Search results for: ensemble machine learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2894

Search results for: ensemble machine learning

2564 E-Learning Methodology Development using Modeling

Authors: Sarma Cakula, Maija Sedleniece

Abstract:

Simulation and modeling computer programs are concerned with construction of models for analyzing different perspectives and possibilities in changing conditions environment. The paper presents theoretical justification and evaluation of qualitative e-learning development model in perspective of advancing modern technologies. There have been analyzed principles of qualitative e-learning in higher education, productivity of studying process using modern technologies, different kind of methods and future perspectives of e-learning in formal education. Theoretically grounded and practically tested model of developing e-learning methods using different technologies for different type of classroom, which can be used in professor-s decision making process to choose the most effective e-learning methods has been worked out.

Keywords: E-learning, modeling, E-learning methods development, personal knowledge management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
2563 Design and Simulation of Low Speed Axial Flux Permanent Magnet (AFPM) Machine

Authors: Ahmad Darabi, Hassan Moradi, Hossein Azarinfar

Abstract:

In this paper presented initial design of Low Speed Axial Flux Permanent Magnet (AFPM) Machine with Non-Slotted TORUS topology type by use of certain algorithm (Appendix). Validation of design algorithm studied by means of selected data of an initial prototype machine. Analytically design calculation carried out by means of design algorithm and obtained results compared with results of Finite Element Method (FEM).

Keywords: Axial Flux Permanent Magnet (AFPM) Machine, Design Algorithm, Finite Element Method (FEM), TORUS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3304
2562 Impacts of E-learning in Nursing Education: In the Light of Recent Studies

Authors: A.Ö. İlkay, C.O. Zeynep

Abstract:

Information and Communication Technologies (ICT) has changed our life and learn. ICT bares doors to new innovative methods to deliver education. E-learning is a part of ICT and has been endorsed as a tool for developing “21st century skills” in higher education. The aim of this review is to establish the impacts of e-learning in undergraduate nursing education. A systematic literature review was conducted to assess the impacts of e-learning in nursing education by using Akdeniz University electronic databases. According to results, we can decelerate that the nursing faculties cannot treat e-learning methods as a single tool. E-learning should be used with a good understanding of learners’ needs.

Keywords: E-learning, nursing education, systematic literature review.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4631
2561 Atmospheric Plasma Innovative Roll-to-Roll Machine for Continuous Materials

Authors: I. Kulyk, M. Stefan

Abstract:

Atmospheric plasma is emerging as a promising technology for many industrial sectors, because of its ecological and economic advantages respect to the traditional production processes. For textile industry, atmospheric plasma is becoming a valid alternative to the conventional wet processes, but the plasma machines realized so far do not allow the treatment of fibrous mechanically weak material. Novel atmospheric plasma machine for industrial applications, developed by VenetoNanotech SCpA in collaboration with Italian producer of corona equipment ME.RO SpA is presented. The main feature of this pre-industrial scale machine is the possibility of the inline plasma treatment of delicate fibrous substrates such as fibre sleeves, for example wool tops, cotton fibres, polymeric tows, mineral fibers and so on, avoiding burnings and disruption of the faint materials.

Keywords: Atmospheric plasma, industrial machine, fibrous materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
2560 Students’ Perceptions of Mobile Learning: Case Study of Kuwait

Authors: Rana AlHajri, Salah Al-Sharhan, Ahmed Al-Hunaiyyan

Abstract:

Mobile learning is a new learning landscape that offers opportunity for collaborative, personal, informal, and students’ centered learning environment. In implementing any learning system such as a mobile learning environment, learners’ expectations should be taken into consideration. However, there is a lack of studies on this aspect, particularly in the context of Kuwait higher education (HE) institutions. This study focused on how students perceive the use of mobile devices in learning. Although m-learning is considered as an effective educational tool in developed countries, it is not yet fully utilized in Kuwait. The study reports on the results of a survey conducted on 623 HE students in Kuwait to a better understand students' perceptions and opinions about the effectiveness of using mobile learning systems. An analysis of quantitative survey data is presented. The findings indicated that Kuwait HE students are very familiar with mobile devices and its applications. The results also reveal that students have positive perceptions of m-learning, and believe that video-based social media applications enhance the teaching and learning process.

