Search results for: power system analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16092

Search results for: power system analysis

15792 Investigations into Effect of Neural Network Predictive Control of UPFC for Improving Transient Stability Performance of Multimachine Power System

Authors: Sheela Tiwari, R. Naresh, R. Jha

Abstract:

The paper presents an investigation in to the effect of neural network predictive control of UPFC on the transient stability performance of a multimachine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers, and an improved damping of the power oscillations as compared to the conventional PI controller.

Keywords: Identification, Neural networks, Predictive control, Transient stability, UPFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2064
15791 Availability Analysis of a Power Plant by Computer Simulation

Authors: Mehmet Savsar

Abstract:

Reliability and availability of power stations are extremely important in order to achieve a required level of power generation. In particular, in the hot desert climate of Kuwait, reliable power generation is extremely important because of cooling requirements at temperatures exceeding 50-centigrade degrees. In this paper, a particular power plant, named Sabiya Power Plant, which has 8 steam turbines and 13 gas turbine stations, has been studied in detail; extensive data are collected; and availability of station units are determined. Furthermore, a simulation model is developed and used to analyze the effects of different maintenance policies on availability of these stations. The results show that significant improvements can be achieved in power plant availabilities if appropriate maintenance policies are implemented.

Keywords: Power plants, steam turbines, gas turbines, maintenance, availability, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
15790 Design of Controllers to Control Frequency for Distributed Generation

Authors: R. Satish, G. Raja Rao

Abstract:

In this paper a hybrid distributed generation (DG) system connected to isolated load is studied. The DG system consisting of photo voltaic (PV) system, fuel cells, aqua electrolyzer, diesel engine generator and a battery energy storage system. The ambient temperature value of PV is taken as constant to make the output power of PV is directly proportional to the radiation and output power of other DG sources and frequency of the system is controlled by simple integral (I), proportional plus integral (PI), and proportional plus integral and derivative(PID) controllers. A maiden attempt is made to apply a more recent and powerful optimization technique named as bacterial foraging technique for optimization of controllers gains of the proposed hybrid DG system. The system responses with bacterial foraging based controllers are compared with that of classical method. Investigations reveal that bacterial foraging based controllers gives better responses than the classical method and also PID controller is best. Sensitivity analysis is carried out which demonstrates the robustness of the optimized gain values for system loading condition.

Keywords: Aqua electrolyzer, bacterial foraging, battery energy storage system, diesel engine generator, distributed generation, fuel cells, photo voltaic system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186
15789 Experimental Analysis of Control in Electric Vehicle Charging Station Based Grid Tied Photovoltaic-Battery System

Authors: A. Hassoune, M. Khafallah, A. Mesbahi, T. Bouragba

Abstract:

This work presents an improved strategy of control for charging a lithium-ion battery in an electric vehicle charging station using two charger topologies i.e. single ended primary inductor converter (SEPIC) and forward converter. In terms of rapidity and accuracy, the power system consists of a topology/control diagram that would overcome the performance constraints, for instance the power instability, the battery overloading and how the energy conversion blocks would react efficiently to any kind of perturbations. Simulation results show the effectiveness of the proposed topologies operated with a power management algorithm based on voltage/peak current mode controls. In order to provide credible findings, a low power prototype is developed to test the control strategy via experimental evaluations of the converter topology and its controls.

Keywords: Battery charger, forward converter, lithium-ion, management algorithm, SEPIC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 727
15788 Modeling and Simulation of Utility Interfaced PV/Hydro Hybrid Electric Power System

Authors: P. V. V. Rama Rao, B. Kali Prasanna, Y. T. R. Palleswari

Abstract:

Renewable energy is derived from natural processes that are replenished constantly. Included in the definition is electricity and heat generated from solar, wind, ocean, hydropower, biomass, geothermal resources, and bio-fuels and hydrogen derived from renewable resources. Each of these sources has unique characteristics which influence how and where they are used. This paper presents the modeling the simulation of solar and hydro hybrid energy sources in MATLAB/SIMULINK environment. It simulates all quantities of Hybrid Electrical Power system (HEPS) such as AC output current of the inverter that injected to the load/grid, load current, grid current. It also simulates power output from PV and Hydraulic Turbine Generator (HTG), power delivered to or from grid and finally power factor of the inverter for PV, HTG and grid. The proposed circuit uses instantaneous p-q (real-imaginary) power theory.

