Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31252
Modeling and Investigation of Volume Strain at Large Deformation under Uniaxial Cyclic Loading in Semi Crystalline Polymer

Authors: Rida B. Arieby


This study deals with the experimental investigation and theoretical modeling of Semi crystalline polymeric materials with a rubbery amorphous phase (HDPE) subjected to a uniaxial cyclic tests with various maximum strain levels, even at large deformation. Each cycle is loaded in tension up to certain maximum strain and then unloaded down to zero stress with N number of cycles. This work is focuses on the measure of the volume strain due to the phenomena of damage during this kind of tests. On the basis of thermodynamics of relaxation processes, a constitutive model for large strain deformation has been developed, taking into account the damage effect, to predict the complex elasto-viscoelastic-viscoplastic behavior of material. A direct comparison between the model predictions and the experimental data show that the model accurately captures the material response. The model is also capable of predicting the influence damage causing volume variation.

Keywords: volume strain, large strain, cyclic test, polymers semi-crystalline, Thermodynamics of Irreversible Processes

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996


[1] F. ADDIEGO, A. DAHOUN, C. G-SELL, JM. HIVER. Characterization of volume strain at large deformation under uniaxial tension in highdensity polyethylene. Polym. Vol. 47, pp. 4387-4399, 2006.
[2] S. CASTAGNET, Y. DEBURCK. Relative influence of microstructure and macroscopic triaxiality on cavitation damage in semi-crystalline polymer. Mater. Sci. Eng., A. 448, pp. 56-66, 2007.
[3] C. G'SELL, S.L. BAI, J.M. HIVER. Polypropylene/polyamide 6/polyethylene-octene elastomer blends. Part 2: volume dilatation during plastic deformation under uniaxial tension. Polym., vol. 45, pp. 5785-5792, 2004.
[4] A. D. Drozdov, J. deC. Christiansen. Cyclic viscoplasticity of highdensity polyethylene: Experiments and modeling. Computational Materials Science, vol. 39, pp. 465-480, 2007.
[5] Kamel Hizoum, Yves Re'mond, Stanislav Patlazhan. Coupling of Nanocavitation With Cyclic Deformation Behavior of High-Density Polyethylene Below the Yield Point. Journal of Engineering Materials and Technology, vol. 133, pp. 1-5, 2011.
[6] A. D. Drozdov, J. deC. Christiansen. Cyclic viscoplasticity of highdensity polyethylene/montmorillonite clay nanocomposite. European Polymer Journal, vol. 43, pp. 10-25, 2007.
[7] C. G'SELL, J.M. HIVER, A. DAHOUN, A. SOUAHI. Video-controlled tensile testing of polymers and metals beyond the necking point. J. Mater. Sci., vol. 27, pp. 5031-5039, 1992.
[8] C. G'SELL, J.M. HIVER, A. DAHOUN. Experimental characterization of deformation damage in solid polymers under tension, and its interrelation with necking. International Journal of solids and structures. Vol. 39, pp. 3857-3872, 2002.
[9] C. CUNAT. Approche statistique des propriétés thermodynamiques des états liquides et vitreux - Relaxation des liquides et transition vitreuse - Influence des associations chimiques, Thèse, Nancy I, France, 1985.
[10] C. CUNAT. A thermodynamic theory of relaxation based on a distribution of non-linear processes, J. Non-Crystalline Solids vol. 131/133, pp. 196-199, 1991.
[11] C. CUNAT. The DNLR approach and relaxation phenomena: Part I - Historical account and DNLR formalism. Mech. of Time-Depend. Mater. Vol. 5, pp. 39-65, 2001.
[12] T. DE DONDER. Thermodynamic theory of affinity: A Book of principle. Oxford, England, Oxford University Press, 1936.
[13] I. PRIGOGINE. Introduction ├á la Thermodynamique des Processus Irréversibles, Dunod, Paris, 1968.
[14] M. ABOULFARAJ, C. G-SELL, B. ULRICH, A. DAHOUN. In situ observation of the plastic deformation of polypropylene spherulites under uniaxial tension and simple shear in the scanning electron microscope. Polym. Vol. 36, pp. 731-742, 1995.
[15] K. SCHNEIDER, S. TRABELSI, N. E. ZAFEIROPOULOS, R. DAVIES, Chr. RIEKEL, M. STAMM. The study of cavitation in HDPE using time resolved synchrotron X-ray scattering during tensile deformation. Macromol. Symp., vol. 236, pp. 241-248, 2006.
[16] K. NITTA, M. TAKAYANAGI. Tensile yield of isotactic polypropylene in terms of a lamellar-cluster model. J. Polym. Sci., vol. 38, pp. 1037- 1044, 2000.
[17] A. PAWLAK. Cavitation during tensile deformation of high-density polyethylene. Polym., vol. 48, pp. 1397-1409, 2007.
[18] S. CASTAGNET, Y. DEBURCK. Relative influence of microstructure and macroscopic triaxiality on cavitation damage in semi-crystalline polymer. Mater. Sci. Eng., A. 448, pp. 56-66, 2007.
[19] E. ROGUET, S. CASTAGNET, J.C. GRANDIDIER. Mechanical features of the rubbery amorphous phase in tension and torsion in a semi-crystalline polymer. Mechanics of Materials, vol. 39, pp. 380-391, 2007.
[20] K.MARABET. Comportement mécanique en grandes déformations du Polyéthylène haut densité : Approche thermodynamique de l-état relaxé. Thèse, INPL, 2003.
[21] E. F. TOUSSAINT, Z. AYADI, P. PILVIN, C. CUNAT. Modeling of the Mechanical Behavior of a Nickel Alloy by Using a Time-Dependent Thermodynamic Approach to Relaxations of Continuous Media. J. Mech. of Time-Depend. Mater. Vol. 5, pp. 1-25, 2001.
[22] R. ARIEBY, R. RAHOUADJ, C. CUNAT. Caractérisation mécanique et modélisation thermodynamique du comportement anisotrope du polyéthylène ├á haute densité. Intégration des effets d'endommagemen. CFM 2009.
[23] E.M. ARRUDA, M.C BOYCE. A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials », J. Mec. Phys. Solids, vol. 41, pp. 389-412, 1993.