Search results for: noise performance.
6074 Steady State Rolling and Dynamic Response of a Tire at Low Frequency
Authors: Md Monir Hossain, Anne Staples, Kuya Takami, Tomonari Furukawa
Abstract:
Tire noise has a significant impact on ride quality and vehicle interior comfort, even at low frequency. Reduction of tire noise is especially important due to strict state and federal environmental regulations. The primary sources of tire noise are the low frequency structure-borne noise and the noise that originates from the release of trapped air between the tire tread and road surface during each revolution of the tire. The frequency response of the tire changes at low and high frequency. At low frequency, the tension and bending moment become dominant, while the internal structure and local deformation become dominant at higher frequencies. Here, we analyze tire response in terms of deformation and rolling velocity at low revolution frequency. An Abaqus FEA finite element model is used to calculate the static and dynamic response of a rolling tire under different rolling conditions. The natural frequencies and mode shapes of a deformed tire are calculated with the FEA package where the subspace-based steady state dynamic analysis calculates dynamic response of tire subjected to harmonic excitation. The analysis was conducted on the dynamic response at the road (contact point of tire and road surface) and side nodes of a static and rolling tire when the tire was excited with 200 N vertical load for a frequency ranging from 20 to 200 Hz. The results show that frequency has little effect on tire deformation up to 80 Hz. But between 80 and 200 Hz, the radial and lateral components of displacement of the road and side nodes exhibited significant oscillation. For the static analysis, the fluctuation was sharp and frequent and decreased with frequency. In contrast, the fluctuation was periodic in nature for the dynamic response of the rolling tire. In addition to the dynamic analysis, a steady state rolling analysis was also performed on the tire traveling at ground velocity with a constant angular motion. The purpose of the computation was to demonstrate the effect of rotating motion on deformation and rolling velocity with respect to a fixed Newtonian reference point. The analysis showed a significant variation in deformation and rolling velocity due to centrifugal and Coriolis acceleration with respect to a fixed Newtonian point on ground.Keywords: Natural frequency, rotational motion, steady state rolling, subspace-based steady state dynamic analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13216073 An Approach to Physical Performance Analysis for Judo
Authors: Stefano Frassinelli, Alessandro Niccolai, Riccardo E. Zich
Abstract:
Sport performance analysis is a technique that is becoming every year more important for athletes of every level. Many techniques have been developed to measure and analyse efficiently the performance of athletes in some sports, but in combat sports these techniques found in many times their limits, due to the high interaction between the two opponents during the competition. In this paper the problem will be framed. Moreover the physical performance measurement problem will be analysed and three different techniques to manage it will be presented. All the techniques have been used to analyse the performance of 22 high level Judo athletes.Keywords: Sport performance, physical performance, judo, performance coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13116072 Studies of Rule Induction by STRIM from the Decision Table with Contaminated Attribute Values from Missing Data and Noise — In the Case of Critical Dataset Size —
Authors: Tetsuro Saeki, Yuichi Kato, Shoutarou Mizuno
Abstract:
STRIM (Statistical Test Rule Induction Method) has been proposed as a method to effectively induct if-then rules from the decision table which is considered as a sample set obtained from the population of interest. Its usefulness has been confirmed by simulation experiments specifying rules in advance, and by comparison with conventional methods. However, scope for future development remains before STRIM can be applied to the analysis of real-world data sets. The first requirement is to determine the size of the dataset needed for inducting true rules, since finding statistically significant rules is the core of the method. The second is to examine the capacity of rule induction from datasets with contaminated attribute values created by missing data and noise, since real-world datasets usually contain such contaminated data. This paper examines the first problem theoretically, in connection with the rule length. The second problem is then examined in a simulation experiment, utilizing the critical size of dataset derived from the first step. The experimental results show that STRIM is highly robust in the analysis of datasets with contaminated attribute values, and hence is applicable to real-world data
Keywords: Rule induction, decision table, missing data, noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14646071 Effect of Lubrication on the Quantity of Heat Emission of two Spur Gears in Meshing
Authors: S. A. M. Elshourbagy
Abstract:
This paper investigates the effects of lubrication on the quantity of heat emission of two spur gear. System with and without lubrication effected on the quantity of heat induced on the gear box (oil - bearings – gears). Both of lubrication and speed of motor are affected on the performance of gears. Research investigated the lubrication on the system with and without loading as well as the wear of gears and bearing's conditions. Gear box investigated includes the motor, pump, two spur gears, two shafts; speed change used pulleys and belts. Load used equal one weight ones of gear. Lubrication mechanism used jet system (upper and lower jet). Gear box we used system of jet lubrication is perpendicular direction of the contact line between two teeth. Results appeared in this work that the lubrication is the vital parameter which is affected on the performance and durability of gears and bearings. In macroscopic observation, we noted that damage of bearings happened during the absence of lubrication as well as abrasive of wear of teeth. Higher speed of motor without lubrication increased the noise, but in the presence of lubrication was decreased.Keywords: Lubrication, jet, laser gun, spur gear, temperature
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17306070 Restoration of Noisy Document Images with an Efficient Bi-Level Adaptive Thresholding
Authors: Abhijit Mitra
Abstract:
An effective approach for extracting document images from a noisy background is introduced. The entire scheme is divided into three sub- stechniques – the initial preprocessing operations for noise cluster tightening, introduction of a new thresholding method by maximizing the ratio of stan- dard deviations of the combined effect on the image to the sum of weighted classes and finally the image restoration phase by image binarization utiliz- ing the proposed optimum threshold level. The proposed method is found to be efficient compared to the existing schemes in terms of computational complexity as well as speed with better noise rejection.
Keywords: Document image extraction, Preprocessing, Ratio of stan-dard deviations, Bi-level adaptive thresholding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14576069 Continuous Wave Interference Effects on Global Position System Signal Quality
Authors: Fang Ye, Han Yu, Yibing Li
Abstract:
Radio interference is one of the major concerns in using the global positioning system (GPS) for civilian and military applications. Interference signals are produced not only through all electronic systems but also illegal jammers. Among different types of interferences, continuous wave (CW) interference has strong adverse impacts on the quality of the received signal. In this paper, we make more detailed analysis for CW interference effects on GPS signal quality. Based on the C/A code spectrum lines, the influence of CW interference on the acquisition performance of GPS receivers is further analysed. This influence is supported by simulation results using GPS software receiver. As the most important user parameter of GPS receivers, the mathematical expression of bit error probability is also derived in the presence of CW interference, and the expression is consistent with the Monte Carlo simulation results. The research on CW interference provides some theoretical gist and new thoughts on monitoring the radio noise environment and improving the anti-jamming ability of GPS receivers.Keywords: GPS, CW interference, acquisition performance, bit error probability, Monte Carlo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18826068 Performance Evaluation of Complex Electrical Bio-impedance from V/I Four-electrode Measurements
Authors: Towfeeq Fairooz, Salim Istyaq
Abstract:
The passive electrical properties of a tissue depends on the intrinsic constituents and its structure, therefore by measuring the complex electrical impedance of the tissue it might be possible to obtain indicators of the tissue state or physiological activity [1]. Complete bio-impedance information relative to physiology and pathology of a human body and functional states of the body tissue or organs can be extracted by using a technique containing a fourelectrode measurement setup. This work presents the estimation measurement setup based on the four-electrode technique. First, the complex impedance is estimated by three different estimation techniques: Fourier, Sine Correlation and Digital De-convolution and then estimation errors for the magnitude, phase, reactance and resistance are calculated and analyzed for different levels of disturbances in the observations. The absolute values of relative errors are plotted and the graphical performance of each technique is compared.Keywords: Electrical Impedance, Fast Fourier Transform, Additive White Gaussian Noise, Total Least Square, Digital De-Convolution, Sine-Correlation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27336067 Integration of Support Vector Machine and Bayesian Neural Network for Data Mining and Classification
Authors: Essam Al-Daoud
Abstract:
Several combinations of the preprocessing algorithms, feature selection techniques and classifiers can be applied to the data classification tasks. This study introduces a new accurate classifier, the proposed classifier consist from four components: Signal-to- Noise as a feature selection technique, support vector machine, Bayesian neural network and AdaBoost as an ensemble algorithm. To verify the effectiveness of the proposed classifier, seven well known classifiers are applied to four datasets. The experiments show that using the suggested classifier enhances the classification rates for all datasets.Keywords: AdaBoost, Bayesian neural network, Signal-to-Noise, support vector machine, MCMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20206066 Performance Management Guide for Research and Development Process