Keywords: Photovoltaic Array, Hydraulic Turbine Generator, Electrical Utility (EU), Hybrid Electrical Power Supply.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3479
15787 New Design of a Broadband Microwave Zero Bias Power Limiter

Authors: K. Echchakhaoui, E. Abdelmounim, J. Zbitou, H. Bennis, N. Ababssi, M. Latrach

Abstract:

In this paper a new design of a broadband microwave power limiter is presented and validated into simulation by using ADS software (Advanced Design System) from Agilent technologies. The final circuit is built on microstrip lines by using identical Zero Bias Schottky diodes. The power limiter is designed by Associating 3 stages Schottky diodes. The obtained simulation results permit to validate this circuit with a threshold input power level of 0 dBm until a maximum input power of 30 dBm.

Keywords: Limiter, microstrip, zero-biais.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3775
15786 Active Power Filtering Implementation Using Photovoltaic System with Reduced Energy Storage Capacitor

Authors: Horng-Yuan Wu, Chin-Yuan Hsu, Tsair-Fwu Lee

Abstract:

A novel three-phase active power filter (APF) circuit with photovoltaic (PV) system to improve the quality of service and to reduce the capacity of energy storage capacitor is presented. The energy balance concept and sampling technique were used to simplify the calculation algorithm for the required utility source current and to control the voltage of the energy storage capacitor. The feasibility was verified by using the Pspice simulations and experiments. When the APF mode was used during non-operational period, not only the utilization rate, power factor and power quality could be improved, but also the capacity of energy storage capacitor could sparing. As the results, the advantages of the APF circuit are simplicity of control circuits, low cost, and good transient response.

Keywords: active power filter, sampling, energy-storagecapacitor, harmonic current, energy balance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
15785 Investigation of Inter Feeder Power Flow Regulator: Load Sharing Mode

Authors: Ahmed Hossam-Eldin, Ahmed Elserougi, Ahmed Massoud, Shehab Ahmed

Abstract:

The Inter feeder Power Flow Regulator (IFPFR) proposed in this paper consists of several voltage source inverters with common dc bus; each inverter is connected in series with one of different independent distribution feeders in the power system. This paper is concerned with how to transfer power between the feeders for load sharing purpose. The power controller of each inverter injects the power (for sending feeder) or absorbs the power (for receiving feeder) via injecting suitable voltage; this voltage injection is simulated by voltage drop across series virtual impedance, the impedance value is selected to achieve the concept of power exchange between the feeders without perturbing the load voltage magnitude of each feeder. In this paper a new control scheme for load sharing using IFPFR is proposed.

Keywords: IFPFR, Load sharing, Power transfer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
15784 Reliability Assessment for Tie Line Capacity Assistance of Power Systems Based On Multi-Agent System

Authors: Nadheer A. Shalash, Abu Zaharin Bin Ahmad

Abstract:

Technological developments in industrial innovations have currently been related to interconnected system assistance and distribution networks. This important in order to enable an electrical load to continue receive power in the event of disconnection of load from the main power grid. This paper represents a method for reliability assessment of interconnected power systems based. The multi-agent system consists of four agents. The first agent was the generator agent to using as connected the generator to the grid depending on the state of the reserve margin and the load demand. The second was a load agent is that located at the load. Meanwhile, the third is so-called "the reverse margin agent" that to limit the reserve margin between 0 - 25% depend on the load and the unit size generator. In the end, calculation reliability Agent can be calculate expected energy not supplied (EENS), loss of load expectation (LOLE) and the effecting of tie line capacity to determine the risk levels Roy Billinton Test System (RBTS) can use to evaluated the reliability indices by using the developed JADE package. The results estimated of the reliability interconnection power systems presented in this paper. The overall reliability of power system can be improved. Thus, the market becomes more concentrated against demand increasing and the generation units were operating in relation to reliability indices. 

Keywords: Reliability indices, Load expectation, Reserve margin, Daily load, Probability, Multi-agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2570
15783 A Systematic Approach for Analyzing Multiple Cyber-Physical Attacks on the Smart Grid

Authors: Yatin Wadhawan, Clifford Neuman, Anas Al Majali

Abstract:

In this paper, we evaluate the resilience of the smart grid system in the presence of multiple cyber-physical attacks on its distinct functional components. We discuss attack-defense scenarios and their effect on smart grid resilience. Through contingency simulations in the Network and PowerWorld Simulator, we analyze multiple cyber-physical attacks that propagate from the cyber domain to power systems and discuss how such attacks destabilize the underlying power grid. The analysis of such simulations helps system administrators develop more resilient systems and improves the response of the system in the presence of cyber-physical attacks.