Keywords: Higher education, mobile learning, social media, students’ perceptions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3431
2559 Learning Difficulties of Children with Disabilities

Authors: Chalise Kiran

Abstract:

The learning difficulties of children with disabilities are always a matter of concern when we talk about educational needs and quality education of children with disabilities. This paper is the outcome of the review of the literature focused on the educational needs and learning difficulties of children with disabilities. For the paper, different studies written on children with disabilities and their education were collected through search engines. The literature put together were analyzed from the angle of learning difficulties faced by children with disabilities and the same were used as a precursor to arrive at the findings on the learning of the children. The analysis showed that children with disabilities face learning difficulties. The reasons for these difficulties could be attributed to factors in terms of authority, structure, school environment and behaviors of teachers and parents and the society as a whole.

Keywords: Children with disabilities, learning difficulties, education of children with disabilities, disabled children.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 423
2558 Knowledge Mining in Web-based Learning Environments

Authors: Nittaya Kerdprasop, Kittisak Kerdprasop

Abstract:

The state of the art in instructional design for computer-assisted learning has been strongly influenced by advances in information technology, Internet and Web-based systems. The emphasis of educational systems has shifted from training to learning. The course delivered has also been changed from large inflexible content to sequential small chunks of learning objects. The concepts of learning objects together with the advanced technologies of Web and communications support the reusability, interoperability, and accessibility design criteria currently exploited by most learning systems. These concepts enable just-in-time learning. We propose to extend theses design criteria further to include the learnability concept that will help adapting content to the needs of learners. The learnability concept offers a better personalization leading to the creation and delivery of course content more appropriate to performance and interest of each learner. In this paper we present a new framework of learning environments containing knowledge discovery as a tool to automatically learn patterns of learning behavior from learners' profiles and history.

Keywords: Knowledge mining, Web-based learning, Learning environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
2557 A Novel Adaptive E-Learning Model Based on Developed Learner's Styles

Authors: Hazem M. El-Bakry, Ahmed A. Saleh, Taghreed T. Asfour

Abstract:

Adaptive e-learning today gives the student a central role in his own learning process. It allows learners to try things out, participate in courses like never before, and get more out of learning than before. In this paper, an adaptive e-learning model for logic design, simplification of Boolean functions and related fields is presented. Such model presents suitable courses for each student in a dynamic and adaptive manner using existing database and workflow technologies. The main objective of this research work is to provide an adaptive e-learning model based learners' personality using explicit and implicit feedback. To recognize the learner-s, we develop dimensions to decide each individual learning style in order to accommodate different abilities of the users and to develop vital skills. Thus, the proposed model becomes more powerful, user friendly and easy to use and interpret. Finally, it suggests a learning strategy and appropriate electronic media that match the learner-s preference.

Keywords: Adaptive learning, Learning styles, Teaching strategies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024
2556 Japanese Language Learning Strategies Based on Gender by Japanese Learners in North Sulawesi Indonesia

Authors: Sherly Ferro Lensun

Abstract:

Strategies influence the language abilities of both male and female learners in the learning process. Therefore, learning strategies are one of the critical factors for improving language learning and are essential as part of the initial learning effort. In general, language learning strategies differ between boys and girls. Therefore, this research aims to obtain a model that investigates the relationship between the selection of learning strategies, their frequency of use, and the learner's gender. In addition, we found differences in strategy use and their impact on language ability between males and females. 137 students participated and completed the questionnaire. There were 48 males (35%) and 90 females (65.7%). It was clear that most of the Japanese learners were women. Findings show that most Japanese learners in North Sulawesi used cognitive and social strategies and methods of involving others in learning Japanese.

