Search results for: First order shear deformation theory
6874 Modeling and Investigation of Volume Strain at Large Deformation under Uniaxial Cyclic Loading in Semi Crystalline Polymer
Authors: Rida B. Arieby
Abstract:
This study deals with the experimental investigation and theoretical modeling of Semi crystalline polymeric materials with a rubbery amorphous phase (HDPE) subjected to a uniaxial cyclic tests with various maximum strain levels, even at large deformation. Each cycle is loaded in tension up to certain maximum strain and then unloaded down to zero stress with N number of cycles. This work is focuses on the measure of the volume strain due to the phenomena of damage during this kind of tests. On the basis of thermodynamics of relaxation processes, a constitutive model for large strain deformation has been developed, taking into account the damage effect, to predict the complex elasto-viscoelastic-viscoplastic behavior of material. A direct comparison between the model predictions and the experimental data show that the model accurately captures the material response. The model is also capable of predicting the influence damage causing volume variation.Keywords: Cyclic test, large strain, polymers semi-crystalline, Volume strain, Thermodynamics of Irreversible Processes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23106873 Cladding of Al and Cu by Differential Speed Rolling
Authors: Tae Yun Chung, Jungho Moon, Tae Kwon Ha
Abstract:
Al/Cu clad sheet has been fabricated by using differential speed rolling (DSR) process, which caused severe shear deformation between Al and Cu plate to easily bond to each other. Rolling was carried out at 100 and 150oC with speed ratios from 1.4 to 2.2, in which the total thickness reduction was in the range between 14 and 46%. Interfacial microstructure and mechanical properties of Al/Cu clad were investigated by scanning electron microscope equipped with energy dispersive X-ray detector, and tension tests. The DSR process was very effective to provide a good interface for atoms diffusion during subsequent annealing. The strength of bonding was higher with the increasing speed ratio. Post heat treatment enhanced the mechanical properties of clad sheet by forming intermetallic compounds in the interface area.
Keywords: Aluminum/Copper clad sheet, Differential speed rolling, Interface microstructure, Annealing, Tensile test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23506872 Free Vibration and Buckling of Rectangular Plates under Nonuniform In-Plane Edge Shear Loads
Authors: T. H. Young, Y. J. Tsai
Abstract:
A method for determining the stress distribution of a rectangular plate subjected to two pairs of arbitrarily distributed in-plane edge shear loads is proposed, and the free vibration and buckling of such a rectangular plate are investigated in this work. The method utilizes two stress functions to synthesize the stress-resultant field of the plate with each of the stress functions satisfying the biharmonic compatibility equation. The sum of stress-resultant fields due to these two stress functions satisfies the boundary conditions at the edges of the plate, from which these two stress functions are determined. Then, the free vibration and buckling of the rectangular plate are investigated by the Galerkin method. Numerical results obtained by this work are compared with those appeared in the literature, and good agreements are observed.
Keywords: Stress analysis, free vibration, plate buckling, nonuniform in-plane edge shear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7656871 Partial Stabilization of a Class of Nonlinear Systems Via Center Manifold Theory
Authors: Ping He
Abstract:
This paper addresses the problem of the partial state feedback stabilization of a class of nonlinear systems. In order to stabilization this class systems, the especial place of this paper is to reverse designing the state feedback control law from the method of judging system stability with the center manifold theory. First of all, the center manifold theory is applied to discuss the stabilization sufficient condition and design the stabilizing state control laws for a class of nonlinear. Secondly, the problem of partial stabilization for a class of plane nonlinear system is discuss using the lyapunov second method and the center manifold theory. Thirdly, we investigate specially the problem of the stabilization for a class of homogenous plane nonlinear systems, a class of nonlinear with dual-zero eigenvalues and a class of nonlinear with zero-center using the method of lyapunov function with homogenous derivative, specifically. At the end of this paper, some examples and simulation results are given show that the approach of this paper to this class of nonlinear system is effective and convenient.Keywords: Partial stabilization, Nonlinear critical systems, Centermanifold theory, Lyapunov function, System reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17636870 Dynamic Soil Structure Interaction in Buildings
Authors: Shreya Thusoo, Karan Modi, Ankit Kumar Jha, Rajesh Kumar
Abstract:
Since the evolution of computational tools and simulation software, there has been considerable increase in research on Soil Structure Interaction (SSI) to decrease the computational time and increase accuracy in the results. To aid the designer with a proper understanding of the response of structure in different soil types, the presented paper compares the deformation, shear stress, acceleration and other parameters of multi-storey building for a specific input ground motion using Response-spectrum Analysis (RSA) method. The response of all the models of different heights have been compared in different soil types. Finite Element Simulation software, ANSYS, has been used for all the computational purposes. Overall, higher response is observed with SSI, while it increases with decreasing stiffness of soil.
