Search results for: impact loading
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2893

Search results for: impact loading

2593 High Strain Rate Characteristics of the Advanced Blast Energy Absorbers

Authors: Martina Drdlová, Michal Frank, Jaroslav Buchar, Josef Krátký

Abstract:

The main aim of the presented experiments is to improve behaviour of sandwich structures under dynamic loading, such as crash or explosion. Several cellular materials are widely used as core of the sandwich structures and their properties influence the response of the entire element under impact load. To optimize their performance requires the characterisation of the core material behaviour at high strain rates and identification of the underlying mechanism. This work presents the study of high strain-rate characteristics of a specific porous lightweight blast energy absorbing foam using a Split Hopkinson Pressure Bar (SHPB) technique adapted to perform tests on low strength materials. Two different velocities, 15 and 30 m.s-1 were used to determine the strain sensitivity of the material. Foams were designed using two types of porous lightweight spherical raw materials with diameters of 30- 100 *m, combined with polymer matrix. Cylindrical specimens with diameter of 15 mm and length of 7 mm were prepared and loaded using a Split Hopkinson Pressure Bar apparatus to assess the relation between the composition of the material and its shock wave attenuation capacity.

Keywords: Blast, foam, microsphere, resin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484
2592 Deformation Mechanisms at Elevated Temperatures: Influence of Momenta and Energy in the Single Impact Test

Authors: Harald Rojacz, Markus Varga, Horst Winkelmann

Abstract:

Within this work High Temperature Single Impact Studies were performed to evaluate deformation mechanisms at different energy and momentum levels. To show the influence of different microstructures and hardness levels and their response to single impacts four different materials were tested at various temperatures up to 700°C. One carbide reinforced NiCrBSi based Metal Matrix Composite and three different steels were tested. The aim of this work is to determine critical energies for fracture appearance and the materials response at different energy and momenta levels. Critical impact loadings were examined at elevated temperatures to limit operating conditions in impact dominated regimes at elevated temperatures. The investigations on the mechanisms were performed using different means of microscopy at the surface and in metallographic cross sections. Results indicate temperature dependence of the occurrence of cracks in hardphase rich materials, such as Metal Matrix Composites High Speed Steels and the influence of different impact momenta at constant energies on the deformation of different steels.

Keywords: Deformation, High Temperature, Metal Matrix Composite, Single Impact Test, Steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
2591 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application

Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb

Abstract:

This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/Poly (ethylene-co vinyl acetate) (EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nanocomposite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25oC) and (480 ± 25oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1oC) and captured double melting point at 84 (±2oC) and 108 (±2oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.

Keywords: Cable and Wire, LDPE/EVA, Nano MH, Nano Particles, Thermal properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3042
2590 Optimal Diesel Engine Technology Analysis Matching the Platform of the Helicopter

Authors: M. Wendeker, K. Siadkowska, P. Magryta, Z. Czyz, K. Skiba

Abstract:

In the paper environmental impact analysis the optimal Diesel engine for a light helicopter was performed. The paper consist an answer to the question of what the optimal Diesel engine for a light helicopter is, taking into consideration its expected performance and design capacity. The use of turbocharged engine with self-ignition and an electronic control system can substantially reduce the negative impact on the environment by decreasing toxic substance emission, fuel consumption and therefore carbon dioxide emission. In order to establish the environmental benefits of the diesel engine technologies, mathematical models were created, providing additional insight on the environmental impact and performance of a classic turboshaft and an advanced diesel engine light helicopter, incorporating technology developments.

Keywords: Diesel engine, helicopter, simulation, environmental impact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
2589 Emergency Generator Sizing and Motor Starting Analysis

Authors: Mukesh Kumar Kirar, Ganga Agnihotri

Abstract:

This paper investigates the preliminary sizing of generator set to design electrical system at the early phase of a project, dynamic behavior of generator-unit, as well as induction motors, during start-up of the induction motor drives fed from emergency generator unit. The information in this paper simplifies generator set selection and eliminates common errors in selection. It covers load estimation, step loading capacity test, transient analysis for the emergency generator set. The dynamic behavior of the generator-unit, power, power factor, voltage, during Direct-on-Line start-up of the induction motor drives fed from stand alone gene-set is also discussed. It is important to ensure that plant generators operate safely and consistently, power system studies are required at the planning and conceptual design stage of the project. The most widely recognized and studied effect of motor starting is the voltage dip that is experienced throughout an industrial power system as the direct online result of starting large motors. Generator step loading capability and transient voltage dip during starting of largest motor is ensured with the help of Electrical Transient Analyzer Program (ETAP).