Keywords: Smart grid, resilience, gas pipeline, cyber-physical attack, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1008
15782 An Optimal Load Shedding Approach for Distribution Networks with DGs considering Capacity Deficiency Modelling of Bulked Power Supply

Authors: A. R. Malekpour, A.R. Seifi

Abstract:

This paper discusses a genetic algorithm (GA) based optimal load shedding that can apply for electrical distribution networks with and without dispersed generators (DG). Also, the proposed method has the ability for considering constant and variable capacity deficiency caused by unscheduled outages in the bulked generation and transmission system of bulked power supply. The genetic algorithm (GA) is employed to search for the optimal load shedding strategy in distribution networks considering DGs in two cases of constant and variable modelling of bulked power supply of distribution networks. Electrical power distribution systems have a radial network and unidirectional power flows. With the advent of dispersed generations, the electrical distribution system has a locally looped network and bidirectional power flows. Therefore, installed DG in the electrical distribution systems can cause operational problems and impact on existing operational schemes. Introduction of DGs in electrical distribution systems has introduced many new issues in operational and planning level. Load shedding as one of operational issue has no exempt. The objective is to minimize the sum of curtailed load and also system losses within the frame-work of system operational and security constraints. The proposed method is tested on a radial distribution system with 33 load points for more practical applications.

Keywords: DG, Load shedding, Optimization, Capacity Deficiency Modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
15781 Dynamic Economic Dispatch Constrained by Wind Power Weibull Distribution: A Here-and-Now Strategy

Authors: Mostafa A. Elshahed, Magdy M. Elmarsfawy, Hussain M. Zain Eldain

Abstract:

In this paper, a Dynamic Economic Dispatch (DED) model is developed for the system consisting of both thermal generators and wind turbines. The inclusion of a significant amount of wind energy into power systems has resulted in additional constraints on DED to accommodate the intermittent nature of the output. The probability of stochastic wind power based on the Weibull probability density function is included in the model as a constraint; A Here-and-Now Approach. The Environmental Protection Agency-s hourly emission target, which gives the maximum emission during the day, is used as a constraint to reduce the atmospheric pollution. A 69-bus test system with non-smooth cost function is used to illustrate the effectiveness of the proposed model compared with static economic dispatch model with including the wind power.

Keywords: Dynamic Economic Dispatch, StochasticOptimization, Weibull Distribution, Wind Power

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2945
15780 Control Configuration System as a Key Element in Distributed Control System

Authors: Goodarz Sabetian, Sajjad Moshfe

Abstract:

Control system for hi-tech industries could be realized generally and deeply by a special document. Vast heavy industries such as power plants with a large number of I/O signals are controlled by a distributed control system (DCS). This system comprises of so many parts from field level to high control level, and junior instrument engineers may be confused by this enormous information. The key document which can solve this problem is “control configuration system diagram” for each type of DCS. This is a road map that covers all of activities respect to control system in each industrial plant and inevitable to be studied by whom corresponded. It plays an important role from designing control system start point until the end; deliver the system to operate. This should be inserted in bid documents, contracts, purchasing specification and used in different periods of project EPC (engineering, procurement, and construction). Separate parts of DCS are categorized here in order of importance and a brief description and some practical plan is offered. This article could be useful for all instrument and control engineers who worked is EPC projects.

Keywords: Control, configuration, DCS, power plant, bus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204
15779 Health Monitoring of Power Transformers by Dissolved Gas Analysis using Regression Method and Study the Effect of Filtration on Oil

Authors: Anjali Chatterjee, Nirmal Kumar Roy

Abstract:

Economically transformers constitute one of the largest investments in a Power system. For this reason, transformer condition assessment and management is a high priority task. If a transformer fails, it would have a significant negative impact on revenue and service reliability. Monitoring the state of health of power transformers has traditionally been carried out using laboratory Dissolved Gas Analysis (DGA) tests performed at periodic intervals on the oil sample, collected from the transformers. DGA of transformer oil is the single best indicator of a transformer-s overall condition and is a universal practice today, which started somewhere in the 1960s. Failure can occur in a transformer due to different reasons. Some failures can be limited or prevented by maintenance. Oil filtration is one of the methods to remove the dissolve gases and prevent the deterioration of the oil. In this paper we analysis the DGA data by regression method and predict the gas concentration in the oil in the future. We bring about a comparative study of different traditional methods of regression and the errors generated out of their predictions. With the help of these data we can deduce the health of the transformer by finding the type of fault if it has occurred or will occur in future. Additional in this paper effect of filtration on the transformer health is highlight by calculating the probability of failure of a transformer with and without oil filtrating.