Keywords: Soil-structure interaction, response-spectrum analysis, finite element method, multi-storey buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22816869 Haemodynamics Study in Subject Specific Carotid Bifurcation Using FSI
Authors: S. M. Abdul Khader, Anurag Ayachit, Raghuvir Pai, K. A. Ahmed, V. R. K. Rao, S. Ganesh Kamath
Abstract:
The numerical simulation has made tremendous advances in investigating the blood flow phenomenon through elastic arteries. Such study can be useful in demonstrating the disease progression and hemodynamics of cardiovascular diseases such as atherosclerosis. In the present study, patient specific case diagnosed with partially stenosed complete right ICA and normal left carotid bifurcation without any atherosclerotic plaque formation is considered. 3D patient specific carotid bifurcation model is generated based on CT scan data using MIMICS-4.0 and numerical analysis is performed using FSI solver in ANSYS-14.5. The blood flow is assumed to be incompressible, homogenous and Newtonian, while the artery wall is assumed to be linearly elastic. The two-way sequentially coupled transient FSI analysis is performed using FSI solver for three pulse cycles. The hemodynamic parameters such as flow pattern, Wall Shear Stress, pressure contours and arterial wall deformation are studied at the bifurcation and critical zones such as stenosis. The variation in flow behavior is studied throughout the pulse cycle. Also, the simulation results reveal that there is a considerable increase in the flow behavior in stenosed carotid in contrast to the normal carotid bifurcation system. The investigation also demonstrates the disturbed flow pattern especially at the bifurcation and stenosed zone elevating the hemodynamics, particularly during peak systole and later part of the pulse cycle. The results obtained agree well with the clinical observation and demonstrates the potential of patient specific numerical studies in prognosis of disease progression and plaque rupture.Keywords: Fluid-Structure Interaction, arterial stenosis, Wall Shear Stress, Carotid Artery Bifurcation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22966868 The Effect of Shear Wall Positions on the Seismic Response of Frame-Wall Structures
Authors: Anas M. Fares
Abstract:
The configuration of shear walls in plan of building will affect the seismic design of structure. The position of these walls will change the stiffness of each floor in the structure, the diaphragm center of mass displacement, and the drift of floor. Structural engineers preferred to distribute the walls in buildings to make the center of mass almost close enough to the center of rigidity, but to make this condition satisfied, they have many choices: construct the walls on the perimeter, or use intermediate walls, or use walls as core. In this paper and by using ETABS, each case is studied and compared to other cases according to three parameters: lateral stiffness, diaphragm displacement, and drift. It is found that the core walls are the best choice for the position of the walls in the buildings to resist earthquake loads.
