returnees from neighbor countries and other provinces of Afghanistan caused high rate of artificial growth which slums increased. As an unwanted consequence of this growth, today informal settlements have covered a vast portion of the city. Land Readjustment (LR) has proved to be an important tool for developing informal settlements and reorganizing urban areas but its implementation always varies from country to country and region to region within the countries. Consequently, to successfully develop the informal settlements in Kabul, we need to define an Afghan model of LR specifically for Afghanistan which needs to incorporate all those factors related to the socio-economic condition of the country. For this purpose, a part of the old city of Kabul has selected as a study area which is located near the Central Business District (CBD). After the further analysis and incorporating all needed factors, the result shows a positive potential for the implementation of an adaptable Land Readjustment model for Kabul city which is more sustainable and socio-economically friendly. It will enhance quality of life and provide better urban services for the residents. Moreover, it will set a vision and criteria by which sustainable developments shall proceed in other similar informal settlements of Kabul.
Keywords: Adaptation, informal settlements, Kabul, land readjustment, preservation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 133159 Pilot Study on the Impact of VLE on Mathematical Concepts Acquisition within Secondary Education in England
Authors: Aaron A. R. Nwabude
Abstract:
The research investigates the “impact of VLE on mathematical concepts acquisition of the special education needs (SENs) students at KS4 secondary education sector" in England. The overall aim of the study is to establish possible areas of difficulties to approach for above or below knowledge standard requirements for KS4 students in the acquisition and validation of basic mathematical concepts. A teaching period, in which virtual learning environment (Fronter) was used to emphasise different mathematical perception and symbolic representation was carried out and task based survey conducted to 20 special education needs students [14 actually took part]. The result shows that students were able to process information and consider images, objects and numbers within the VLE at early stages of acquisition process. They were also able to carry out perceptual tasks but with limiting process of different quotient, thus they need teacher-s guidance to connect them to symbolic representations and sometimes coach them through. The pilot study further indicates that VLE curriculum approaches for students were minutely aligned with mathematics teaching which does not emphasise the integration of VLE into the existing curriculum and current teaching practice. There was also poor alignment of vision regarding the use of VLE in realisation of the objectives of teaching mathematics by the management. On the part of teacher training, not much was done to develop teacher-s skills in the technical and pedagogical aspects of VLE that is in-use at the school. The classroom observation confirmed teaching practice will find a reliance on VLE as an enhancer of mathematical skills, providing interaction and personalisation of learning to SEN students.
Keywords: VLE, Mathematical Concepts Acquisition, PilotStudy, SENs, KS4, Education, Teacher
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453