Search results for: pipe inspection robot
461 Multipurpose Agricultural Robot Platform: Conceptual Design of Control System Software for Autonomous Driving and Agricultural Operations Using Programmable Logic Controller
Authors: P. Abhishesh, B. S. Ryuh, Y. S. Oh, H. J. Moon, R. Akanksha
Abstract:
This paper discusses about the conceptual design and development of the control system software using Programmable logic controller (PLC) for autonomous driving and agricultural operations of Multipurpose Agricultural Robot Platform (MARP). Based on given initial conditions by field analysis and desired agricultural operations, the structural design development of MARP is done using modelling and analysis tool. PLC, being robust and easy to use, has been used to design the autonomous control system of robot platform for desired parameters. The robot is capable of performing autonomous driving and three automatic agricultural operations, viz. hilling, mulching, and sowing of seeds in the respective order. The input received from various sensors on the field is later transmitted to the controller via ZigBee network to make the changes in the control program to get desired field output. The research is conducted to provide assistance to farmers by reducing labor hours for agricultural activities by implementing automation. This study will provide an alternative to the existing systems with machineries attached behind tractors and rigorous manual operations on agricultural field at effective cost.
Keywords: Agricultural operations, autonomous driving, MARP, PLC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195460 Effect of Soil Corrosion in Failures of Buried Gas Pipelines
Authors: Saima Ali, Pathamanathan Rajeev, Imteaz A. Monzur
Abstract:
In this paper, a brief review of the corrosion mechanism in buried pipe and modes of failure is provided together with the available corrosion models. Moreover, the sensitivity analysis is performed to understand the influence of corrosion model parameters on the remaining life estimation. Further, the probabilistic analysis is performed to propagate the uncertainty in the corrosion model on the estimation of the renaming life of the pipe. Finally, the comparison among the corrosion models on the basis of the remaining life estimation will be provided to improve the renewal plan.
Keywords: Corrosion, pit depth, sensitivity analysis, exposure period.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729459 Workspace Analysis of 6–6 Cable-Suspended Parallel Robots
Authors: Arian Bahrami, Amir Teimourian
Abstract:
In this paper, the effect of the moving platform size on the workspace volume of 6–6 cable-suspended parallel robots is investigated in details for different geometric configurations and orientations of the moving platform. The obtained hints can be used as a rule of thumb in designing this type of robot.Keywords: Cable-suspended parallel robot, system analysis and design, workspace analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156458 Robust Nonlinear Control of Two Links Robot Manipulator and Computing Maximum Load
Authors: Hasanifard Goran, Habib Nejad Korayem Moharam, Nikoobin Amin
Abstract:
A new robust nonlinear control scheme of a manipulator is proposed in this paper which is robust against modeling errors and unknown disturbances. It is based on the principle of variable structure control, with sliding mode control (SMC) method. The variable structure control method is a robust method that appears to be well suited for robotic manipulators because it requers only bounds on the robotic arm parameters. But there is no single systematic procedure that is guaranteed to produce a suitable control law. Also, to reduce chattring of the control signal, we replaced the sgn function in the control law by a continuous approximation such as tangant function. We can compute the maximum load with regard to applied torque into joints. The effectivness of the proposed approach has been evaluated analitically demonstrated through computer simulations for the cases of variable load and robot arm parameters.