Keywords: Sizing, induction motor starting, load estimation, Transient Analyzer Program (ETAP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13977
2588 Effect of Concrete Strength and Aspect Ratio on Strength and Ductility of Concrete Columns

Authors: Mohamed A. Shanan, Ashraf H. El-Zanaty, Kamal G. Metwally

Abstract:

This paper presents the effect of concrete compressive strength and rectangularity ratio on strength and ductility of normal and high strength reinforced concrete columns confined with transverse steel under axial compressive loading. Nineteen normal strength concrete rectangular columns with different variables tested in this research were used to study the effect of concrete compressive strength and rectangularity ratio on strength and ductility of columns. The paper also presents a nonlinear finite element analysis for these specimens and another twenty high strength concrete square columns tested by other researchers using ANSYS 15 finite element software. The results indicate that the axial force – axial strain relationship obtained from the analytical model using ANSYS are in good agreement with the experimental data. The comparison shows that the ANSYS is capable of modeling and predicting the actual nonlinear behavior of confined normal and high-strength concrete columns under concentric loading. The maximum applied load and the maximum strain have also been confirmed to be satisfactory. Depending on this agreement between the experimental and analytical results, a parametric numerical study was conducted by ANSYS 15 to clarify and evaluate the effect of each variable on strength and ductility of the columns.

Keywords: ANSYS, concrete compressive strength effect, ductility, rectangularity ratio, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
2587 Computer Simulation of Low Volume Roads Made from Recycled Materials

Authors: Aleš Florian, Lenka Ševelová

Abstract:

Low volume roads are widely used all over the world. To improve their quality the computer simulation of their behavior is proposed. The FEM model enables to determine stress and displacement conditions in the pavement and/or also in the particular material layers. Different variants of pavement layers, material used, humidity as well as loading conditions can be studied. Among others, the input information about material properties of individual layers made from recycled materials is crucial for obtaining results as exact as possible. For this purpose the cyclic-load triaxial test machine testing of cyclic-load performance of materials is a promising test method. The test is able to simulate the real traffic loading on particular materials taking into account the changes in the horizontal stress conditions produced in particular layers by crossings of vehicles. Also the test specimen can be prepared with different amount of water. Thus modulus of elasticity (Young modulus) of different materials including recycled ones can be measured under the different conditions of horizontal and vertical stresses as well as under the different humidity conditions. Using the proposed testing procedure the modulus of elasticity of recycled materials used in the newly built low volume road is obtained under different stress and humidity conditions set to standard, dry and fully saturated level. Obtained values of modulus of elasticity are used in FEA.

Keywords: FEA, FEM, geotechnical materials, low volume roads, pavement, triaxial test, Young modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
2586 Developing Three-Dimensional Digital Image Correlation Method to Detect the Crack Variation at the Joint of Weld Steel Plate

Authors: Ming-Hsiang Shih, Wen-Pei Sung, Shih-Heng Tung

Abstract:

The purposes of hydraulic gate are to maintain the functions of storing and draining water. It bears long-term hydraulic pressure and earthquake force and is very important for reservoir and waterpower plant. The high tensile strength of steel plate is used as constructional material of hydraulic gate. The cracks and rusts, induced by the defects of material, bad construction and seismic excitation and under water respectively, thus, the mechanics phenomena of gate with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of hydroelectric power plant. Stress distribution analysis is a very important and essential surveying technique to analyze bi-material and singular point problems. The finite difference infinitely small element method has been demonstrated, suitable for analyzing the buckling phenomena of welding seam and steel plate with crack. Especially, this method can easily analyze the singularity of kink crack. Nevertheless, the construction form and deformation shape of some gates are three-dimensional system. Therefore, the three-dimensional Digital Image Correlation (DIC) has been developed and applied to analyze the strain variation of steel plate with crack at weld joint. The proposed Digital image correlation (DIC) technique is an only non-contact method for measuring the variation of test object. According to rapid development of digital camera, the cost of this digital image correlation technique has been reduced. Otherwise, this DIC method provides with the advantages of widely practical application of indoor test and field test without the restriction on the size of test object. Thus, the research purpose of this research is to develop and apply this technique to monitor mechanics crack variations of weld steel hydraulic gate and its conformation under action of loading. The imagines can be picked from real time monitoring process to analyze the strain change of each loading stage. The proposed 3-Dimensional digital image correlation method, developed in the study, is applied to analyze the post-buckling phenomenon and buckling tendency of welded steel plate with crack. Then, the stress intensity of 3-dimensional analysis of different materials and enhanced materials in steel plate has been analyzed in this paper. The test results show that this proposed three-dimensional DIC method can precisely detect the crack variation of welded steel plate under different loading stages. Especially, this proposed DIC method can detect and identify the crack position and the other flaws of the welded steel plate that the traditional test methods hardly detect these kind phenomena. Therefore, this proposed three-dimensional DIC method can apply to observe the mechanics phenomena of composite materials subjected to loading and operating.

