@article{(Open Science Index):https://publications.waset.org/pdf/4451,
	  title     = {3D Star Skeleton for Fast Human Posture Representation},
	  author    = {Sungkuk Chun and  Kwangjin Hong and  Keechul Jung},
	  country	= {},
	  institution	= {},
	  abstract     = {In this paper, we propose an improved 3D star skeleton
technique, which is a suitable skeletonization for human posture representation
and reflects the 3D information of human posture.
Moreover, the proposed technique is simple and then can be performed
in real-time. The existing skeleton construction techniques, such as
distance transformation, Voronoi diagram, and thinning, focus on the
precision of skeleton information. Therefore, those techniques are not
applicable to real-time posture recognition since they are computationally
expensive and highly susceptible to noise of boundary. Although
a 2D star skeleton was proposed to complement these problems,
it also has some limitations to describe the 3D information of the
posture. To represent human posture effectively, the constructed skeleton
should consider the 3D information of posture. The proposed 3D
star skeleton contains 3D data of human, and focuses on human action
and posture recognition. Our 3D star skeleton uses the 8 projection
maps which have 2D silhouette information and depth data of human
surface. And the extremal points can be extracted as the features of 3D
star skeleton, without searching whole boundary of object. Therefore,
on execution time, our 3D star skeleton is faster than the “greedy" 3D
star skeleton using the whole boundary points on the surface. Moreover,
our method can offer more accurate skeleton of posture than the
existing star skeleton since the 3D data for the object is concerned.
Additionally, we make a codebook, a collection of representative 3D
star skeletons about 7 postures, to recognize what posture of constructed
skeleton is.},
	    journal   = {International Journal of Computer and Information Engineering},
	  volume    = {2},
	  number    = {8},
	  year      = {2008},
	  pages     = {2603 - 2612},
	  ee        = {https://publications.waset.org/pdf/4451},
	  url   	= {https://publications.waset.org/vol/20},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 20, 2008},
	}