Keywords: Variable structure control, robust control, switching surface, robot manipulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720457 Robot-assisted Relaxation Training for Children with Autism Spectrum Disorders
Authors: V. Holeva, V. Aliki Nikopoulou, P. Kechayas, M. Dialechti Kerasidou, M. Papadopoulou, G. A. Papakostas, V. G. Kaburlasos, A. Evangeliou
Abstract:
Cognitive Behavioral Therapy (CBT) has been proven an effective tool to address anger and anxiety issues in children and adolescents with Autism Spectrum Disorders (ASD). Robot-enhanced therapy has been used in psychosocial and educational interventions for children with ASD with promising results. Whenever CBT-based techniques were incorporated in robot-based interventions, they were mainly performed in group sessions. Objectives: The study’s main objective was the implementation and evaluation of the effectiveness of a relaxation training intervention for children with ASD, delivered by the social robot NAO. Methods: 20 children (aged 7–12 years) were randomly assigned to 16 sessions of relaxation training implemented twice a week. Two groups were formed: the NAO group (children participated in individual sessions with the support of NAO) and the control group (children participated in individual sessions with the support of the therapist only). Participants received three different relaxation scenarios of increasing difficulty (a breathing scenario, a progressive muscle relaxation scenario and a body scan medication scenario), as well as related homework sheets for practicing. Pre- and post-intervention assessments were conducted using the Child Behavior Checklist (CBCL) and the Strengths and Difficulties Questionnaire for parents (SDQ-P). Participants were also asked to complete an open-ended questionnaire to evaluate the effectiveness of the training. Parents’ satisfaction was evaluated via a questionnaire and children satisfaction was assessed by a thermometer scale. Results: The study supports the use of relaxation training with the NAO robot as instructor for children with ASD. Parents of enrolled children reported high levels of satisfaction and provided positive ratings of the training acceptability. Children in the NAO group presented greater motivation to complete homework and adopt the learned techniques at home. Conclusions: Relaxation training could be effectively integrated in robot-assisted protocols to help children with ASD regulate emotions and develop self-control.
Keywords: Autism spectrum disorders, CBT, children relaxation training, robot-assisted therapy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 915456 A Novel Approach for Scheduling Rescue Robot Mission Using Decision Analysis
Authors: Rana Soltani-Zarrin, Sohrab Khanmohammadi
Abstract:
In this paper, a new method for multi criteria decision making is represented whichspecifies a trajectory satisfying desired criteria including minimization of time. A rescue robot is defined to perform certain tasks before the arrival of rescue team, including evaluation of the probability of explosion in the area, detecting human-beings, and providing preliminary aidsin case of identifying signs of life, so that the security of the surroundings will have enhanced significantly for the individuals inside the disaster zone as well as the rescue team. The main idea behind our technique is using the Program Evaluation and Review Technique analysis along with Critical Path Method and use the Multi Criteria Decision Making (MCDM) method to decidewhich set of activities must be performed first. Since the disastrous event in one area may be well contagious to others, it is one of the robot's priorities to evaluate the relative adversity of the situation, using the above methods and prioritize its mission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668455 Making Computer Learn Color
Authors: Rinaldo Christian Tanumara, Ming Xie
Abstract:
Color categorization is shared among members in a society. This allows communication of color, especially when using natural language such as English. Hence sociable robot, to live coexist with human in human society, must also have the shared color categorization. To achieve this, many works have been done relying on modeling of human color perception and mathematical complexities. In contrast, in this work, the computer as brain of the robot learns color categorization through interaction with humans without much mathematical complexities.Keywords: Color categorization, color learning, machinelearning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441454 Optimal Design of Composite Patch for a Cracked Pipe by Utilizing Genetic Algorithm and Finite Element Method
Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi
Abstract:
Composite patching is a common way for reinforcing the cracked pipes and cylinders. The effects of composite patch reinforcement on fracture parameters of a cracked pipe depend on a variety of parameters such as number of layers, angle, thickness, and material of each layer. Therefore, stacking sequence optimization of composite patch becomes crucial for the applications of cracked pipes. In this study, in order to obtain the optimal stacking sequence for a composite patch that has minimum weight and maximum resistance in propagation of cracks, a coupled Multi-Objective Genetic Algorithm (MOGA) and Finite Element Method (FEM) process is proposed. This optimization process has done for longitudinal and transverse semi-elliptical cracks and optimal stacking sequences and Pareto’s front for each kind of cracks are presented. The proposed algorithm is validated against collected results from the existing literature.