Keywords: Lateral loads, lateral displacement, reinforced concrete, shear wall, seismic, ASCE7-16 code, ACI code, stiffness, drift.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11476867 An Inverse Approach for Determining Creep Properties from a Miniature Thin Plate Specimen under Bending
Abstract:
This paper describes a new approach which can be used to interpret the experimental creep deformation data obtained from miniaturized thin plate bending specimen test to the corresponding uniaxial data based on an inversed application of the reference stress method. The geometry of the thin plate is fully defined by the span of the support, l, the width, b, and the thickness, d. Firstly, analytical solutions for the steady-state, load-line creep deformation rate of the thin plates for a Norton’s power law under plane stress (b→0) and plane strain (b→∞) conditions were obtained, from which it can be seen that the load-line deformation rate of the thin plate under plane-stress conditions is much higher than that under the plane-strain conditions. Since analytical solution is not available for the plates with random b-values, finite element (FE) analyses are used to obtain the solutions. Based on the FE results obtained for various b/l ratios and creep exponent, n, as well as the analytical solutions under plane stress and plane strain conditions, an approximate, numerical solutions for the deformation rate are obtained by curve fitting. Using these solutions, a reference stress method is utilised to establish the conversion relationships between the applied load and the equivalent uniaxial stress and between the creep deformations of thin plate and the equivalent uniaxial creep strains. Finally, the accuracy of the empirical solution was assessed by using a set of “theoretical” experimental data.Keywords: Bending, Creep, Miniature Specimen, Thin Plate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19136866 Shape-Based Image Retrieval Using Shape Matrix
Abstract:
Retrieval image by shape similarity, given a template shape is particularly challenging, owning to the difficulty to derive a similarity measurement that closely conforms to the common perception of similarity by humans. In this paper, a new method for the representation and comparison of shapes is present which is based on the shape matrix and snake model. It is scaling, rotation, translation invariant. And it can retrieve the shape images with some missing or occluded parts. In the method, the deformation spent by the template to match the shape images and the matching degree is used to evaluate the similarity between them.Keywords: shape representation, shape matching, shape matrix, deformation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15116865 Study of Coupled Lateral-Torsional Free Vibrations of Laminated Composite Beam: Analytical Approach
Authors: S.H. Mirtalaie, M.A. Hajabasi
Abstract:
In this paper, an analytical approach is used to study the coupled lateral-torsional vibrations of laminated composite beam. It is known that in such structures due to the fibers orientation in various layers, any lateral displacement will produce a twisting moment. This phenomenon is modeled by the bending-twisting material coupling rigidity and its main feature is the coupling of lateral and torsional vibrations. In addition to the material coupling, the effects of shear deformation and rotary inertia are taken into account in the definition of the potential and kinetic energies. Then, the governing differential equations are derived using the Hamilton-s principle and the mathematical model matches the Timoshenko beam model when neglecting the effect of bending-twisting rigidity. The equations of motion which form a system of three coupled PDEs are solved analytically to study the free vibrations of the beam in lateral and rotational modes due to the bending, as well as the torsional mode caused by twisting. The analytic solution is carried out in three steps: 1) assuming synchronous motion for the kinematic variables which are the lateral, rotational and torsional displacements, 2) solving the ensuing eigenvalue problem which contains three coupled second order ODEs and 3) imposing different boundary conditions related to combinations of simply, clamped and free end conditions. The resulting natural frequencies and mode shapes are compared with similar results in the literature and good agreement is achieved.
Keywords: Free vibration, laminated composite beam, material coupling, state space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22906864 Investigating the Effect of Velocity Inlet and Carrying Fluid on the Flow inside Coronary Artery
Authors: Mohammadreza Nezamirad, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi
Abstract:
In this study OpenFOAM 4.4.2 was used to investigate flow inside the coronary artery of the heart. This step is the first step of our future project, which is to include conjugate heat transfer of the heart with three main coronary arteries. Three different velocities were used as inlet boundary conditions to see the effect of velocity increase on velocity, pressure, and wall shear of the coronary artery. Also, three different fluids, namely the University of Wisconsin solution, gelatin, and blood was used to investigate the effect of different fluids on flow inside the coronary artery. A code based on Reynolds Stress Navier Stokes (RANS) equations was written and implemented with the real boundary condition that was calculated based on MRI images. In order to improve the accuracy of the current numerical scheme, hex dominant mesh is utilized. When the inlet velocity increases to 0.5 m/s, velocity, wall shear stress, and pressure increase at the narrower parts.