Authors: Heejung Lee
Abstract:
Performance management seems to be essential in business area and is also an exciting topic. Despite significant and myriads of research efforts, performance management guide today as a rigorous approach is still in an immature state and metrics are often selected based on intuitive and heuristic approach. In R&D side, the difficulty to guide the proper performance management is even more increasing due to the natural characteristics of R&D such as unique or domain-specific problems. In our approach, we present R&D performance management guide considering various characteristics of R&D side: performance evaluation objectives, dimensions, metrics, and uncertainties of R&D sector.Keywords: Performance management, R&D, metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15506065 Single Input ANC for Suppression of Breath Sound
Authors: Yunjung Lee, Pil Un Kim, Gyhyoun Lee, Jin Ho Cho, Myoung Nam Kim
Abstract:
Various sounds generated in the chest are included in auscultation sound. Adaptive Noise Canceller (ANC) is one of the useful techniques for biomedical signal. But the ANC is not suitable for auscultation sound. Because the ANC needs two input channels as a primary signal and a reference signals, but a stethoscope can provide just one input sound. Therefore, in this paper, it was proposed the Single Input ANC (SIANC) for suppression of breath sound in a cardiac auscultation sound. For the SIANC, it was proposed that the reference generation system which included Heart Sound Detector, Control and Reference Generator. By experiment and comparison, it was confirmed that the proposed SIANC was efficient for heart sound enhancement and it was independent of variations of a heartbeat.Keywords: Adaptive noise canceller, Auscultation, Breath soundsuppression, Signal enhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14656064 Web Log Mining by an Improved AprioriAll Algorithm
Authors: Wang Tong, He Pi-lian
Abstract:
This paper sets forth the possibility and importance about applying Data Mining in Web logs mining and shows some problems in the conventional searching engines. Then it offers an improved algorithm based on the original AprioriAll algorithm which has been used in Web logs mining widely. The new algorithm adds the property of the User ID during the every step of producing the candidate set and every step of scanning the database by which to decide whether an item in the candidate set should be put into the large set which will be used to produce next candidate set. At the meantime, in order to reduce the number of the database scanning, the new algorithm, by using the property of the Apriori algorithm, limits the size of the candidate set in time whenever it is produced. Test results show the improved algorithm has a more lower complexity of time and space, better restrain noise and fit the capacity of memory.
Keywords: Candidate Sets Pruning, Data Mining, ImprovedAlgorithm, Noise Restrain, Web Log
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22816063 Speech Enhancement by Marginal Statistical Characterization in the Log Gabor Wavelet Domain
Authors: Suman Senapati, Goutam Saha
Abstract:
This work presents a fusion of Log Gabor Wavelet (LGW) and Maximum a Posteriori (MAP) estimator as a speech enhancement tool for acoustical background noise reduction. The probability density function (pdf) of the speech spectral amplitude is approximated by a Generalized Laplacian Distribution (GLD). Compared to earlier estimators the proposed method estimates the underlying statistical model more accurately by appropriately choosing the model parameters of GLD. Experimental results show that the proposed estimator yields a higher improvement in Segmental Signal-to-Noise Ratio (S-SNR) and lower Log-Spectral Distortion (LSD) in two different noisy environments compared to other estimators.Keywords: Speech Enhancement, Generalized Laplacian Distribution, Log Gabor Wavelet, Bayesian MAP Marginal Estimator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16296062 Measurement of Acoustic Loss in Nano-Layered Coating Developed for Thermal Noise Reduction
Authors: E. Cesarini, M. Lorenzini, R. Cardarelli, S. Chao, E. Coccia, V. Fafone, Y. Minenkow, I. Nardecchia, I. M. Pinto, A. Rocchi, V. Sequino, C. Taranto
Abstract:
Structural relaxation processes in optical coatings represent a fundamental limit to the sensitivity of gravitational waves detectors, MEMS, optical metrology and entangled state experiments. To face this problem, many research lines are now active, in particular the characterization of new materials and novel solutions to be employed as coatings in future gravitational wave detectors. Nano-layered coating deposition is among the most promising techniques. We report on the measurement of acoustic loss of nm-layered composites (Ti2O/SiO2), performed with the GeNS nodal suspension, compared with sputtered λ/4 thin films nowadays employed.
