**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30836

##### Effect of Surface Stress on the Deformation around a Nanosized Elliptical Hole: a Finite Element Study

**Authors:**
Weifeng Wang,
Xianwei Zeng,
Jianping Ding

**Abstract:**

**Keywords:**
Finite Element Method,
surface stress,
stress
concentration,
nanosized elliptical hole

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1082141

**References:**

[1] M. E. Gurtin, and A. I. Murdoch, "A continuum theory of elastic material surfaces," Arch. Ration. Mech. Anal., vol. 57, pp. 291-323, 1975.

[2] M. E. Gurtin, and A. I. Murdoch, "Surface stress in solids," Int. J. Solids and Struct., vol.14, pp. 431-440, 1978.

[3] R. E. Miller, and V. Shenoy, "Size-dependent elastic properties of nanosized structural elements," Nanotechnology, vol. 11, pp. 139-147, 2002.

[4] P. Sharma, S. Ganti, and N. Bhate, "Effect of surfaces on the size-dependent elastic state of nano-imhomogeneities," Applied Physics Letters, vol. 82, pp.535-537, 2003.

[5] P. Sharma P, and S. Ganti, "Size-dependent Eshelby's tensor for embedded nano-inclusions incorporating surface/interface energies," J. Applied Mechanics, vol. 71, pp. 663-671, 2004.

[6] F. Yang, "Size-dependent effective modulus of elastic composite materials: spherical nanocavities at dilute concentrations," J. Applied Physics, vol. 95, pp. 3516-3520, 2004.

[7] G. F. Wang, and T. J. Wang, "Deformation around a nanosized elliptical hole with surface effect," Applied Physics Letters, vol. 89: pp. 161901-161903, 2006.

[8] L. Tian L, and R. K. N. D. Rajapakse, "Analytical solution for size-dependent elastic field of a nanoscale circular inhomogeneity," J. Applied Mechanics, vol. 74, pp. 568-574, 2007.

[9] L. Tian L, and R. K. N. D. Rajapakse, "Elastic field of an isotropic matrix with a nanoscale elliptical imhomogeneity," Int. J. Solids Struct., vol. 44, pp. 7988-8005, 2007.

[10] Z. Y. Ou, G. F. Wang, and T. J. Wang, "Effect of residual surface tension on the stress concentration around a nanosized spheroidal cavity," Int. J. Engrg. Sci., vol. 46, pp. 475-485, 2008.

[11] H. L. Duan, J. Wang, Z. P. Huang, and B. L. Karihaloo, "Size-dependent effective elastic constants of solids containing nano-imhomogeneities with interface stress," J. Mech. Phys. Solids, vol. 53, pp. 1574-1596, 2005.

[12] H. L. Duan, J. Wang, B. L. Karihaloo, and Z. P. Huang, "Nanoporous materials can be made stiffer than non-porous counterparts by surface modification," Acta Mater., vol. 54, pp. 2983-2990, 2006.

[13] T. Chen, G. J. Dvorak, and C. C. Yu, "Solids containing spherical nano-inclusions with interface stresses: effective properties and thermal-mechanical connections," Int. J. Solids Struct., vol. 44, pp. 941-955, 2007.

[14] W. Gao, S. W. Yu, and G. Y. Huang, " Finite element characterization of the size-dependent mechanical behavior in nanosystems," Nanotechnology, vol. 17, pp. 1118-1122, 2006,

[15] L. Tian, and R. K. N. D. Rajapakse, " Finite element modeling of nanoscale inhomogeneities in an elastic matrix," Computational Materials Science, vol. 41, pp. 44-53, 2007.

[16] R. C. Cammarata, "Surface and interface stress effects in thin film," Prog. Surf. Sci., vol. 46, pp. 1-38, 1994.