Keywords: Multi objective optimization, Pareto front, composite patch, cracked pipe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909453 Walking Hexapod Robot in Disaster Recovery: Developing Algorithm for Terrain Negotiation and Navigation
Authors: Md. Masum Billah, Mohiuddin Ahmed, Soheli Farhana
Abstract:
In modern day disaster recovery mission has become one of the top priorities in any natural disaster management regime. Smart autonomous robots may play a significant role in such missions, including search for life under earth quake hit rubbles, Tsunami hit islands, de-mining in war affected areas and many other such situations. In this paper current state of many walking robots are compared and advantages of hexapod systems against wheeled robots are described. In our research we have selected a hexapod spider robot; we are developing focusing mainly on efficient navigation method in different terrain using apposite gait of locomotion, which will make it faster and at the same time energy efficient to navigate and negotiate difficult terrain. This paper describes the method of terrain negotiation navigation in a hazardous field.Keywords: Walking robots, locomotion, hexapod robot, gait, hazardous field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4433452 The Effect of Development of Two-Phase Flow Regimes on the Stability of Gas Lift Systems
Authors: Khalid. M. O. Elmabrok, M. L. Burby, G. G. Nasr
Abstract:
Flow instability during gas lift operation is caused by three major phenomena – the density wave oscillation, the casing heading pressure and the flow perturbation within the two-phase flow region. This paper focuses on the causes and the effect of flow instability during gas lift operation and suggests ways to control it in order to maximise productivity during gas lift operations. A laboratory-scale two-phase flow system to study the effects of flow perturbation was designed and built. The apparatus is comprised of a 2 m long by 66 mm ID transparent PVC pipe with air injection point situated at 0.1 m above the base of the pipe. This is the point where stabilised bubbles were visibly clear after injection. Air is injected into the water filled transparent pipe at different flow rates and pressures. The behavior of the different sizes of the bubbles generated within the two-phase region was captured using a digital camera and the images were analysed using the advanced image processing package. It was observed that the average maximum bubbles sizes increased with the increase in the length of the vertical pipe column from 29.72 to 47 mm. The increase in air injection pressure from 0.5 to 3 bars increased the bubble sizes from 29.72 mm to 44.17 mm and then decreasing when the pressure reaches 4 bars. It was observed that at higher bubble velocity of 6.7 m/s, larger diameter bubbles coalesce and burst due to high agitation and collision with each other. This collapse of the bubbles causes pressure drop and reverse flow within two phase flow and is the main cause of the flow instability phenomena.Keywords: Gas lift instability, bubble forming, bubble collapsing, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474451 A Study on Brushless DC Motor for High Torque Density
Authors: Jung-Moo Seo, Jung-Hwan Kim, Se-Hyun Rhyu, Jun-Hyuk Choi, In-Soung Jung,
Abstract:
Brushless DC motor with high torque density and slim topology for easy loading for robot system is proposed and manufactured. Electromagnetic design is executed by equivalent magnetic circuit model and numerical analysis. Manufactured motor is tested and verified characteristics comparing with conventional BLDC motor.Keywords: Brushless DC motor, Robot joint module, Torque density, Pole/slot ratio
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6895450 Path-Tracking Controller for Tracked Mobile Robot on Rough Terrain
Authors: Toshifumi Hiramatsu, Satoshi Morita, Manuel Pencelli, Marta Niccolini, Matteo Ragaglia, Alfredo Argiolas
Abstract:
Automation technologies for agriculture field are needed to promote labor-saving. One of the most relevant problems in automated agriculture is represented by controlling the robot along a predetermined path in presence of rough terrain or incline ground. Unfortunately, disturbances originating from interaction with the ground, such as slipping, make it quite difficult to achieve the required accuracy. In general, it is required to move within 5-10 cm accuracy with respect to the predetermined path. Moreover, lateral velocity caused by gravity on the incline field also affects slipping. In this paper, a path-tracking controller for tracked mobile robots moving on rough terrains of incline field such as vineyard is presented. The controller is composed of a disturbance observer and an adaptive controller based on the kinematic model of the robot. The disturbance observer measures the difference between the measured and the reference yaw rate and linear velocity in order to estimate slip. Then, the adaptive controller adapts “virtual” parameter of the kinematics model: Instantaneous Centers of Rotation (ICRs). Finally, target angular velocity reference is computed according to the adapted parameter. This solution allows estimating the effects of slip without making the model too complex. Finally, the effectiveness of the proposed solution is tested in a simulation environment.