Keywords: Welded steel plate, crack variation, three-dimensional Digital Image Correlation (DIC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
2585 Aeroelastic Analysis of Engine Nacelle Strake Considering Geometric Nonlinear Behavior

Authors: N. Manoj

Abstract:

The aeroelastic behavior of engine nacelle strake when subjected to unsteady aerodynamic flows is investigated in this paper. Geometric nonlinear characteristics and modal parameters of nacelle strake are studied when it is under dynamic loading condition. Here, an N-S based Finite Volume solver is coupled with Finite Element (FE) based nonlinear structural solver to investigate the nonlinear characteristics of nacelle strake over a range of dynamic pressures at various phases of flight like takeoff, climb, and cruise conditions. The combination of high fidelity models for both aerodynamics and structural dynamics is used to predict the nonlinearities of strake (chine). The methodology adopted for present aeroelastic analysis is partitioned-based time domain coupled CFD and CSD solvers and it is validated by the consideration of experimental and numerical comparison of aeroelastic data for a cropped delta wing model which has a proven record. The present strake geometry is derived from theoretical formulation. The amplitude and frequency obtained from the coupled solver at various dynamic pressures is discussed, which gives a better understanding of its impact on aerodynamic design-sizing of strake.

Keywords: Aeroelasticity, finite volume, geometric nonlinearity, limit cycle oscillations, strake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282
2584 Impact of a Proposed Pier on Tidal Currents:Koa Kood Island, Thailand

Authors: Cherdvong Saengsupavanich

Abstract:

The impact of a proposed pier on tidal current alteration was evaluated. The proposed pier location was in Salad Bay on Koa Kood Island, Trat province, Thailand, and was designed to accommodate passenger ships with a draft of less than 2 m. The study began with collecting necessary data, including bathymetric, water elevation and tidal current characteristics. The impact was assessed using a software package (MIKE21). Although the results showed that the pier would affect the existing current pattern, the change was determined to be insignificant, as the design of the piles for the pier provided sufficient spacing to let the current flow as freely as possible. Consequences of the altered current, such as seabed erosion, water stagnation, sediment deposition and navigational risk were assessed. Environmental mitigation measures might be necessary if the impacts were considered unacceptable.

Keywords: Environmental impact assessment, pier, tidal currentchange, coastal engineering and management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
2583 Impact of Ship Traffic to PM2.5 and Particle Number Concentrations in Three Port-Cities of the Adriatic/Ionian Area

Authors: Daniele Contini, Antonio Donateo, Andrea Gambaro, Athanasios Argiriou, Dimitrios Melas, Daniela Cesari, Anastasia Poupkou, Athanasios Karagiannidis, Apostolos Tsakis, Eva Merico, Rita Cesari, Adelaide Dinoi

Abstract:

Emissions of atmospheric pollutants from ships and harbour activities are a growing concern at international level given their potential impacts on air quality and climate. These close-to-land emissions have potential impact on local communities in terms of air quality and health. Recent studies show that the impact of maritime traffic to atmospheric particulate matter concentrations in several coastal urban areas is comparable with the impact of road traffic of a medium size town. However, several different approaches have been used for these estimates making difficult a direct comparison of results. In this work, an integrated approach based on emission inventories and dedicated measurement campaigns has been applied to give a comparable estimate of the impact of maritime traffic to PM2.5 and particle number concentrations in three major harbours of the Adriatic/Ionian Seas. The influences of local meteorology and of the logistic layout of the harbours are discussed.

Keywords: Ship emissions, PM2.5, particle number concentrations, impact of shipping to atmospheric aerosol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398
2582 Implications about the Impact of COVID-19 on International Trade in Saudi Arabia

Authors: Anwar Kashgari

Abstract:

COVID-19 has severe impacts on business all over the world. The great lockdown of many business owners requires a sage deal with this pandemic. This paper seeks to support business leaders with a standpoint about the COVID-19 situation and provides implications for the SMEs (Small and Medium Enterprises) and companies. The paper reflects the author's view about the impact of COVID-19 on business activities. We discussed the impact of COVID-19 upon three aspects, namely, startups, SMEs, and e-commerce. The KSA is taken as an example of the developing countries about which we present the current situation. Finally, recommendations to policy and decision-makers are given.

Keywords: COVID-19, business networking, globalization, Saudi Arabia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 497
2581 An Approximate Lateral-Torsional Buckling Mode Function for Cantilever I-Beams

Authors: H. Ozbasaran

Abstract:

Lateral torsional buckling is a global buckling mode which should be considered in design of slender structural members under flexure about their strong axis. It is possible to compute the load which causes lateral torsional buckling of a beam by finite element analysis, however, closed form equations are needed in engineering practice for calculation ease which can be obtained by using energy method. In lateral torsional buckling applications of energy method, a proper function for the critical lateral torsional buckling mode should be chosen which can be thought as the variation of twisting angle along the buckled beam. Accuracy of the results depends on how close is the chosen function to the exact mode. Since critical lateral torsional buckling mode of the cantilever I-beams varies due to material properties, section properties and loading case, the hardest step is to determine a proper mode function in application of energy method. This paper presents an approximate function for critical lateral torsional buckling mode of doubly symmetric cantilever I-beams. Coefficient matrices are calculated for concentrated load at free end, uniformly distributed load and constant moment along the beam cases. Critical lateral torsional buckling modes obtained by presented function and exact solutions are compared. It is found that the modes obtained by presented function coincide with differential equation solutions for considered loading cases.