Keywords: Power Transformers, Dissolve gas Analysis, Regression method, Filtration, oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2924
15778 Efficiency of Compact Organic Rankine Cycle System with Rotary-Vane-Type Expander for Low-Temperature Waste Heat Recovery

Authors: Musthafah b. Mohd.Tahir, Noboru Yamada, Tetsuya Hoshino

Abstract:

This paper describes the experimental efficiency of a compact organic Rankine cycle (ORC) system with a compact rotary-vane-type expander. The compact ORC system can be used for power generation from low-temperature heat sources such as waste heat from various small-scale heat engines, fuel cells, electric devices, and solar thermal energy. The purpose of this study is to develop an ORC system with a low power output of less than 1 kW with a hot temperature source ranging from 60°C to 100°C and a cold temperature source ranging from 10°C to 30°C. The power output of the system is rather less due to limited heat efficiency. Therefore, the system should have an economically optimal efficiency. In order to realize such a system, an efficient and low-cost expander is indispensable. An experimental ORC system was developed using the rotary-vane-type expander which is one of possible candidates of the expander. The experimental results revealed the expander performance for various rotation speeds, expander efficiencies, and thermal efficiencies. Approximately 30 W of expander power output with 48% expander efficiency and 4% thermal efficiency with a temperature difference between the hot and cold sources of 80°C was achieved.

Keywords: Organic Rankine cycle, Thermodynamic cycle, Thermal efficiency, Turbine efficiency, Waste heat recovery, Powergeneration, Low temperature heat engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3551
15777 Efficient Power-Delay Product Modulo 2n+1 Adder Design

Authors: Yavar Safaei Mehrabani, Mehdi Hosseinzadeh

Abstract:

As embedded and portable systems were emerged power consumption of circuits had been major challenge. On the other hand latency as determines frequency of circuits is also vital task. Therefore, trade off between both of them will be desirable. Modulo 2n+1 adders are important part of the residue number system (RNS) based arithmetic units with the interesting moduli set (2n-1,2n, 2n+1). In this manuscript we have introduced novel binary representation to the design of modulo 2n+1 adder. VLSI realization of proposed architecture under 180 nm full static CMOS technology reveals its superiority in terms of area, power consumption and power-delay product (PDP) against several peer existing structures.

Keywords: Computer arithmetic, modulo 2n+1 adders, Residue Number System (RNS), VLSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
15776 Circuit Breaker and Transformer Monitoring

Authors: M.Nafar, A.H.Gheisari, A.Alesaadi

Abstract:

Since large power transformers are the most expensive and strategically important components of any power generator and transmission system, their reliability is crucially important for the energy system operation. Also, Circuit breakers are very important elements in the power transmission line so monitoring the events gives a knowledgebase to determine time to the next maintenance. This paper deals with the introduction of the comparative method of the state estimation of transformers and Circuit breakers using continuous monitoring of voltage, current. This paper gives details a new method based on wavelet to apparatus insulation monitoring. In this paper to insulation monitoring of transformer, a new method based on wavelet transformation and neutral point analysis is proposed. Using the EMTP tools, fault in transformer winding and the detailed transformer winding model were simulated. The current of neutral point of winding was analyzed by wavelet transformation. It is shown that the neutral current of the transformer winding has useful information about fault in insulation of the transformer.