Keywords: Learning strategies, Japanese Language, Gender by Japanese Learners, North sulawesi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 221
2555 A Study and Implementation of On-line Learning Diagnosis and Inquiry System

Authors: YuLung Wu

Abstract:

In Knowledge Structure Graph, each course unit represents a phase of learning activities. Both learning portfolios and Knowledge Structure Graphs contain learning information of students and let teachers know which content are difficulties and fails. The study purposes "Dual Mode On-line Learning Diagnosis System" that integrates two search methods: learning portfolio and knowledge structure. Teachers can operate the proposed system and obtain the information of specific students without any computer science background. The teachers can find out failed students in advance and provide remedial learning resources.

Keywords: Knowledge Structure Graph, On-line LearningDiagnosis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
2554 Analysis of Education Faculty Students’ Attitudes towards E-Learning According to Different Variables

Authors: Eyup Yurt, Ahmet Kurnaz, Ismail Sahin

Abstract:

The purpose of the study is to investigate the education faculty students’ attitudes towards e-learning according to different variables. In current study, the data were collected from 393 students of an education faculty in Turkey. In this study, theattitude towards e‐learning scale and the demographic information form were used to collect data. The collected data were analyzed by t-test, ANOVA and Pearson correlation coefficient. It was found that there is a significant difference in students’ tendency towards e-learning and avoidance from e-learning based on gender. Male students have more positive attitudes towards e-learning than female students. Also, the students who used the internet lesshave higher levels of avoidance from e-learning. Additionally, it is found that there is a positive and significant relationship between the number of personal mobile learning devices and tendency towards e-learning. On the other hand, there is a negative and significant relationship between the number of personal mobile learning devices and avoidance from e-learning. Also, suggestions were presented according to findings.

Keywords: Education faculty students, attitude towards e-learning, gender, daily Internet usage time, m-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
2553 Study of Syntactic Errors for Deep Parsing at Machine Translation

Authors: Yukiko Sasaki Alam, Shahid Alam

Abstract:

Syntactic parsing is vital for semantic treatment by many applications related to natural language processing (NLP), because form and content coincide in many cases. However, it has not yet reached the levels of reliable performance. By manually examining and analyzing individual machine translation output errors that involve syntax as well as semantics, this study attempts to discover what is required for improving syntactic and semantic parsing.

Keywords: Machine translation, error analysis, syntactic errors, knowledge required for parsing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247
2552 Technology Enhanced Learning: Fostering Cooperative Learning Through the Integration of Online Communication as Part of Teaching and Learning Experience

Authors: R.Ramli

Abstract:

This paper discusses ways to foster cooperative learning through the integration of online communication technology. While the education experts believe constructivism produces a more positive learning experience, the educators are still facing problems in getting students to participate due to numerous reasons such as shy personality, language and cultural barriers. This paper will look into the factors that lead to lack of participations among students and how technology can be implemented to overcome these issues.

Keywords: cooperative learning, encouraging class participation, education, online discussion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
2551 Methods for Case Maintenance in Case-Based Reasoning

Authors: A. Lawanna, J. Daengdej

Abstract:

Case-Based Reasoning (CBR) is one of machine learning algorithms for problem solving and learning that caught a lot of attention over the last few years. In general, CBR is composed of four main phases: retrieve the most similar case or cases, reuse the case to solve the problem, revise or adapt the proposed solution, and retain the learned cases before returning them to the case base for learning purpose. Unfortunately, in many cases, this retain process causes the uncontrolled case base growth. The problem affects competence and performance of CBR systems. This paper proposes competence-based maintenance method based on deletion policy strategy for CBR. There are three main steps in this method. Step 1, formulate problems. Step 2, determine coverage and reachability set based on coverage value. Step 3, reduce case base size. The results obtained show that this proposed method performs better than the existing methods currently discussed in literature.