Keywords: Buckling mode, cantilever, lateral-torsional buckling, I-beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2567
2580 High Cycle Fatigue Analysis of a Lower Hopper Knuckle Connection of a Large Bulk Carrier under Dynamic Loading

Authors: Vaso K. Kapnopoulou, Piero Caridis

Abstract:

The fatigue of ship structural details is of major concern in the maritime industry as it can generate fracture issues that may compromise structural integrity. In the present study, a fatigue analysis of the lower hopper knuckle connection of a bulk carrier was conducted using the Finite Element Method by means of ABAQUS/CAE software. The fatigue life was calculated using Miner’s Rule and the long-term distribution of stress range by the use of the two-parameter Weibull distribution. The cumulative damage ratio was estimated using the fatigue damage resulting from the stress range occurring at each load condition. For this purpose, a cargo hold model was first generated, which extends over the length of two holds (the mid-hold and half of each of the adjacent holds) and transversely over the full breadth of the hull girder. Following that, a submodel of the area of interest was extracted in order to calculate the hot spot stress of the connection and to estimate the fatigue life of the structural detail. Two hot spot locations were identified; one at the top layer of the inner bottom plate and one at the top layer of the hopper plate. The IACS Common Structural Rules (CSR) require that specific dynamic load cases for each loading condition are assessed. Following this, the dynamic load case that causes the highest stress range at each loading condition should be used in the fatigue analysis for the calculation of the cumulative fatigue damage ratio. Each load case has a different effect on ship hull response. Of main concern, when assessing the fatigue strength of the lower hopper knuckle connection, was the determination of the maximum, i.e. the critical value of the stress range, which acts in a direction normal to the weld toe line. This acts in the transverse direction, that is, perpendicularly to the ship's centerline axis. The load cases were explored both theoretically and numerically in order to establish the one that causes the highest damage to the location examined. The most severe one was identified to be the load case induced by beam sea condition where the encountered wave comes from the starboard. At the level of the cargo hold model, the model was assumed to be simply supported at its ends. A coarse mesh was generated in order to represent the overall stiffness of the structure. The elements employed were quadrilateral shell elements, each having four integration points. A linear elastic analysis was performed because linear elastic material behavior can be presumed, since only localized yielding is allowed by most design codes. At the submodel level, the displacements of the analysis of the cargo hold model to the outer region nodes of the submodel acted as boundary conditions and applied loading for the submodel. In order to calculate the hot spot stress at the hot spot locations, a very fine mesh zone was generated and used. The fatigue life of the detail was found to be 16.4 years which is lower than the design fatigue life of the structure (25 years), making this location vulnerable to fatigue fracture issues. Moreover, the loading conditions that induce the most damage to the location were found to be the various ballasting conditions.

Keywords: Lower hopper knuckle, high cycle fatigue, finite element method, dynamic load cases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 997
2579 Finite Element Analysis of Raft Foundation on Various Soil Types under Earthquake Loading

Authors: Qassun S. Mohammed Shafiqu, Murtadha A. Abdulrasool

Abstract:

The design of shallow foundations to withstand different dynamic loads has given considerable attention in recent years. Dynamic loads may be due to the earthquakes, pile driving, blasting, water waves, and machine vibrations. But, predicting the behavior of shallow foundations during earthquakes remains a difficult task for geotechnical engineers. A database for dynamic and static parameters for different soils in seismic active zones in Iraq is prepared which has been collected from geophysical and geotechnical investigation works. Then, analysis of a typical 3-D soil-raft foundation system under earthquake loading is carried out using the database. And a parametric study has been carried out taking into consideration the influence of some parameters on the dynamic behavior of the raft foundation, such as raft stiffness, damping ratio as well as the influence of the earthquake acceleration-time records. The results of the parametric study show that the settlement caused by the earthquake can be decreased by about 72% with increasing the thickness from 0.5 m to 1.5 m. But, it has been noticed that reduction in the maximum bending moment by about 82% was predicted by decreasing the raft thickness from 1.5 m to 0.5 m in all sites model. Also, it has been observed that the maximum lateral displacement, the maximum vertical settlement and the maximum bending moment for damping ratio 0% is about 14%, 20%, and 18% higher than that for damping ratio 7.5%, respectively for all sites model.