Keywords: CFD, heart, simulation, OpenFOAM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4576863 Studying Mistaken Theory of Calendar Function of Iran-s Cross-Vaults
Authors: Ali Salehipour
Abstract:
After presenting the theory of calendar function of Iran-s cross-vaults especially “Niasar" cross-vault in recent years, there has been lots of doubts and uncertainty about this theory by astrologists and archaeologists. According to this theory “Niasar cross-vault and other cross-vaults of Iran has calendar function and are constructed in a way that sunrise and sunset can be seen from one of its openings in the beginning and middle of each season of year". But, mentioning historical documentaries we conclude here that the theory of calendar function of Iran-s cross-vaults does not have any strong basis and individual cross-vaults had only religious function in Iran.Keywords: cross-vault, fire temple, Calendar function, Sassanid period
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15946862 Mesoscopic Defects of Forming and Induced Properties on the Impact of a Composite Glass/Polyester
Authors: Bachir Kacimi, Fatiha Teklal, Arezki Djebbar
Abstract:
Forming processes induce residual deformations on the reinforcement and sometimes lead to mesoscopic defects, which are more recurrent than macroscopic defects during the manufacture of complex structural parts. This study deals with the influence of the fabric shear and buckles defects, which appear during draping processes of composite, on the impact behavior of a glass fiber reinforced polymer. To achieve this aim, we produced several specimens with different amplitude of deformations (shear) and defects on the fabric using a specific bench. The specimens were manufactured using the contact molding and tested with several impact energies. The results and measurements made on tested specimens were compared to those of the healthy material. The results showed that the buckle defects have a negative effect on elastic parameters and revealed a larger damage with significant out-of-plane mode relatively to the healthy composite material. This effect is the consequence of a local fiber impoverishment and a disorganization of the fibrous network, with a reorientation of the fibers following the out-of-plane buckling of the yarns, in the area where the defects are located. For the material with calibrated shear of the reinforcement, the increased local fiber rate due to the shear deformations and the contribution to stiffness of the transverse yarns led to an increase in mechanical properties.
Keywords: Defects, forming, impact, induced properties, textiles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5236861 High Precision Draw Bending of Asymmetric Channel Section with Restriction Dies and Axial Tension
Authors: Y. Okude, S. Sakaki, S. Yoshihara, B. J. MacDonald
Abstract:
In recent years asymmetric cross section aluminum alloy stock has been finding increasing use in various industrial manufacturing areas such as general structures and automotive components. In these areas, components are generally required to have complex curved configuration and, as such, a bending process is required during manufacture. Undesirable deformation in bending processes such as flattening or wrinkling can easily occur when thin-walled sections are bent. Hence, a thorough understanding of the bending behavior of such sections is needed to prevent these undesirable deformations. In this study, the bending behavior of asymmetric channel section was examined using finite element analysis (FEA). Typical methods of preventing undesirable deformation, such as asymmetric laminated elastic mandrels were included in FEA model of draw bending. Additionally, axial tension was applied to prevent wrinkling. By utilizing the FE simulations effect of restriction dies and axial tension on undesirable deformation during the process was clarified.Keywords: bending, draw bending, asymmetric channel section, restriction dies, axial tension, FEA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17196860 The Relations between Seismic Results and Groundwater near the Gokpinar Damp Area, Denizli, Turkey
Authors: Mahmud Gungor, Ali Aydin, Erdal Akyol, Suat Tasdelen
Abstract:
The understanding of geotechnical characteristics of near-surface material and the effects of the groundwater is very important problem in such as site studies. For showing the relations between seismic data and groundwater, we selected about 25 km2 as the study area. It has been presented which is a detailed work of seismic data and groundwater depths of Gokpinar Damp area. Seismic waves velocity (Vp and Vs) are very important parameters showing the soil properties. The seismic records were used the method of the multichannel analysis of surface waves near area of Gokpinar Damp area. Sixty sites in this area have been investigated with survey lines about 60 m in length. MASW (Multichannel analysis of surface wave) method has been used to generate onedimensional shear wave velocity profile at locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 2 and 5 m intervals up to a depth of 45 m. Levels of equivalent shear wave velocity of soil are used the classified of the study area. After the results of the study, it must be considered as components of urban planning and building design of Gokpinar Damp area, Denizli and the application and use of these results should be required and enforced by municipal authorities.