Keywords: Case-Based Reasoning, Case Base Maintenance, Coverage, Reachability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
2550 Augmented Reality Sandbox and Constructivist Approach for Geoscience Teaching and Learning

Authors: Muhammad Nawaz, Sandeep N. Kundu, Farha Sattar

Abstract:

Augmented reality sandbox adds new dimensions to education and learning process. It can be a core component of geoscience teaching and learning to understand the geographic contexts and landform processes. Augmented reality sandbox is a useful tool not only to create an interactive learning environment through spatial visualization but also it can provide an active learning experience to students and enhances the cognition process of learning. Augmented reality sandbox can be used as an interactive learning tool to teach geomorphic and landform processes. This article explains the augmented reality sandbox and the constructivism approach for geoscience teaching and learning, and endeavours to explore the ways to teach the geographic processes using the three-dimensional digital environment for the deep learning of the geoscience concepts interactively.

Keywords: Augmented Reality Sandbox, constructivism, deep learning, geoscience.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
2549 Measuring E-Learning Effectiveness Using a Three-Way Comparison

Authors: Matthew Montebello

Abstract:

The way e-learning effectiveness has been notoriously measured within an academic setting is by comparing the e-learning medium to the traditional face-to-face teaching methodology. In this paper, a simple yet innovative comparison methodology is introduced, whereby the effectiveness of next generation e-learning systems are assessed in contrast not only to the face-to-face mode, but also to the classical e-learning modality. Ethical and logistical issues are also discussed, as this three-way approach to compare teaching methodologies was applied and documented in a real empirical study within a higher education institution.

Keywords: E-learning effectiveness, higher education, teaching modality comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394
2548 Deep Reinforcement Learning Approach for Trading Automation in the Stock Market

Authors: Taylan Kabbani, Ekrem Duman

Abstract:

Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining  the financial assets price ”prediction” step and the ”allocation” step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solved the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and achieved a 2.68 Sharpe ratio on the test dataset. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages of strategic decision-making.

Keywords: Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market, technical indicators, twin delayed deep deterministic policy gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524
2547 Information Sharing to Transformation: Antecedents of Collaborative Networked Learning in Manufacturing

Authors: Wee Hock Quik, Nevan Wright

Abstract:

Collaborative networked learning (hereafter CNL) was first proposed by Charles Findley in his work “Collaborative networked learning: online facilitation and software support" as part of instructional learning for the future of the knowledge worker. His premise was that through electronic dialogue learners and experts could interactively communicate within a contextual framework to resolve problems, and/or to improve product or process knowledge. Collaborative learning has always been the forefront of educational technology and pedagogical research, but not in the mainstream of operations management. As a result, there is a large disparity in the study of CNL, and little is known about the antecedents of network collaboration and sharing of information among diverse employees in the manufacturing environment. This paper presents a model to bridge the gap between theory and practice. The objective is that manufacturing organizations will be able to accelerate organizational learning and sharing of information through various collaborative

Keywords: Collaborative networked learning, Collaborative technologies, Organizational learning, Synchronous and asynchronous networked learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
2546 A TIPSO-SVM Expert System for Efficient Classification of TSTO Surrogates

Authors: Ali Sarosh, Dong Yun-Feng, Muhammad Umer

Abstract:

Fully reusable spaceplanes do not exist as yet. This implies that design-qualification for optimized highly-integrated forebody-inlet configuration of booster-stage vehicle cannot be based on archival data of other spaceplanes. Therefore, this paper proposes a novel TIPSO-SVM expert system methodology. A non-trivial problem related to optimization and classification of hypersonic forebody-inlet configuration in conjunction with mass-model of the two-stage-to-orbit (TSTO) vehicle is solved. The hybrid-heuristic machine learning methodology is based on two-step improved particle swarm optimizer (TIPSO) algorithm and two-step support vector machine (SVM) data classification method. The efficacy of method is tested by first evolving an optimal configuration for hypersonic compression system using TIPSO algorithm; thereafter, classifying the results using two-step SVM method. In the first step extensive but non-classified mass-model training data for multiple optimized configurations is segregated and pre-classified for learning of SVM algorithm. In second step the TIPSO optimized mass-model data is classified using the SVM classification. Results showed remarkable improvement in configuration and mass-model along with sizing parameters.