Keywords: Shallow foundation, seismic behavior, raft thickness, damping ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 953
2578 Numerical Study of Steel Structures Responses to External Explosions

Authors: Mohammad Abdallah

Abstract:

Due to the constant increase in terrorist attacks, the research and engineering communities have given significant attention to building performance under explosions. This paper presents a methodology for studying and simulating the dynamic responses of steel structures during external detonations, particularly for accurately investigating the impact of incrementing charge weight on the members total behavior, resistance and failure. Prediction damage method was introduced to evaluate the damage level of the steel members based on five scenarios of explosions. Johnson–Cook strength and failure model have been used as well as ABAQUS finite element code to simulate the explicit dynamic analysis, and antecedent field tests were used to verify the acceptance and accuracy of the proposed material strength and failure model. Based on the structural response, evaluation criteria such as deflection, vertical displacement, drift index, and damage level; the obtained results show the vulnerability of steel columns and un-braced steel frames which are designed and optimized to carry dead and live load to resist and endure blast loading.

Keywords: Steel structure, blast load, terrorist attacks, charge weight, damage level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 776
2577 The Relationship between Military Expenditure, Military Personnel, Economic Growth, and the Environment

Authors: El Harbi Sana, Ben Afia Neila

Abstract:

In this paper, we study the relationship between the military effort and pollution. A distinction is drawn between the direct and indirect impact of the military effort (military expenditure and military personnel) on pollution, which operates through the impact of military effort on per capita income and the resultant impact of income on pollution. Using the data of 121 countries covering the period 1980–2011, both the direct and indirect impacts of military effort on air pollution emissions are estimated. Our results show that the military effort is estimated to have a positive direct impact on per capita emissions. Indirect effects are found to be positive, the total effect of military effort on emissions is positive for all countries.

Keywords: Military expenditure, military personnel, income, emissions of CO2 and panel data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
2576 Assessing the Impact of Underground Cavities on Buildings with Stepped Foundations on Sloping Lands

Authors: Masoud Mahdavi

Abstract:

The use of sloping lands is increasing due to the reduction of suitable lands for the construction of buildings. In the design and construction of buildings on sloping lands, the foundation has special loading conditions that require the designer and executor to use the slopped foundation. The creation of underground cavities, including urban and subway tunnels, sewers, urban facilities, etc., inside the ground, causes the behavior of the foundation to be unknown. In the present study, using Abacus software, a 45-degree stepped foundation on the ground is designed. The foundations are placed on the ground in a cohesive (no-hole) manner with circular cavities that show the effect of increasing the cross-sectional area of ​​the underground cavities on the foundation's performance. The Kobe earthquake struck the foundation and ground for two seconds. The underground cavities have a circular cross-sectional area with a radius of 5 m, which is located at a depth of 22.54 m above the ground. The results showed that as the number of underground cavities increased, von Mises stress (in the vertical direction) increased. With the increase in the number of underground cavities, the plastic strain on the ground has increased. Also, with the increase in the number of underground cavities, the change in location and speed in the foundation has increased.

Keywords: Stepped foundation, sloping ground, Kobe earthquake, Abaqus software, underground excavations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616
2575 Resilient Modulus and Deformation Responses of Waste Glass in Flexible Pavement System

Authors: M. Al-Saedi, A. Chegenizadeh, H. Nikraz

Abstract:

Experimental investigations are conducted to assess a layered structure of glass (G) - rock (R) blends under the impact of repeated loading. Laboratory tests included sieve analyses, modified compaction test and repeated load triaxial test (RLTT) is conducted on different structures of stratified GR samples to reach the objectives of this study. Waste materials are such essential components in the climate system, and also commonly used in minimising the need for natural materials in many countries. Glass is one of the most widely used groups of waste materials which have been extensively using in road applications. Full range particle size and colours of glass are collected and mixed at different ratios with natural rock material trying to use the blends in pavement layers. Whole subsurface specimen sequentially consists of a single layer of R and a layer of G-R blend. 12G/88R and 45G/55R mix ratios are employed in this research, the thickness of G-R layer was changed, and the results were compared between the pure rock and the layered specimens. The relations between resilient module (Mr) and permanent deformation with sequence number are presented. During the earlier stages of RLTT, the results indicated that the 45G/55R specimen shows higher moduli than R specimen.

Keywords: Rock base course, layered structure, glass, resilient modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 625
2574 Stochastic Impact Analysis of COVID-19 on Karachi Stock Exchange

Authors: Syeda Maria Ali Shah, Asif Mansoor, Talat Sharafat Rehmani, Safia Mirza

Abstract:

The stock market of any country acts as a predictor of the economy. The spread of the COVID-19 pandemic has severely impacted the global financial markets. Besides, it has also critically affected the economy of Pakistan. In this study, we consider the role of the Karachi Stock Exchange (KSE) with regard to the Pakistan Stock Exchange and quantify the impact on macroeconomic variables in presence of COVID-19. The suitable macroeconomic variables are used to quantify the impact of COVID-19 by developing the stochastic model. The sufficiency of the computed model is attained by means of available techniques in the literature. The estimated equations are used to forecast the impact of pandemic on macroeconomic variables. The constructed model can help the policymakers take counteractive measures for restricting the influence of viruses on the Karachi Stock Market.