Keywords: Mechanical measurement, nanomaterials, optical coating, thermal noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18316061 Robust Ellipse Detection by Fitting Randomly Selected Edge Patches
Authors: Watcharin Kaewapichai, Pakorn Kaewtrakulpong
Abstract:
In this paper, a method to detect multiple ellipses is presented. The technique is efficient and robust against incomplete ellipses due to partial occlusion, noise or missing edges and outliers. It is an iterative technique that finds and removes the best ellipse until no reasonable ellipse is found. At each run, the best ellipse is extracted from randomly selected edge patches, its fitness calculated and compared to a fitness threshold. RANSAC algorithm is applied as a sampling process together with the Direct Least Square fitting of ellipses (DLS) as the fitting algorithm. In our experiment, the method performs very well and is robust against noise and spurious edges on both synthetic and real-world image data.
Keywords: Direct Least Square Fitting, Ellipse Detection, RANSAC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32286060 Design of a Telemetry, Tracking, and Command Radio-Frequency Receiver for Small Satellites Based on Commercial Off-The-Shelf Components
Authors: A. Lovascio, A. D’Orazio, V. Centonze
Abstract:
From several years till now the aerospace industry is developing more and more small satellites for Low-Earth Orbit (LEO) missions. Such satellites have a low cost of making and launching since they have a size and weight smaller than other types of satellites. However, because of size limitations, small satellites need integrated electronic equipment based on digital logic. Moreover, the LEOs require telecommunication modules with high throughput to transmit to earth a big amount of data in a short time. In order to meet such requirements, in this paper we propose a Telemetry, Tracking & Command module optimized through the use of the Commercial Off-The-Shelf components. The proposed approach exploits the major flexibility offered by these components in reducing costs and optimizing the performance. The method has been applied in detail for the design of the front-end receiver, which has a low noise figure (1.5 dB) and DC power consumption (smaller than 2 W). Such a performance is particularly attractive since it allows fulfilling the energy budget stringent constraints that are typical for LEO small platforms.
Keywords: COTS, small satellites, sub-sampling, TT&C.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7376059 Manifold Analysis by Topologically Constrained Isometric Embedding
Authors: Guy Rosman, Alexander M. Bronstein, Michael M. Bronstein, Ron Kimmel
Abstract:
We present a new algorithm for nonlinear dimensionality reduction that consistently uses global information, and that enables understanding the intrinsic geometry of non-convex manifolds. Compared to methods that consider only local information, our method appears to be more robust to noise. Unlike most methods that incorporate global information, the proposed approach automatically handles non-convexity of the data manifold. We demonstrate the performance of our algorithm and compare it to state-of-the-art methods on synthetic as well as real data.