Keywords: Seismic data, Gokpinar Damp, urban planning, Denizli.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23586859 Evaluation of Behavior Factor for Steel Moment-Resisting Frames
Authors: Taïeb Branci, Djamal Yahmi, Abdelhamid Bouchair, Eric Fourneley
Abstract:
According to current seismic codes the structures are calculated using the capacity design procedure based on the concept of shear at the base depending on several parameters including behavior factor which is considered to be the most important parameter. The behavior factor allows designing the structure when it is at its ultimate limit state taking into account its energy dissipation through its plastic deformation. The aim of the present study is to assess the basic parameters on which is composed the behavior factor among them the reduction factor due to ductility, and those due to redundancy and the overstrength for steel moment-resisting frames of different heights and regular configuration. Analyses are conducted on these frames using the nonlinear static method where the effect of some parameters on the behavior factor, such as the number of stories and the number of spans, are taken into account. The results show that the behavior factor is rather sensitive to the variation of the number of stories and bays.
Keywords: Behavior, code, frame, ductility, overstrength, redundancy, plastic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33346858 Effect of Surface Stress on the Deformation around a Nanosized Elliptical Hole: a Finite Element Study
Authors: Weifeng Wang, Xianwei Zeng, Jianping Ding
Abstract:
When the characteristic length of an elastic solid is down to the nanometer level, its deformation behavior becomes size dependent. Surface energy /surface stress have recently been applied to explain such dependency. In this paper, the effect of strain-independent surface stress on the deformation of an isotropic elastic solid containing a nanosized elliptical hole is studied by the finite element method. Two loading cases are considered, in the first case, hoop stress along the rim of the elliptical hole induced by pure surface stress is studied, in the second case, hoop stress around the elliptical opening under combined remote tension and surface stress is investigated. It has been shown that positive surface stress induces compressive hoop stress along the hole, and negative surface stress has opposite effect, maximum hoop stress occurs near the major semi-axes of the ellipse. Under combined loading of remote tension and surface stress, stress concentration around the hole can be either intensified or weakened depending on the sign of the surface stress.Keywords: Surface stress, finite element method, stress concentration, nanosized elliptical hole
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20766857 The Effect of Different Pre-Treatment Methods on the Shear Bond Strength of Orthodontic Tubes: An in vitro Study
Authors: A. C. B. C. J. Fernandes, V. C. de Jesus, S. Noruziaan, O. F. G. G. Vilela, K. K. Somarin, R. França, F. H. S. L. Pinheiro
Abstract:
Objective: This in vitro study aimed to evaluate the shear bond strength (SBS) of orthodontic tubes after different enamel pre-treatments. Materials and Methods: A total of 39 crown halves were randomly divided into 3 groups (n = 13). Group I (control group) was exposed to prophy paste (PP), 37% phosphoric acid (PA), and a self-etching primer (SEP). Group II received no prophylaxis, but only PA and SEP. Group III was exposed to PP and SEP. The SBS was used to evaluate the bond strength of the orthodontic tubes one year after bonding. One-way ANOVA and Tukey’s post-hoc test were used to compare SBS values between the three groups. The statistical significance was set to 5%. Results: The difference in SBS values of groups I (36.672 ± 9.315 Mpa), II (34.242 ± 9.986 Mpa), and III (39.055 ± 5.565 Mpa) were not statistically significant (P < 0.05). Conclusion: This study suggests that chairside time can be significantly reduced with the use of PP and a SEP without compromising adhesion. Further evidence is needed by means of a split-mouth design trial.