Keywords: COVID-19, Karachi Stock Market, macroeconomic variables, stochastic model, forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734
2573 Dynamics of the Moving Ship at Complex and Sudden Impact of External Forces

Authors: Bo Liu, Liangtian Gao, Idrees Qasim

Abstract:

The impact of the storm leads to accidents even in the case of vessels that meet the computed safety criteria for stability. That is why, in order to clarify the causes of the accident and shipwreck, it is necessary to study the dynamics of the ship under the complex sudden impact of external forces. The task is to determine the movement and landing of the ship in the complex and sudden impact of external forces, i.e. when the ship's load changes over a relatively short period of time. For the solution, a technique was used to study the ship's dynamics, which is based on the compilation of a system of differential equations of motion. A coordinate system was adopted for the equation of motion of the hull and the determination of external forces. As a numerical method of integration, the 4th order Runge-Kutta method was chosen. The results of the calculation show that dynamic deviations were lower for high-altitude vessels. The study of the movement of the hull under a difficult situation is performed: receiving of cargo, impact of a flurry of wind and subsequent displacement of the cargo. The risk of overturning and flooding was assessed.

Keywords: Dynamics, statics, roll, trim, dynamic load, tilt, vertical displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 642
2572 Elastic and Plastic Collision Comparison Using Finite Element Method

Authors: Gustavo Rodrigues, Hans Weber, Larissa Driemeier

Abstract:

The prevision of post-impact conditions and the behavior of the bodies during the impact have been object of several collision models. The formulation from Hertz’s theory is generally used dated from the 19th century. These models consider the repulsive force as proportional to the deformation of the bodies under contact and may consider it proportional to the rate of deformation. The objective of the present work is to analyze the behavior of the bodies during impact using the Finite Element Method (FEM) with elastic and plastic material models. The main parameters to evaluate are, the contact force, the time of contact and the deformation of the bodies. An advantage of using the FEM approach is the possibility to apply a plastic deformation to the model according to the material definition: there will be used Johnson–Cook plasticity model whose parameters are obtained through empirical tests of real materials. This model allows analyzing the permanent deformation caused by impact, phenomenon observed in real world depending on the forces applied to the body. These results are compared between them and with the model-based Hertz theory.

Keywords: Collision, finite element method, Hertz’s Theory, impact models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
2571 Time Effective Structural Frequency Response Testing with Oblique Impact

Authors: Khoo Shin Yee, Lian Yee Cheng, Ong Zhi Chao, Zubaidah Ismail, Siamak Noroozi

Abstract:

Structural frequency response testing is accurate in identifying the dynamic characteristic of a machinery structure. In practical perspective, conventional structural frequency response testing such as experimental modal analysis with impulse technique (also known as “impulse testing”) has limitation especially on its long acquisition time. The high acquisition time is mainly due to the redundancy procedure where the engineer has to repeatedly perform the test in 3 directions, namely the axial-, horizontal- and vertical-axis, in order to comprehensively define the dynamic behavior of a 3D structure. This is unfavorable to numerous industries where the downtime cost is high. This study proposes to reduce the testing time by using oblique impact. Theoretically, a single oblique impact can induce significant vibration responses and vibration modes in all the 3 directions. Hence, the acquisition time with the implementation of the oblique impulse technique can be reduced by a factor of three (i.e. for a 3D dynamic system). This study initiates an experimental investigation of impulse testing with oblique excitation. A motor-driven test rig has been used for the testing purpose. Its dynamic characteristic has been identified using the impulse testing with the conventional normal impact and the proposed oblique impact respectively. The results show that the proposed oblique impulse testing is able to obtain all the desired natural frequencies in all 3 directions and thus providing a feasible solution for a fast and time effective way of conducting the impulse testing.

Keywords: Frequency response function, impact testing, modal analysis, oblique angle, oblique impact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 932
2570 Evaluation of Seismic Behavior of Steel Shear Wall with Opening with Hardener and Beam with Reduced Cross Section under Cycle Loading with Finite Element Analysis Method

Authors: Masoud Mahdavi

Abstract:

During an earthquake, the structure is subjected to seismic loads that cause tension in the members of the building. The use of energy dissipation elements in the structure reduces the percentage of seismic forces on the main members of the building (especially the columns). Steel plate shear wall, as one of the most widely used types of energy dissipation element, has evolved today, and regular drilling of its inner plate is one of the common cases. In the present study, using a finite element method, the shear wall of the steel plate is designed as a floor (with dimensions of 447 × 6/246 cm) with Abacus software and in three different modes on which a cyclic load has been applied. The steel shear wall has a horizontal element (beam) with a reduced beam section (RBS). The hole in the interior plate of the models is created in such a way that it has the process of increasing the area, which makes the effect of increasing the surface area of the hole on the seismic performance of the steel shear wall completely clear. In the end, it was found that with increasing the opening level in the steel shear wall (with reduced cross-section beam), total displacement and plastic strain indicators increased, structural capacity and total energy indicators decreased and the Mises Monson stress index did not change much.