Keywords: Dimensionality reduction, manifold learning, multidimensional scaling, geodesic distance, boundary detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14556058 Neural Network Ensemble-based Solar Power Generation Short-Term Forecasting
Authors: A. Chaouachi, R.M. Kamel, R. Ichikawa, H. Hayashi, K. Nagasaka
Abstract:
This paper presents the applicability of artificial neural networks for 24 hour ahead solar power generation forecasting of a 20 kW photovoltaic system, the developed forecasting is suitable for a reliable Microgrid energy management. In total four neural networks were proposed, namely: multi-layred perceptron, radial basis function, recurrent and a neural network ensemble consisting in ensemble of bagged networks. Forecasting reliability of the proposed neural networks was carried out in terms forecasting error performance basing on statistical and graphical methods. The experimental results showed that all the proposed networks achieved an acceptable forecasting accuracy. In term of comparison the neural network ensemble gives the highest precision forecasting comparing to the conventional networks. In fact, each network of the ensemble over-fits to some extent and leads to a diversity which enhances the noise tolerance and the forecasting generalization performance comparing to the conventional networks.Keywords: Neural network ensemble, Solar power generation, 24 hour forecasting, Comparative study
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32776057 The Effect of Response Feedback on Performance of Active Controlled Nonlinear Frames
Authors: M. Mohebbi, K. Shakeri
Abstract:
The effect of different combinations of response feedback on the performance of active control system on nonlinear frames has been studied in this paper. To this end different feedback combinations including displacement, velocity, acceleration and full response feedback have been utilized in controlling the response of an eight story bilinear hysteretic frame which has been subjected to a white noise excitation and controlled by eight actuators which could fully control the frame. For active control of nonlinear frame Newmark nonlinear instantaneous optimal control algorithm has been used which a diagonal matrix has been selected for weighting matrices in performance index. For optimal design of active control system while the objective has been to reduce the maximum drift to below the yielding level, Distributed Genetic Algorithm (DGA) has been used to determine the proper set of weighting matrices. The criteria to assess the effect of each combination of response feedback have been the minimum required control force to reduce the maximum drift to below the yielding drift. The results of numerical simulation show that the performance of active control system is dependent on the type of response feedback where the velocity feedback is more effective in designing optimal control system in comparison with displacement and acceleration feedback. Also using full feedback of response in controller design leads to minimum control force amongst other combinations. Also the distributed genetic algorithm shows acceptable convergence speed in solving the optimization problem of designing active control systems.Keywords: Active control, Distributed genetic algorithms, Response feedback, Weighting matrices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14066056 Explanatory of Relationship between Learning Motivation and Learning Performance
Authors: Chih Chin Yang
Abstract:
In this paper, the relationship between learning motivation and learning performance is explored by using exchange theory. The relationship is concluded that external performance can raise learning motivation and then increase learning performance. The internal performance should be not completely neglected and the external performance should be not attached important excessively. The parents need self-study and must be also reeducated. The existing education must be improved in raise of internal performance. The incorrect learning thinking will mislead the students, parents, and educators of next generation, when the students obtain good learning performance in the learning environment with excess stimulants. Over operation of external performance will result abnormal learning thinking and violating learning goal. Learning is not only to obtain performance. Learning quality and learning performance will be limited as without learning motivation. The best learning motivation is, the best learning performance is. The learning for reward is not good for learning performance. Strategies of promoting life-long learning are including the encouraging for learner, establishment of good interaction learning environment, and the advertisement of the merit and the importance of life-long learning, which can let the learner with the correct learning motivation.Keywords: exchange theory, learning motivation, learning performance, learning quality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16216055 Distance Estimation for Radar Systems Using DS-UWB Signals
Authors: Youngpo Lee, Seokho Yoon
Abstract:
In this paper, we propose a distance estimation scheme for radar systems using direct sequence ultra wideband (DS-UWB) signals. The proposed distance estimation scheme averages out the noise by accumulating the correlator outputs of the radar, and thus, helps the radar to employ a short-length DS-UWB signal reducing the correlation processing time. Numerical results confirm that the proposed distance estimation scheme provides a better estimation performance and a reduced correlation processing time compared with those of the conventional DS-UWB radars.