Keywords: Shear bond strength, orthodontic tubes, self-etching primer, pumice, prophy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4126856 Dependency Theory on Examining the Relationship between the United States and the Middle East: In the Case of Iran, Saudi Arabia, and Turkey
Authors: Abdelhafez Abdel Hafez
Abstract:
Dependency theory was developed since 1950s, with economic concerns. It divided the world into two parts, the states of the peripheral (third world countries) and the states of the core (the developed capitalist countries). Another perspective developed to the theory with the implementation of the idea of semi-peripheral states in the new world order. With these divisions (core, peripheral, semi-peripheral) this study aims to develop a concept from the perspective of dependency theory, to understand the nature of the relationship of the U.S. with the Middle East Regions through its relation with Iran, Saudi Arabia, and Turkey. The tested countries (Saudi Arabia, Iran and Turkey) are seeking a foothold and influential role in the region. The paper argued that the U.S. directs its policies toward the region, in the way to guarantee no country of the region will be in semi-peripheral level (that could create competitions or danger on the U.S. interest). Therefore, U.S. policies in the region have varied from declaring war to diplomatic channels and sometimes ignoring. The paper is based on the dependency theory, and other international relations theories used to study the Middle East in the international context.
Keywords: Dependency, hegemony, imperialism, Middle East.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5496855 Decision Making with Dempster-Shafer Theory of Evidence Using Geometric Operators
Authors: José M. Merigó, Montserrat Casanovas
Abstract:
We study the problem of decision making with Dempster-Shafer belief structure. We analyze the previous work developed by Yager about using the ordered weighted averaging (OWA) operator in the aggregation of the Dempster-Shafer decision process. We discuss the possibility of aggregating with an ascending order in the OWA operator for the cases where the smallest value is the best result. We suggest the introduction of the ordered weighted geometric (OWG) operator in the Dempster-Shafer framework. In this case, we also discuss the possibility of aggregating with an ascending order and we find that it is completely necessary as the OWG operator cannot aggregate negative numbers. Finally, we give an illustrative example where we can see the different results obtained by using the OWA, the Ascending OWA (AOWA), the OWG and the Ascending OWG (AOWG) operator.
Keywords: Decision making, aggregation operators, Dempster- Shafer theory of evidence, Uncertainty, OWA operator, OWG operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15296854 Identifying Chaotic Architecture: Origins of Nonlinear Design Theory
Authors: Mohammadsadegh Zanganehfar
Abstract:
Through the emergence of modern architecture, an aggressive desire for new design theories appeared through the works of architects and critics. The discourse of complexity and volumetric composition happened to be an important and controversial issue in the discipline of architecture which was discussed through a general point of view in Robert Venturi and Denise Scott Brown's book “Complexity and contradiction in architecture” in 1966, this paper attempts to identify chaos theory as a scientific model of complexity and its relation to architecture design theory by conducting a qualitative analysis and multidisciplinary critical approach through architecture and basic sciences resources. Accordingly, we identify chaotic architecture as the correlation between chaos theory and the discipline of architecture, and as an independent nonlinear design theory with specific characteristics and properties.
Keywords: Architecture complexity, chaos theory, fractals, nonlinear dynamic systems, nonlinear ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10766853 Elastic Lateral Features of a New Glass Fiber Reinforced Gypsum Wall
Authors: Zhengyong Liu, Huiqing Ying
Abstract:
GFRG(Glass Fiber Reinforced Gypsum) wall is a green product which can erect a building fast in prefabricated method, but its application to high-rise residential buildings is limited for its poor lateral stiffness. This paper has proposed a modification to GFRG walls structure to increase its lateral stiffness, which aiming to erect small high-rise residential buildings as load-bearing walls. The elastic finite element analysis to it has shown the lateral deformation feature and the distributions of the axial force and the shear force. The analysis results show that the new GFRG reinforced concrete wall can be used for small high-rise residential buildings.