Keywords: Agricultural robot, autonomous control, path-tracking control, tracked mobile robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134449 Comparison Ageing Deterioration of Silicone Rubber Outdoor Polymer Insulators in Artificial Accelerated Salt Fog Ageing Test
Authors: S.Thong-Om, W. Payakcho, J. Grasaesom, A. Oonsivilai, B. Marungsri
Abstract:
This paper presents the experimental results of silicone rubber outdoor polymer insulators in salt fog ageing test based on IEC 61109. Specimens made ofHTV silicone rubber with ATH content having three different configurations, straight shedsalternated sheds, and incline and alternate sheds, were tested continuously 1000 hrs.in artificial salt fog chamber. Contamination level, reduction of hydrophobicity and hardness measurement were used as physical damaged inspection techniques to evaluate degree of surface deterioration. In addition, chemical changing of tested specimen surface was evaluated by ATR-FTIRto confirm physical damaged inspection. After 1000 hrs.of salt fog test, differences in degree of surface deterioration were observed on all tested specimens. Physical damaged inspection and chemical analysis results confirmed the experimental results as well.
Keywords: Ageing deterioration, Silicone rubber, Polymer Insulator, Salt fog ageing test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2536448 Performance of Flat Plate Loop Heat Pipe for Thermal Management of Lithium-Ion Battery in Electric Vehicle Application
Authors: Bambang Ariantara, Nandy Putra, Rangga Aji Pamungkas
Abstract:
The development of electric vehicle batteries have resulted in very high energy density lithium-ion batteries. However, this progress is accompanied by the risk of thermal runaway, which can result in serious accidents. Heat pipes are heat exchangers that are suitable to be applied in electric vehicle battery thermal management for their lightweight, compact size and do not require external power supply. This paper aims to examine experimentally a Flat Plate Loop Heat Pipe (FPLHP) performance as a heat exchanger in thermal management system of lithium-ion battery for electric vehicle application. The heat generation of the battery was simulated using a cartridge heater. Stainless steel screen mesh was used as the capillary wick. Distilled water, alcohol and acetone were used as working fluids with a filling ratio of 60%. It was found that acetone gives the best performance that produces thermal resistance of 0.22 W/°C with 50°C evaporator temperature at heat flux load of 1.61 W/cm2.Keywords: Electric vehicle, flat plate loop heat pipe, lithium-ion battery, thermal management system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3239447 The Decentralized Nonlinear Controller of Robot Manipulator with External Load Compensation
Authors: Sun Lim, Il-Kyun Jung
Abstract:
This paper describes a newly designed decentralized nonlinear control strategy to control a robot manipulator. Based on the concept of the nonlinear state feedback theory and decentralized concept is developed to improve the drawbacks in previous works concerned with complicate intelligent control and low cost effective sensor. The control methodology is derived in the sense of Lyapunov theorem so that the stability of the control system is guaranteed. The decentralized algorithm does not require other joint angle and velocity information. Individual Joint controller is implemented using a digital processor with nearly actuator to make it possible to achieve good dynamics and modular. Computer simulation result has been conducted to validate the effectiveness of the proposed control scheme under the occurrence of possible uncertainties and different reference trajectories. The merit of the proposed control system is indicated in comparison with a classical control system.Keywords: Robot manipulator control, nonlinear controller, Lyapunov based stability, Interconnection compensation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626446 Enhancing Hand Efficiency of Smart Glass Cleaning Robot through Generative Design Module
Authors: Pankaj Gupta, Amit Kumar Srivastava, Nitesh Pandey
Abstract:
This article explores the domain of generative design in order to enhance the development of robot designs for innovative and efficient maintenance approaches for tall buildings. This study aims to optimize the design of robotic hands by focusing on minimizing mass and volume while ensuring they can withstand the specified pressure with equal strength. The research procedure is structured and systematic. The purpose of optimization is to enhance the efficiency of the robot and reduce the manufacturing expenses. The project seeks to investigate the application of generative design in order to optimize products. Autodesk Fusion 360 offers the capability to immediately apply the generative design functionality to the solid model. The effort involved creating a solid model of the Smart Glass Cleaning Robot and optimizing one of its components, the Hand, using generative techniques. The article has thoroughly examined the designs, outcomes, and procedure. These loads serve as a benchmark for creating designs that can endure the necessary level of pressure and preserve their structural integrity. The efficacy of the generative design process is contingent upon the selection of materials, as different materials possess distinct physical attributes. The study utilizes five different materials, namely Steel, Stainless Steel, Titanium, Aluminum, and CFRP (Carbon Fiber Reinforced Polymer), in order to investigate a range of design possibilities.