Keywords: Steel plate shear wall with opening, cyclic loading, reduced cross-section beam, finite element method, Abaqus Software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 629
2569 Substantial Fatigue Similarity of a New Small-Scale Test Rig to Actual Wheel-Rail System

Authors: Meysam Naeimi, Zili Li, Roumen Petrov, Rolf Dollevoet, Jilt Sietsma, Jun Wu

Abstract:

The substantial similarity of fatigue mechanism in a new test rig for rolling contact fatigue (RCF) has been investigated. A new reduced-scale test rig is designed to perform controlled RCF tests in wheel-rail materials. The fatigue mechanism of the rig is evaluated in this study using a combined finite element-fatigue prediction approach. The influences of loading conditions on fatigue crack initiation have been studied. Furthermore, the effects of some artificial defects (squat-shape) on fatigue lives are examined. To simulate the vehicle-track interaction by means of the test rig, a threedimensional finite element (FE) model is built up. The nonlinear material behaviour of the rail steel is modelled in the contact interface. The results of FE simulations are combined with the critical plane concept to determine the material points with the greatest possibility of fatigue failure. Based on the stress-strain responses, by employing of previously postulated criteria for fatigue crack initiation (plastic shakedown and ratchetting), fatigue life analysis is carried out. The results are reported for various loading conditions and different defect sizes. Afterward, the cyclic mechanism of the test rig is evaluated from the operational viewpoint. The results of fatigue life predictions are compared with the expected number of cycles of the test rig by its cyclic nature. Finally, the estimative duration of the experiments until fatigue crack initiation is roughly determined.

Keywords: Fatigue, test rig, crack initiation, life, rail, squats.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170
2568 Risk Based Maintenance Planning for Loading Equipment in Underground Hard Rock Mine: Case Study

Authors: Sidharth Talan, Devendra Kumar Yadav, Yuvraj Singh Rajput, Subhajit Bhattacharjee

Abstract:

Mining industry is known for its appetite to spend sizeable capital on mine equipment. However, in the current scenario, the mining industry is challenged by daunting factors of non-uniform geological conditions, uneven ore grade, uncontrollable and volatile mineral commodity prices and the ever increasing quest to optimize the capital and operational costs. Thus, the role of equipment reliability and maintenance planning inherits a significant role in augmenting the equipment availability for the operation and in turn boosting the mine productivity. This paper presents the Risk Based Maintenance (RBM) planning conducted on mine loading equipment namely Load Haul Dumpers (LHDs) at Vedanta Resources Ltd subsidiary Hindustan Zinc Limited operated Sindesar Khurd Mines, an underground zinc and lead mine situated in Dariba, Rajasthan, India. The mining equipment at the location is maintained by the Original Equipment Manufacturers (OEMs) namely Sandvik and Atlas Copco, who carry out the maintenance and inspection operations for the equipment. Based on the downtime data extracted for the equipment fleet over the period of 6 months spanning from 1st January 2017 until 30th June 2017, it was revealed that significant contribution of three downtime issues related to namely Engine, Hydraulics, and Transmission to be common among all the loading equipment fleet and substantiated by Pareto Analysis. Further scrutiny through Bubble Matrix Analysis of the given factors revealed the major influence of selective factors namely Overheating, No Load Taken (NTL) issues, Gear Changing issues and Hose Puncture and leakage issues. Utilizing the equipment wise analysis of all the downtime factors obtained, spares consumed, and the alarm logs extracted from the machines, technical design changes in the equipment and pre shift critical alarms checklist were proposed for the equipment maintenance. The given analysis is beneficial to allow OEMs or mine management to focus on the critical issues hampering the reliability of mine equipment and design necessary maintenance strategies to mitigate them.