Keywords: Radar, DS-UWB, distance estimation, correlation accumulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20226054 Optimization of Proton Exchange Membrane Fuel Cell Parameters Based on Modified Particle Swarm Algorithms
Authors: M. Dezvarei, S. Morovati
Abstract:
In recent years, increasing usage of electrical energy provides a widespread field for investigating new methods to produce clean electricity with high reliability and cost management. Fuel cells are new clean generations to make electricity and thermal energy together with high performance and no environmental pollution. According to the expansion of fuel cell usage in different industrial networks, the identification and optimization of its parameters is really significant. This paper presents optimization of a proton exchange membrane fuel cell (PEMFC) parameters based on modified particle swarm optimization with real valued mutation (RVM) and clonal algorithms. Mathematical equations of this type of fuel cell are presented as the main model structure in the optimization process. Optimized parameters based on clonal and RVM algorithms are compared with the desired values in the presence and absence of measurement noise. This paper shows that these methods can improve the performance of traditional optimization methods. Simulation results are employed to analyze and compare the performance of these methodologies in order to optimize the proton exchange membrane fuel cell parameters.Keywords: Clonal algorithm, proton exchange membrane fuel cell, particle swarm optimization, real valued mutation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11806053 Signal Reconstruction Using Cepstrum of Higher Order Statistics
Authors: Adnan Al-Smadi, Mahmoud Smadi
Abstract:
This paper presents an algorithm for reconstructing phase and magnitude responses of the impulse response when only the output data are available. The system is driven by a zero-mean independent identically distributed (i.i.d) non-Gaussian sequence that is not observed. The additive noise is assumed to be Gaussian. This is an important and essential problem in many practical applications of various science and engineering areas such as biomedical, seismic, and speech processing signals. The method is based on evaluating the bicepstrum of the third-order statistics of the observed output data. Simulations results are presented that demonstrate the performance of this method.
Keywords: Cepstrum, bicepstrum, third order statistics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20376052 Blind Source Separation Using Modified Gaussian FastICA
Authors: V. K. Ananthashayana, Jyothirmayi M.
Abstract:
This paper addresses the problem of source separation in images. We propose a FastICA algorithm employing a modified Gaussian contrast function for the Blind Source Separation. Experimental result shows that the proposed Modified Gaussian FastICA is effectively used for Blind Source Separation to obtain better quality images. In this paper, a comparative study has been made with other popular existing algorithms. The peak signal to noise ratio (PSNR) and improved signal to noise ratio (ISNR) are used as metrics for evaluating the quality of images. The ICA metric Amari error is also used to measure the quality of separation.Keywords: Amari error, Blind Source Separation, Contrast function, Gaussian function, Independent Component Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17446051 Particle Filter Applied to Noisy Synchronization in Polynomial Chaotic Maps
Authors: Moussa Yahia, Pascal Acco, Malek Benslama
Abstract:
Polynomial maps offer analytical properties used to obtain better performances in the scope of chaos synchronization under noisy channels. This paper presents a new method to simplify equations of the Exact Polynomial Kalman Filter (ExPKF) given in [1]. This faster algorithm is compared to other estimators showing that performances of all considered observers vanish rapidly with the channel noise making application of chaos synchronization intractable. Simulation of ExPKF shows that saturation drawn on the emitter to keep it stable impacts badly performances for low channel noise. Then we propose a particle filter that outperforms all other Kalman structured observers in the case of noisy channels.
Keywords: Chaos synchronization, Saturation, Fast ExPKF, Particlefilter, Polynomial maps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12416050 Wavelet-Based ECG Signal Analysis and Classification
Authors: Madina Hamiane, May Hashim Ali
Abstract:
This paper presents the processing and analysis of ECG signals. The study is based on wavelet transform and uses exclusively the MATLAB environment. This study includes removing Baseline wander and further de-noising through wavelet transform and metrics such as signal-to noise ratio (SNR), Peak signal-to-noise ratio (PSNR) and the mean squared error (MSE) are used to assess the efficiency of the de-noising techniques. Feature extraction is subsequently performed whereby signal features such as heart rate, rise and fall levels are extracted and the QRS complex was detected which helped in classifying the ECG signal. The classification is the last step in the analysis of the ECG signals and it is shown that these are successfully classified as Normal rhythm or Abnormal rhythm. The final result proved the adequacy of using wavelet transform for the analysis of ECG signals.