Keywords: TIPSO-SVM expert system, TIPSO algorithm, two-step SVM method, aerothermodynamics, mass-modeling, TSTO vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
2545 Matching-Based Cercospora Leaf Spot Detection in Sugar Beet

Authors: Rong Zhou, Shun’ich Kaneko, Fumio Tanaka, Miyuki Kayamori, Motoshige Shimizu

Abstract:

In this paper, we propose a robust disease detection method, called adaptive orientation code matching (Adaptive OCM), which is developed from a robust image registration algorithm: orientation code matching (OCM), to achieve continuous and site-specific detection of changes in plant disease. We use two-stage framework for realizing our research purpose; in the first stage, adaptive OCM was employed which could not only realize the continuous and site-specific observation of disease development, but also shows its excellent robustness for non-rigid plant object searching in scene illumination, translation, small rotation and occlusion changes and then in the second stage, a machine learning method of support vector machine (SVM) based on a feature of two dimensional (2D) xy-color histogram is further utilized for pixel-wise disease classification and quantification. The indoor experiment results demonstrate the feasibility and potential of our proposed algorithm, which could be implemented in real field situation for better observation of plant disease development.

Keywords: Cercospora Leaf Spot (CLS), Disease detection, Image processing, Orientation Code Matching (OCM), Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
2544 Understanding Cultural Influences: Principles for Personalized E-learning Systems

Authors: R. Boondao, A. J. Hurst, J. I. Sheard

Abstract:

In the globalized e-learning environment, students coming from different cultures and countries have different characteristics and require different support designed for their approaches to study and learning styles. This paper explores the ways in which cultural background influences students- approaches to study and learning styles. Participants in the study consisted of 131 eastern students and 54 western students from an Australian university. The students were tested using the Study Process Questionnaire (SPQ) for assessing their approaches to study and the Index of Learning Styles Questionnaire (ILS) for assessing their learning styles. The results of the study led to a set of principles being proposed to guide personalization of e-learning system design on the basis of cultural differences.

Keywords: Approaches to study, Cultural influences, Learningstyles, Personalization, e-learning system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
2543 Dynamic Measurement System Modeling with Machine Learning Algorithms

Authors: Changqiao Wu, Guoqing Ding, Xin Chen

Abstract:

In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.

Keywords: Dynamic system modeling, neural network, normal equation, second order gradient descent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
2542 Learning Theories within Coaching Process

Authors: P. Fazel

Abstract:

These days we face with so many advertisements in magazines, those mentioned coaching is pragmatic specialties which help people make change in their lives. Up to know Specialty coaches are not necessarily therapists, consultants or psychologist, thus they may not know psychological theories. The International Coach Federation identifies "facilitating learning and results" as one of its four core coach competencies, without understanding learning theories coaching practice hangs in theoretical abyss. Thus the aim of this article is investigating learning theories within coaching process. Therefore, I reviewed some cognitive and behavioral learning theories and analyzed their contribution with coaching process which has been introduced in mentor coaches and ICF certified coaches' papers and books. The result demonstrated that coaching profession is strongly grounded in learning theories, and it will be strengthened by the validation of theories and evidence-based research as we move forward. Thus, it needs more research in order to applying effective theoretical frameworks.