Keywords: Bubble matrix analysis, LHDs, OEMs, pareto chart analysis, spares consumption matrix, critical alarms checklist.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1091
2567 Effect of Impact Angle on Erosive Abrasive Wear of Ductile and Brittle Materials

Authors: Ergin Kosa, Ali Göksenli

Abstract:

Erosion and abrasion are wear mechanisms reducing the lifetime of machine elements like valves, pump and pipe systems. Both wear mechanisms are acting at the same time, causing a “Synergy” effect, which leads to a rapid damage of the surface. Different parameters are effective on erosive abrasive wear rate. In this study effect of particle impact angle on wear rate and wear mechanism of ductile and brittle materials was investigated. A new slurry pot was designed for experimental investigation. As abrasive particle, silica sand was used. Particle size was ranking between 200- 500 μm. All tests were carried out in a sand-water mixture of 20% concentration for four hours. Impact velocities of the particles were 4.76 m/s. As ductile material steel St 37 with Vickers Hardness Number (VHN) of 245 and quenched St 37 with 510 VHN was used as brittle material. After wear tests, morphology of the eroded surfaces were investigated for better understanding of the wear mechanisms acting at different impact angles by using Scanning Electron Microscope. The results indicated that wear rate of ductile material was higher than brittle material. Maximum wear rate was observed by ductile material at a particle impact angle of 300 and decreased further by an increase in attack angle. Maximum wear rate by brittle materials was by impact angle of 450 and decreased further up to 900. Ploughing was the dominant wear mechanism by ductile material. Microcracks on the surface were detected by ductile materials, which are nucleation centers for crater formation. Number of craters decreased and depth of craters increased by ductile materials by attack angle higher than 300. Deformation wear mechanism was observed by brittle materials. Number and depth of pits decreased by brittle materials by impact angles higher than 450. At the end it is concluded that wear rate could not be directly related to impact angle of particles due to the different reaction of ductile and brittle materials.

Keywords: Erosive wear, particle impact angle, silica sand, wear rate, ductile-brittle material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3023
2566 Structural Health Monitoring of Offshore Structures Using Wireless Sensor Networking under Operational and Environmental Variability

Authors: Srinivasan Chandrasekaran, Thailammai Chithambaram, Shihas A. Khader

Abstract:

The early-stage damage detection in offshore structures requires continuous structural health monitoring and for the large area the position of sensors will also plays an important role in the efficient damage detection. Determining the dynamic behavior of offshore structures requires dense deployment of sensors. The wired Structural Health Monitoring (SHM) systems are highly expensive and always needs larger installation space to deploy. Wireless sensor networks can enhance the SHM system by deployment of scalable sensor network, which consumes lesser space. This paper presents the results of wireless sensor network based Structural Health Monitoring method applied to a scaled experimental model of offshore structure that underwent wave loading. This method determines the serviceability of the offshore structure which is subjected to various environment loads. Wired and wireless sensors were installed in the model and the response of the scaled BLSRP model under wave loading was recorded. The wireless system discussed in this study is the Raspberry pi board with Arm V6 processor which is programmed to transmit the data acquired by the sensor to the server using Wi-Fi adapter, the data is then hosted in the webpage. The data acquired from the wireless and wired SHM systems were compared and the design of the wireless system is verified.

Keywords: Condition assessment, damage detection, structural health monitoring, structural response, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2969
2565 The Impact of Exchange Rate Volatility on Real Total Export and Sub-Categories of Real Total Export of Malaysia

Authors: Wong Hock Tsen

Abstract:

This study aims to investigate the impact of exchange rate volatility on real export in Malaysia. The moving standard deviation with order three (MSD(3)) is used for the measurement of exchange rate volatility. The conventional and partially asymmetric autoregressive distributed lag (ARDL) models are used in the estimations. This study finds exchange rate volatility to have significant impact on real total export and some sub-categories of real total export. Moreover, this study finds that the positive or negative exchange rate volatility tends to have positive or negative impact on real export. Exchange rate volatility can be harmful to export of Malaysia.

Keywords: Exchange rate volatility, autoregressive distributed lag, export, Malaysia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1198
2564 Experimental Investigation on the Effects of Electroless Nickel Phosphorus Deposition, pH and Temperature with the Varying Coating Bath Parameters on Impact Energy by Taguchi Method

Authors: D. Kari Basavaraja, M. G. Skanda, C. Soumya, V. Ramesh

Abstract:

This paper discusses the effects of sodium hypophosphite concentration, pH, and temperature on deposition rate. This paper also discusses the evaluation of coating strength, surface, and subsurface by varying the bath parameters, percentage of phosphate, plating temperature, and pH of the plating solution. Taguchi technique has been used for the analysis. In the experiment, nickel chloride which is a source of nickel when mixed with sodium hypophosphite has been used as the reducing agent and the source of phosphate and sodium hydroxide has been used to vary the pH of the coating bath. The coated samples are tested for impact energy by conducting impact test. Finally, the effects of coating bath parameters on the impact energy absorbed have been plotted, and analysis has been carried out. Further, percentage contribution of coating bath parameters using Design of Experiments approach (DOE) has been analysed. Finally, it can be concluded that the bath parameters of the Ni-P coating will certainly influence on the strength of the specimen.

Keywords: Bath parameters, coatings, design of experiment, fracture toughness, impact strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301