Keywords: Wavelet, Power Transformer, EMTP, CircuitBreaker, Monitoring

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
15775 Analysis of Electrical Installation of a Photovoltaic Power Park in Greece

Authors: D. E. Gourgoulis, C. G. Yakinthos, M. G. Vassiliadou

Abstract:

The scope of this paper is to describe a real electrical installation of renewable energy using photovoltaic cells. The displayed power grid connected network was established in 2007 at area of Northern Greece. The photovoltaic park is composed of 6120 photovoltaic cells able to deliver a total power of 1.101.600 Wp. For the transformation of DC voltage to AC voltage have been used 25 stand alone three phases inverters and for the connection at the medium voltage network of Greek Power Authority have been installed two oil immersed transformer of 630 kVA each one. Due to the wide space area of installation a specific external lightning protection system has been designed. Additionally, due to the sensitive electronics of the control and protection systems of park, surge protection, equipotent bonding and shielding were also of major importance.

Keywords: Inverter, Photovoltaic cells, Transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
15774 Efficiency Enhancement of PWM Controlled Water Electrolysis Cells

Authors: S.K. Mazloomi, Nasri b. Sulaiman

Abstract:

By analyzing the sources of energy and power loss in PWM (Pulse Width Modulation) controlled drivers of water electrolysis cells, it is possible to reduce the power dissipation and enhance the efficiency of such hydrogen production units. A PWM controlled power driver is based on a semiconductor switching element where its power dissipation might be a remarkable fraction of the total power demand of an electrolysis system. Power dissipation in a semiconductor switching element is related to many different parameters which could be fitted into two main categories: switching losses and conduction losses. Conduction losses are directly related to the built, structure and capabilities of a switching device itself and indeed the conditions in which the element is handling the switching application such as voltage, current, temperature and of course the fabrication technology. On the other hand, switching losses have some other influencing variables other than the mentioned such as control system, switching method and power electronics circuitry of the PWM power driver. By analyzings the characteristics of recently developed power switching transistors from different families of Bipolar Junction Transistors (BJT), Metal Oxide Semiconductor Field Effect Transistors (MOSFET) and Insulated Gate Bipolar Transistors (IGBT), some recommendations are made in this paper which are able to lead to achieve higher hydrogen production efficiency by utilizing PWM controlled water electrolysis cells.

Keywords: Power switch, PWM, Semiconductor switch, Waterelectrolysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3454
15773 Development of Condition Monitoring System with Control Functions for Wind Turbines

Authors: Joon-Young Park, Beom-Joo Kim, Jae-Kyung Lee

Abstract:

As an effort to promote wind power industry in Korea, Korea South-East Power Corporation has been developing 22MW YeungHeung wind farm consisting of nine 2 to 3MW wind turbines supplied by three manufacturers. To maximize its availability and reliability and to solve the difficulty of operating three kinds of SCADA systems, Korea Electric Power Corporation has been developing a condition monitoring system integrated with control functions. This paper presents the developed condition monitoring system and its application to YeungHeung wind test bed, and the design of its control functions.

Keywords: condition monitoring, control function, reliability, wind turbine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2422
15772 Loss Reduction and Reliability Improvement of Industrial Distribution System through Network Reconfiguration

Authors: Ei Ei Phyu, Kyaw Myo Lin, Thin Thin Moe

Abstract:

The paper presents an approach to improve the reliability and reduce line losses of practical distribution system applying network reconfiguration. The change of the topology redirects the power flow within the distribution network to obtain better performance of the system. Practical distribution network (Pyigyitagon Industrial Zone (I)) is used as the case study network. The detailed calculations of the reliability indices are done by using analytical method and power flow calculation is performed by Newton-Rephason solver. The comparison of various network reconfiguration techniques are described with respect to power loss and reliability index levels. Finally, the optimal reconfigured network is selected among difference cases based on the two factors: the most reliable network and the least loss minimization.

Keywords: Distribution system reliability, loss reduction, network reconfiguration, reliability enhancement, reliability indices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 872
15771 Voltage Stability Investigation of Grid Connected Wind Farm

Authors: Trinh Trong Chuong

Abstract:

At present, it is very common to find renewable energy resources, especially wind power, connected to distribution systems. The impact of this wind power on voltage distribution levels has been addressed in the literature. The majority of this works deals with the determination of the maximum active and reactive power that is possible to be connected on a system load bus, until the voltage at that bus reaches the voltage collapse point. It is done by the traditional methods of PV curves reported in many references. Theoretical expression of maximum power limited by voltage stability transfer through a grid is formulated using an exact representation of distribution line with ABCD parameters. The expression is used to plot PV curves at various power factors of a radial system. Limited values of reactive power can be obtained. This paper presents a method to study the relationship between the active power and voltage (PV) at the load bus to identify the voltage stability limit. It is a foundation to build a permitted working operation region in complying with the voltage stability limit at the point of common coupling (PCC) connected wind farm.