Keywords: ECG Signal, QRS detection, thresholding, wavelet decomposition, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12746049 Method to Improve Channel Coding Using Cryptography
Authors: Ayyaz Mahmood
Abstract:
A new approach for the improvement of coding gain in channel coding using Advanced Encryption Standard (AES) and Maximum A Posteriori (MAP) algorithm is proposed. This new approach uses the avalanche effect of block cipher algorithm AES and soft output values of MAP decoding algorithm. The performance of proposed approach is evaluated in the presence of Additive White Gaussian Noise (AWGN). For the verification of proposed approach, computer simulation results are included.Keywords: Advanced Encryption Standard (AES), Avalanche Effect, Maximum A Posteriori (MAP), Soft Input Decryption (SID).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19476048 Mitigation of Electromagnetic Interference Generated by GPIB Control-Network in AC-DC Transfer Measurement System
Authors: M. M. Hlakola, E. Golovins, D. V. Nicolae
Abstract:
The field of instrumentation electronics is undergoing an explosive growth, due to its wide range of applications. The proliferation of electrical devices in a close working proximity can negatively influence each other’s performance. The degradation in the performance is due to electromagnetic interference (EMI). This paper investigates the negative effects of electromagnetic interference originating in the General Purpose Interface Bus (GPIB) control-network of the AC-DC transfer measurement system. Remedial measures of reducing measurement errors and failure of range of industrial devices due to EMI have been explored. The ACDC transfer measurement system was analysed for the commonmode (CM) EMI effects. Further investigation of coupling path as well as much accurate identification of noise propagation mechanism has been outlined. To prevent the occurrence of common-mode (ground loops) which was identified between the GPIB system control circuit and the measurement circuit, a microcontroller-driven GPIB switching isolator device was designed, prototyped, programmed and validated. This mitigation technique has been explored to reduce EMI effectively.Keywords: CM, EMI, GPIB, ground loops.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18256047 Technical Support of Intracranial Single Unit Activity Measurement
Authors: Richard Grünes, Karel Roubik
Abstract:
The article deals with technical support of intracranial single unit activity measurement. The parameters of the whole measuring set were tested in order to assure the optimal conditions of extracellular single-unit recording. Metal microelectrodes for measuring the single-unit were tested during animal experiments. From signals recorded during these experiments, requirements for the measuring set parameters were defined. The impedance parameters of the metal microelectrodes were measured. The frequency-gain and autonomous noise properties of preamplifier and amplifier were verified. The measurement and the description of the extracellular single unit activity could help in prognoses of brain tissue damage recovery.
Keywords: Measuring set, metal microelectrodes, single-unit, noise, impedance parameters, gain characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15356046 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System
Authors: Cheima Ben Soltane, Ittansa Yonas Kelbesa
Abstract:
Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.Keywords: Feature Extraction, Speaker Modeling, Feature Matching, Mel Frequency Cepstrum Coefficient (MFCC), Gaussian mixture model (GMM), Vector Quantization (VQ), Linde-Buzo-Gray (LBG), Expectation Maximization (EM), pre-processing, Voice Activity Detection (VAD), Short Time Energy (STE), Background Noise Statistical Modeling, Closed-Set Tex-Independent Speaker Identification System (CISI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18896045 Performance Appraisal System using Multifactorial Evaluation Model
Abstract:
Performance appraisal of employee is important in managing the human resource of an organization. With the change towards knowledge-based capitalism, maintaining talented knowledge workers is critical. However, management classification of “outstanding", “poor" and “average" performance may not be an easy decision. Besides that, superior might also tend to judge the work performance of their subordinates informally and arbitrarily especially without the existence of a system of appraisal. In this paper, we propose a performance appraisal system using multifactorial evaluation model in dealing with appraisal grades which are often express vaguely in linguistic terms. The proposed model is for evaluating staff performance based on specific performance appraisal criteria. The project was collaboration with one of the Information and Communication Technology company in Malaysia with reference to its performance appraisal process.Keywords: Multifactorial Evaluation Model, performance appraisal system, decision support system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4268