Keywords: Generative design, mass and volume optimization, material strength analysis, generative design, smart glass cleaning robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201445 Experimental Investigation on Flexural Behaviors in Framed Structure of PST Method
Authors: S. Hong, H. Kim, D. Cho, S. Park
Abstract:
Existing underground pipe jacking methods use a reinforcing rod in a steel tube to obtain structural stiffness. However, some problems such as inconvenience of works and expensive materials resulted from limited working space and reinforcing works are existed. To resolve these problems, a new pipe jacking method, namely PST (Prestressed Segment Tunnel) method, was developed which used joint to connect the steel segment and form erection structure. For evaluating the flexural capacity of the PST method structure, a experimental test was conducted. The parameters considered in the test were span-to-depth ratio of segment, diameter of steel tube at the corner, prestressing force, and welding of joint. The flexural behaviours with the effect of load capacity in serviceability state according to different parameters were examined.. The frame with long segments could increase flexural stiffness and the specimen with large diameter of concave corner showed excellent resistance ability to the negative moment. In addition, welding of joints increased the flexural capacity.Keywords: PST method, Pipe jacking method, Flexural behavior, Prestressed concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563444 The Use of the Limit Cycles of Dynamic Systems for Formation of Program Trajectories of Points Feet of the Anthropomorphous Robot
Authors: A. S. Gorobtsov, A. S. Polyanina, A. E. Andreev
Abstract:
The movement of points feet of the anthropomorphous robot in space occurs along some stable trajectory of a known form. A large number of modifications to the methods of control of biped robots indicate the fundamental complexity of the problem of stability of the program trajectory and, consequently, the stability of the control for the deviation for this trajectory. Existing gait generators use piecewise interpolation of program trajectories. This leads to jumps in the acceleration at the boundaries of sites. Another interpolation can be realized using differential equations with fractional derivatives. In work, the approach to synthesis of generators of program trajectories is considered. The resulting system of nonlinear differential equations describes a smooth trajectory of movement having rectilinear sites. The method is based on the theory of an asymptotic stability of invariant sets. The stability of such systems in the area of localization of oscillatory processes is investigated. The boundary of the area is a bounded closed surface. In the corresponding subspaces of the oscillatory circuits, the resulting stable limit cycles are curves having rectilinear sites. The solution of the problem is carried out by means of synthesis of a set of the continuous smooth controls with feedback. The necessary geometry of closed trajectories of movement is obtained due to the introduction of high-order nonlinearities in the control of stabilization systems. The offered method was used for the generation of trajectories of movement of point’s feet of the anthropomorphous robot. The synthesis of the robot's program movement was carried out by means of the inverse method.