Keywords: Wind generator, Voltage stability, grid connected

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3640
15770 Five-Phase Induction Motor Drive System Driven by Five-Phase Packed U Cell Inverter: Its Modeling and Performance Evaluation

Authors: Mohd Tariq

Abstract:

The three phase system drives produce the problem of more torque pulsations and harmonics. This issue prevents the smooth operation of the drives and it also induces the amount of heat generated thus resulting in an increase in power loss. Higher phase system offers smooth operation of the machines with greater power capacity. Five phase variable-speed induction motor drives are commonly used in various industrial and commercial applications like tractions, electrical vehicles, ship propulsions and conveyor belt drive system. In this work, a comparative analysis of the different modulation schemes applied on the five-level five-phase Packed U Cell (PUC) inverter fed induction motor drives is presented. The performance of the inverter is greatly affected with the modulation schemes applied. The system is modeled, designed, and implemented in MATLAB®/Simulink environment. Experimental validation is done for the prototype of single phase, whereas five phase experimental validation is proposed in the future works.

Keywords: Packed U-Cell inverter, pulse width modulation, five-phase system, induction motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
15769 Simulating Voltage Sag Using PSCAD Software

Authors: Kang Chia Yang, Hushairi HJ Zen, Nur Ikhmar@Najemeen Binti Ayob

Abstract:

Power quality is used to describe the degree of consistency of electrical energy expected from generation source to point of use. The term power quality refers to a wide variety of electromagnetic phenomena that characterize the voltage and current at a given time and at a given location on the power system. Power quality problems can be defined as problem that results in failure of customer equipments, which manifests itself as an economic burden to users, or produces negative impacts on the environment. Voltage stability, power factor, harmonics pollution, reactive power and load unbalance are some of the factors that affect the consistency or the quality level. This research proposal proposes to investigate and analyze the causes and effects of power quality to homes and industries in Sarawak. The increasing application of electronics equipment used in the industries and homes has caused a big impact on the power quality. Many electrical devices are now interconnected to the power network and it can be observed that if the power quality of the network is good, then any loads connected to it will run smoothly and efficiently. On the other hand, if the power quality of the network is bad, then loads connected to it will fail or may cause damage to the equipments and reduced its lifetime. The outcome of this research will enable better and novel solutions of poor power quality to small industries and reduce damage of electrical devices and products in the industries.

Keywords: Power quality, power network, voltage dip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4326
15768 Multifunctional Electrical Outlet based on Mobile Ad Hoc Network

Authors: Toshihiko Sasama, Takao Kawamura, Kazunori Sugahara

Abstract:

Nowadays, new home appliances and office appliances have been developed that communicate with users through the Internet, for remote monitor and remote control. However, developments and sales of these new appliances are just started, then, many products in our houses and offices do not have these useful functions. In few years, we add these new functions to the outlet, it means multifunctional electrical power socket plug adapter. The outlet measure power consumption of connecting appliances, and it can switch power supply to connecting appliances, too. Using this outlet, power supply of old appliances can be control and monitor. And we developed the interface system using web browser to operate it from users[1]. But, this system need to set up LAN cables between outlets and so on. It is not convenience that cables around rooms. In this paper, we develop the system that use wireless mobile ad hoc network instead of wired LAN to communicate with the outlets.

Keywords: outlet, remote monitor, mobile ad hoc network, zigbee.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
15767 Behavioral Modeling Accuracy for RF Power Amplifier with Memory Effects

Authors: Chokri Jebali, Noureddine Boulejfen, Ali Gharsallah, Fadhel M. Ghannouchi

Abstract:

In this paper, a system level behavioural model for RF power amplifier, which exhibits memory effects, and based on multibranch system is proposed. When higher order terms are included, the memory polynomial model (MPM) exhibits numerical instabilities. A set of memory orthogonal polynomial model (OMPM) is introduced to alleviate the numerical instability problem associated to MPM model. A data scaling and centring algorithm was applied to improve the power amplifier modeling accuracy. Simulation results prove that the numerical instability can be greatly reduced, as well as the model precision improved with nonlinear model.