Keywords: GFRG wall, lateral features, elastic analysis, residential building.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33346852 The Effect of Deformation Activation Volume, Strain Rate Sensitivity and Processing Temperature of Grain Size Variants
Authors: P. B. Sob, A. A. Alugongo, T. B. Tengen
Abstract:
The activation volume of 6082T6 aluminum is investigated at different temperatures for grain size variants. The deformation activation volume was computed on the basis of the relationship between the Boltzmann’s constant k, the testing temperatures, the material strain rate sensitivity and the material yield stress grain size variants. The material strain rate sensitivity is computed as a function of yield stress and strain rate grain size variants. The effect of the material strain rate sensitivity and the deformation activation volume of 6082T6 aluminum at different temperatures of 3-D grain are discussed. It is shown that the strain rate sensitivities and activation volume are negative for the grain size variants during the deformation of nanostructured materials. It is also observed that the activation volume vary in different ways with the equivalent radius, semi minor axis radius, semi major axis radius and major axis radius. From the obtained results it is shown that the variation of activation volume increase and decrease with the testing temperature. It was revealed that, increase in strain rate sensitivity led to decrease in activation volume whereas increase in activation volume led to decrease in strain rate sensitivity.
Keywords: Nanostructured materials, grain size variants, temperature, yield stress, strain rate sensitivity, activation volume.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26026851 The Emission Spectra Due to Exciton-Exciton Collisions in GaAs/AlGaAs Quantum Well System
Authors: Surendra K Pandey
Abstract:
Optical emission based on excitonic scattering processes becomes important in dense exciton systems in which the average distance between excitons is of the order of a few Bohr radii but still below the exciton screening threshold. The phenomena due to interactions among excited states play significant role in the emission near band edge of the material. The theory of two-exciton collisions for GaAs/AlGaAs quantum well systems is a mild attempt to understand the physics associated with the optical spectra due to excitonic scattering processes in these novel systems. The four typical processes considered give different spectral shape, peak position and temperature dependence of the emission spectra. We have used the theory of scattering together with the second order perturbation theory to derive the radiative power spontaneously emitted at an energy ħω by these processes. The results arrived at are purely qualitative in nature. The intensity of emitted light in quantum well systems varies inversely to the square of temperature, whereas in case of bulk materials it simply decreases with the temperature.
Keywords: Exciton-Exciton Collisions, Excitonic Scattering Processes, Interacting Excitonic States, Quantum Wells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14406850 The Effects of Bolt Spacing on Composite Shear Wall Behavior
Authors: Amir Ayazi, Hamde Ahmadi, Soheil Shafaei
Abstract:
Composite steel shear wall is a lateral load resisting system which consists of a steel plate with concrete wall attached to one or both sides to prevent it from elastic buckling. The composite behavior is ensured by utilizing high-strength bolts. This paper investigates the effect of distance between bolts, and for this purpose 14 one-story one-bay specimens with various bolts spacing were modeled by finite element code which is developed by the authors. To verify the model, numerical results were compared with a valid experiment which illustrate proper agreement. Results depict increasing the distance between bolts would improve the seismic ever, this increase must be limited, because of large distances will cause widespread buckling of the steel plate in free subpanels between bolts and would result in no improvement. By comparing the results in elastic region, it was observed initial stiffness is not affected by changing the distance.
Keywords: Composite steel shear wall, bolt, buckling, finite element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31286849 Investigating the Fatigue Crack Initiation Location in Interference Fitted and/or bolt Clamped Al 2024-T3 Double Shear Lap Joints
Authors: Babak Abazadeh, Hadi Rezghi Maleki
Abstract:
In this paper the fatigue crack initiation location of double shear lap joints, treated by interference fit and bolt clamping, have been investigated both experimentally and numerically. To do so, using the fracture section of available fatigue tested specimens of interference fitted and torque tightened Aluminum 2024-T3 plates, the crack initiation location was determined. The stress distribution attained from the finite element analysis was used to help explain the results observed in the experimental tests. The results showed that the fatigue crack initiation location changes from top and mid plane at the hole edge to somewhere far from the hole edge (stress concentration region) in different combination of clamping force, interference fit size and applied cyclic load ranges. It is worth mentioning that the fatigue crack initiation location affects the fatigue life of the specimens too.