Keywords: Coaching, Learning theories. Cognitive learning theories, behavioral learning theories.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16424
2541 The use of ICT for Learning Guidance for Junior High School in Indonesia

Authors: Tri Prasetyaningrum, Suyoto

Abstract:

In this paper, we will be present Guidance and Councelling (GC) class action research. The research was done because a fact that some students are still learning ways such as in elementary school. The research objective is to enhance the value of “academic performance report" grade by using ICT as GC Learning Guidance services. The research method was carried out with two cycles. First cycle is applying Learning Guidance services indirectly and not programmed. Second cycle into two implementing Learning Guidance services indirectly, programmed and using ICTs primarily mobile phones and computer media applications i.e. “m-NingBK©: Learning Guidance" and “screen saver: Learning Guidance". A research subject is a class VII student who has the lowest value of “academic performance report". The result is by using an indirect GC services with ICT there were significant changes.

Keywords: ICT, Learning Guidance, action research and Guidance and Councelling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
2540 Modal Analysis of Machine Tool Column Using Finite Element Method

Authors: Migbar Assefa

Abstract:

The performance of a machine tool is eventually assessed by its ability to produce a component of the required geometry in minimum time and at small operating cost. It is customary to base the structural design of any machine tool primarily upon the requirements of static rigidity and minimum natural frequency of vibration. The operating properties of machines like cutting speed, feed and depth of cut as well as the size of the work piece also have to be kept in mind by a machine tool structural designer. This paper presents a novel approach to the design of machine tool column for static and dynamic rigidity requirement. Model evaluation is done effectively through use of General Finite Element Analysis software ANSYS. Studies on machine tool column are used to illustrate finite element based concept evaluation technique. This paper also presents results obtained from the computations of thin walled box type columns that are subjected to torsional and bending loads in case of static analysis and also results from modal analysis. The columns analyzed are square and rectangle based tapered open column, column with cover plate, horizontal partitions and with apertures. For the analysis purpose a total of 70 columns were analyzed for bending, torsional and modal analysis. In this study it is observed that the orientation and aspect ratio of apertures have no significant effect on the static and dynamic rigidity of the machine tool structure.

Keywords: Finite Element Modeling, Modal Analysis, Machine tool structure, Static Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5036
2539 An Interactive Tool for Teaching and Learning English at Upper Primary Level for Mauritius

Authors: Sameerchand Pudaruth, Avinash Mantaye

Abstract:

E-learning refers to the specific kind of learning experienced within the domain of educational technology, which can be used in or out of the classroom. In this paper, we give an overview of an e-learning platform 'An Innovative Interactive and Online English Platform for Upper Primary Students' is an interactive web-based application which will serve as an aid to the primary school students in Mauritius. The objectives of this platform are to offer quality learning resources for the English subject at our primary level of education, encourage self-learning and hence promote e-learning. The platform developed consists of several interesting features, for example, the English Verb Conjugation tool, Negative Form tool, Interrogative Form tool and Close Test Generator. Thus, this learning platform will be useful at a time where our country is looking for an alternative to private tuition and also, looking forward to increase the pass rate.

Keywords: educational technology, e-learning, Mauritius.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
2538 Finite Element Prediction on the Machining Stability of Milling Machine with Experimental Verification

Authors: Jui P. Hung, Yuan L. Lai, Hui T. You

Abstract:

Chatter vibration has been a troublesome problem for a machine tool toward the high precision and high speed machining. Essentially, the machining performance is determined by the dynamic characteristics of the machine tool structure and dynamics of cutting process, which can further be identified in terms of the stability lobe diagram. Therefore, realization on the machine tool dynamic behavior can help to enhance the cutting stability. To assess the dynamic characteristics and machining stability of a vertical milling system under the influence of a linear guide, this study developed a finite element model integrated the modeling of linear components with the implementation of contact stiffness at the rolling interface. Both the finite element simulations and experimental measurements reveal that the linear guide with different preload greatly affects the vibration behavior and milling stability of the vertical column spindle head system, which also clearly indicate that the predictions of the machining stability agree well with the cutting tests. It is believed that the proposed model can be successfully applied to evaluate the dynamics performance of machine tool systems of various configurations.