Keywords: power amplifier, orthogonal model, polynomialmodel , memory effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
15766 Calibrations and Effect of Different Operating Conditions on the Performance of a Fluid Power Control System with Servo Solenoid Valve

Authors: Tahany W. Sadak, Fouly, A. Anwer, M. Rizk

Abstract:

The current investigation presents a study on the hydraulic performance of an electro-hydraulic servo solenoid valve controlled linear piston used in hydraulic systems. Advanced methods have been used to measure and record laboratory experiments, to ensure accurate analysis and evaluation. Experiments have been conducted under different values of temperature (28, 40 and 50 °C), supply pressure (10, 20, 30, 40 and 50 bar), system stiffness (32 N/mm), and load (0.0 & 5560 N). It is concluded that increasing temperature of hydraulic oil increases the quantity of flow rate, so it achieves an increase of the quantity of flow by 5.75 % up to 48.8 % depending on operating conditions. The values of pressure decay at low temperature are less than the values at high temperature. The frequency increases with the increase of the temperature. When we connect the springs to the system, it decreases system frequency. These results are very useful in the process of packing and manufacturing of fluid products, where the properties are not affected by 50 °C, so energy and time are saved.

Keywords: Electro Hydraulic Servo Valve, fluid power control system, system stiffness, static and dynamic performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 667
15765 Optimal Design of UPFC Based Damping Controller Using Iteration PSO

Authors: Amin Safari, Hossein Shayeghi

Abstract:

This paper presents a novel approach for tuning unified power flow controller (UPFC) based damping controller in order to enhance the damping of power system low frequency oscillations. The design problem of damping controller is formulated as an optimization problem according to the eigenvalue-based objective function which is solved using iteration particle swarm optimization (IPSO). The effectiveness of the proposed controller is demonstrated through eigenvalue analysis and nonlinear time-domain simulation studies under a wide range of loading conditions. The simulation study shows that the designed controller by IPSO performs better than CPSO in finding the solution. Moreover, the system performance analysis under different operating conditions show that the δE based controller is superior to the mB based controller.

Keywords: UPFC, Optimization Problem, Iteration ParticleSwarm Optimization, Damping Controller, Low FrequencyOscillations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
15764 Power Quality Improvement Using UPQC Integrated with Distributed Generation Network

Authors: B. Gopal, Pannala Krishna Murthy, G. N. Sreenivas

Abstract:

The increasing demand of electric power is giving an emphasis on the need for the maximum utilization of renewable energy sources. On the other hand maintaining power quality to satisfaction of utility is an essential requirement. In this paper the design aspects of a Unified Power Quality Conditioner integrated with photovoltaic system in a distributed generation is presented. The proposed system consist of series inverter, shunt inverter are connected back to back on the dc side and share a common dc-link capacitor with Distributed Generation through a boost converter. The primary task of UPQC is to minimize grid voltage and load current disturbances along with reactive and harmonic power compensation. In addition to primary tasks of UPQC, other functionalities such as compensation of voltage interruption and active power transfer to the load and grid in both islanding and interconnected mode have been addressed. The simulation model is design in MATLAB/ Simulation environment and the results are in good agreement with the published work.

Keywords: Distributed Generation(DG), Interconnected mode, Islanding mode, Maximum power point tracking (MPPT), Power Quality (PQ), Unified power quality conditioner (UPQC), Photovoltaic array (PV).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2372
15763 Studying the Effect of Shading by Rooftop PV Panels on Dwellings’ Thermal Performance

Authors: Saad Odeh

Abstract:

Thermal performance is considered to be a key measure in building sustainability. One of the technologies used in the current building sustainable design is the rooftop solar PV power generators. The application of this type of technology has expanded vastly during the last five years in many countries. This paper studies the effect of roof shading developed by the solar PV panels on dwellings’ thermal performance. The analysis in this work is performed by using two types of packages: “AccuRate Sustainability” for rating the energy efficiency of residential building design, and “PVSYST” for the solar PV power system design. The former package is used to calculate the annual heating and cooling load, and the later package is used to evaluate the power production from the roof top PV system. The analysis correlates the electrical energy generated from the PV panels to the change in the heating and cooling load due to roof shading. Different roof orientation, roof inclination, roof insulation, as well as PV panel area are considered in this study. The analysis shows that the drop in energy efficiency due to the shaded area of the roof by PV panels is negligible compared to the energy generated by these panels.

Keywords: Energy efficiency, roof shading, thermal performance, PV panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1255