Keywords: Fatigue crack initiation, interference fit, bolt clamping, double shear lap joint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19736848 Soil Moisture Regulation in Irrigated Agriculture
Authors: I. Kruashvili, I. Inashvili, K. Bziava, M. Lomishvili
Abstract:
Seepage capillary anomalies in the active layer of soil, related to the soil water movement, often cause variation of soil hydrophysical properties and become one of the main objectives of the hydroecology. It is necessary to mention that all existing equations for computing the seepage flow particularly from soil channels, through dams, bulkheads, and foundations of hydraulic engineering structures are preferable based on the linear seepage law. Regarding the existing beliefs, anomalous seepage is based on postulates according to which the fluid in free volume is characterized by resistance against shear deformation and is presented in the form of initial gradient. According to the above-mentioned information, we have determined: Equation to calculate seepage coefficient when the velocity of transition flow is equal to seepage flow velocity; by means of power function, equations for the calculation of average and maximum velocities of seepage flow have been derived; taking into consideration the fluid continuity condition, average velocity for calculation of average velocity in capillary tube has been received.
Keywords: Seepage, soil, velocity, water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10056847 Some Applications of Transition Matrices via Eigen Values
Authors: Adil AL-Rammahi
Abstract:
In this short paper, new properties of transition matrix were introduced. Eigen values for small order transition matrices are calculated in flexible method. For benefit of these properties applications of these properties were studied in the solution of Markov's chain via steady state vector, and information theory via channel entropy. The implemented test examples were promised for usages.
Keywords: Eigen value problem, transition matrix, state vector, information theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26686846 A Comparative CFD Study on the Hemodynamics of Flow through an Idealized Symmetric and Asymmetric Stenosed Arteries
Authors: B. Prashantha, S. Anish
Abstract:
The aim of the present study is to computationally evaluate the hemodynamic factors which affect the formation of atherosclerosis and plaque rupture in the human artery. An increase of atherosclerosis disease in the artery causes geometry changes, which results in hemodynamic changes such as flow separation, reattachment, and adhesion of new cells (chemotactic) in the artery. Hence, geometry plays an important role in the determining the nature of hemodynamic patterns. Influence of stenosis in the non-bifurcating artery, under pulsatile flow condition, has been studied on an idealized geometry. Analysis of flow through symmetric and asymmetric stenosis in the artery revealed the significance of oscillating shear index (OSI), flow separation, low WSS zones and secondary flow patterns on plaque formation. The observed characteristic of flow in the post-stenotic region highlight the importance of plaque eccentricity on the formation of secondary stenosis on the arterial wall.
Keywords: Atherosclerotic plaque, Oscillatory Shear Index, Stenosis nature, Wall Shear Stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15316845 Investigation of Shear Thickening Liquid Protection Fibrous Material
Authors: Po-Yun Chen, Jui-Liang Yen, Chang-Ping Chang, Wen-Hua Hu, Yu-Liang Chen, Yih-Ming Liu, Chin-Yi Chou, Ming-Der Ger
Abstract:
The stab resistance performance of newly developed fabric composites composed of hexagonal paper honeycombs, filled with shear thickening fluid (STF), and woven Kevlar® fabric or UHMPE was investigated in this study. The STF was prepared by dispersing submicron SiO2 particles into polyethylene glycol (PEG). Our results indicate that the STF-Kevlar composite possessed lower penetration depth than that of neat Kevlar. In other words, the STF-Kevlar composite can attain the same energy level in stab-resistance test with fewer layers of Kevlar fabrics than that of the neat Kevlar fabrics. It also indicates that STF can be used for the fabrication of flexible body armors and can provide improved protection against stab threats. We found that the stab resistance of the STF-Kevlar composite increases with the increase of SiO2 concentration in STF. Moreover, the silica particles functionalized with silane coupling agent can further improve the stab resistance.Keywords: shear thickening fluid, SiO2, Kevlar, stab
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3293