Keywords: Machining stability, Vertical milling machine, Linearguide, Contact stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644
2537 Named Entity Recognition using Support Vector Machine: A Language Independent Approach

Authors: Asif Ekbal, Sivaji Bandyopadhyay

Abstract:

Named Entity Recognition (NER) aims to classify each word of a document into predefined target named entity classes and is now-a-days considered to be fundamental for many Natural Language Processing (NLP) tasks such as information retrieval, machine translation, information extraction, question answering systems and others. This paper reports about the development of a NER system for Bengali and Hindi using Support Vector Machine (SVM). Though this state of the art machine learning technique has been widely applied to NER in several well-studied languages, the use of this technique to Indian languages (ILs) is very new. The system makes use of the different contextual information of the words along with the variety of features that are helpful in predicting the four different named (NE) classes, such as Person name, Location name, Organization name and Miscellaneous name. We have used the annotated corpora of 122,467 tokens of Bengali and 502,974 tokens of Hindi tagged with the twelve different NE classes 1, defined as part of the IJCNLP-08 NER Shared Task for South and South East Asian Languages (SSEAL) 2. In addition, we have manually annotated 150K wordforms of the Bengali news corpus, developed from the web-archive of a leading Bengali newspaper. We have also developed an unsupervised algorithm in order to generate the lexical context patterns from a part of the unlabeled Bengali news corpus. Lexical patterns have been used as the features of SVM in order to improve the system performance. The NER system has been tested with the gold standard test sets of 35K, and 60K tokens for Bengali, and Hindi, respectively. Evaluation results have demonstrated the recall, precision, and f-score values of 88.61%, 80.12%, and 84.15%, respectively, for Bengali and 80.23%, 74.34%, and 77.17%, respectively, for Hindi. Results show the improvement in the f-score by 5.13% with the use of context patterns. Statistical analysis, ANOVA is also performed to compare the performance of the proposed NER system with that of the existing HMM based system for both the languages.

Keywords: Named Entity (NE), Named Entity Recognition (NER), Support Vector Machine (SVM), Bengali, Hindi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3403
2536 Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees

Authors: Langa Hendrick Musawenkosi, Twala Bhekisipho

Abstract:

The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC.

Keywords: Academic environment model, decision trees, FSASEC, K-nearest neighbor, machine learning, popularity index, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137
2535 A Trainable Neural Network Ensemble for ECG Beat Classification

Authors: Atena Sajedin, Shokoufeh Zakernejad, Soheil Faridi, Mehrdad Javadi, Reza Ebrahimpour

Abstract:

This paper illustrates the use of a combined neural network model for classification of electrocardiogram (ECG) beats. We present a trainable neural network ensemble approach to develop customized electrocardiogram beat classifier in an effort to further improve the performance of ECG processing and to offer individualized health care. We process a three stage technique for detection of premature ventricular contraction (PVC) from normal beats and other heart diseases. This method includes a denoising, a feature extraction and a classification. At first we investigate the application of stationary wavelet transform (SWT) for noise reduction of the electrocardiogram (ECG) signals. Then feature extraction module extracts 10 ECG morphological features and one timing interval feature. Then a number of multilayer perceptrons (MLPs) neural networks with different topologies are designed. The performance of the different combination methods as well as the efficiency of the whole system is presented. Among them, Stacked Generalization as a proposed trainable combined neural network model possesses the highest recognition rate of around 95%. Therefore, this network proves to be a suitable candidate in ECG signal diagnosis systems. ECG samples attributing to the different ECG beat types were extracted from the MIT-BIH arrhythmia database for the study.

Keywords: ECG beat Classification; Combining Classifiers;Premature Ventricular Contraction (PVC); Multi Layer Perceptrons;Wavelet Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216