Keywords: Control, limits cycle, robot, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768443 Application of a Fracture-Mechanics Approach to Gas Pipelines
Authors: Ľubomír Gajdoš, Martin Šperl
Abstract:
This study offers a new simple method for assessing an axial part-through crack in a pipe wall. The method utilizes simple approximate expressions for determining the fracture parameters K, J, and employs these parameters to determine critical dimensions of a crack on the basis of equality between the J-integral and the J-based fracture toughness of the pipe steel. The crack tip constraint is taken into account by the so-called plastic constraint factor C, by which the uniaxial yield stress in the J-integral equation is multiplied. The results of the prediction of the fracture condition are verified by burst tests on test pipes.Keywords: Axial crack, Fracture-mechanics, J integral, Pipeline wall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2947442 Numerical Analysis of Oil-Water Transport in Horizontal Pipes Using 1D Transient Mathematical Model of Thermal Two-Phase Flows
Authors: Evgeniy Burlutskiy
Abstract:
The paper presents a one-dimensional transient mathematical model of thermal oil-water two-phase emulsion flows in pipes. The set of the mass, momentum and enthalpy conservation equations for the continuous fluid and droplet phases are solved. Two friction correlations for the continuous fluid phase to wall friction are accounted for in the model and tested. The aerodynamic drag force between the continuous fluid phase and droplets is modeled, too. The density and viscosity of both phases are assumed to be constant due to adiabatic experimental conditions. The proposed mathematical model is validated on the experimental measurements of oil-water emulsion flows in horizontal pipe [1,2]. Numerical analysis on single- and two-phase oil-water flows in a pipe is presented in the paper. The continuous oil flow having water droplets is simulated. Predictions, which are performed by using the presented model, show excellent agreement with the experimental data if the water fraction is equal or less than 10%. Disagreement between simulations and measurements is increased if the water fraction is larger than 10%.Keywords: Mathematical model, Oil-Water, Pipe flows.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288441 A Method for Quality Inspection of Motors by Detecting Abnormal Sound
Authors: Tadatsugu Kitamoto
Abstract:
Recently, a quality of motors is inspected by human ears. In this paper, I propose two systems using a method of speech recognition for automation of the inspection. The first system is based on a method of linear processing which uses K-means and Nearest Neighbor method, and the second is based on a method of non-linear processing which uses neural networks. I used motor sounds in these systems, and I successfully recognize 86.67% of motor sounds in the linear processing system and 97.78% in the non-linear processing system.Keywords: Acoustical diagnosis, Neural networks, K-means, Short-time Fourier transformation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700440 Concrete Sewer Pipe Corrosion Induced by Sulphuric Acid Environment
Authors: Anna Romanova, Mojtaba Mahmoodian, Upul Chandrasekara, Morteza A. Alani
Abstract:
Corrosion of concrete sewer pipes induced by sulphuric acid attack is a recognised problem worldwide, which is not only an attribute of countries with hot climate conditions as thought before. The significance of this problem is by far only realised when the pipe collapses causing surface flooding and other severe consequences. To change the existing post-reactive attitude of managing companies, easy to use and robust models are required to be developed which currently lack reliable data to be correctly calibrated. This paper focuses on laboratory experiments of establishing concrete pipe corrosion rate by submerging samples in to 0.5pH sulphuric acid solution for 56 days under 10ºC, 20ºC and 30ºC temperature regimes. The result showed that at very early stage of the corrosion process the samples gained overall mass, at 30ºC the corrosion progressed quicker than for other temperature regimes, however with time the corrosion level for 10ºC and 20ºC regimes tended towards those at 30ºC. Overall, at these conditions the corrosion rates of 10 mm/year, 13,5 mm/year and 17 mm/year were observed.Keywords: Sewer pipes, concrete corrosion, sulphuric acid, concrete coupons, corrosion rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2573439 Development of a Basic Robot System for Medical and Nursing Care for Patients with Glaucoma
Authors: Naoto Suzuki
Abstract:
Medical methods to completely treat glaucoma are yet to be developed. Therefore, ophthalmologists manage patients mainly to delay disease progression. Patients with glaucoma are mainly elderly individuals. In elderly people's houses, having an equipment that can provide medical treatment and care can release their family from their care. For elderly people with the glaucoma to live by themselves as much as possible, we developed a support robot having five functions: elderly people care, ophthalmological examination, trip assistance to the neighborhood, medical treatment, and data referral to a hospital. The medical and nursing care robot should approach the visual field that the patients can see at a speed suitable for their eyesight. This is because the robot will be dangerous if it approaches the patients from the visual field that they cannot see. We experimentally developed a robot that brings a white cane to elderly people with glaucoma. The base part of the robot is a carriage, which is a Megarover 1.1, and it has two infrared sensors. The robot moves along a white line on the floor using the infrared sensors and has a special arm, which does not use electricity. The arm can scoop the block attached to the white cane. Next, we also developed a direction detector comprised of a charge-coupled device camera (SVR41ResucueHD; Sun Mechatronics), goggles (MG-277MLF; Midori Anzen Co. Ltd.), and biconvex lenses with a focal length of 25 mm (Edmund Co.). Some young people were photographed using the direction detector, which was put on their faces. Image processing was performed using Scilab 6.1.0 and Image Processing and Computer Vision Toolbox 4.1.2. To measure the people's line of vision, we calculated the iris's center of gravity using five processes: reduction, trimming, binarization or gray scale, edge extraction, and Hough transform. We compared the binarization and gray scale processes in image processing. The binarization process was better than the gray scale process. For edge extraction, we compared five methods: Sobel, Prewitt, Laplacian of Gaussian, fast Fourier transform, and Canny. The Canny method was the optimal extraction method. We performed the Hough transform to search for the main coordinates from the iris's edge, and we found that the Hough transform could calculate the center point of the iris.
Keywords: Glaucoma, support robot, elderly people, Hough transform, direction detector, line of vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 547438 Reliability-Based Maintenance Management Methodology to Minimise Life Cycle Cost of Water Supply Networks
Authors: Mojtaba Mahmoodian, Joshua Phelan, Mehdi Shahparvari
Abstract:
With a large percentage of countries’ total infrastructure expenditure attributed to water network maintenance, it is essential to optimise maintenance strategies to rehabilitate or replace underground pipes before failure occurs. The aim of this paper is to provide water utility managers with a maintenance management approach for underground water pipes, subject to external loading and material corrosion, to give the lowest life cycle cost over a predetermined time period. This reliability-based maintenance management methodology details the optimal years for intervention, the ideal number of maintenance activities to perform before replacement and specifies feasible renewal options and intervention prioritisation to minimise the life cycle cost. The study was then extended to include feasible renewal methods by determining the structural condition index and potential for soil loss, then obtaining the failure impact rating to assist in prioritising pipe replacement. A case study on optimisation of maintenance plans for the Melbourne water pipe network is considered in this paper to evaluate the practicality of the proposed methodology. The results confirm that the suggested methodology can provide water utility managers with a reliable systematic approach to determining optimum maintenance plans for pipe networks.Keywords: Water pipe networks, maintenance management, reliability analysis, optimum maintenance plan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1255437 A Universal Approach for the Intuitive Control of Mobile Robots using an AR/VR-based Interface
Authors: Juergen Rossmann, Andre Kupetz, Roland Wischnewski
Abstract:
Mobile robots are used in a large field of scenarios, like exploring contaminated areas, repairing oil rigs under water, finding survivors in collapsed buildings, etc. Currently, there is no unified intuitive user interface (UI) to control such complex mobile robots. As a consequence, some scenarios are done without the exploitation of experience and intuition of human teleoperators. A novel framework has been developed to embed a flexible and modular UI into a complete 3-D virtual reality simulation system. This new approach wants to access maximum benefits of human operators. Sensor information received from the robot is prepared for an intuitive visualization. Virtual reality metaphors support the operator in his decisions. These metaphors are integrated into a real time stereo video stream. This approach is not restricted to any specific type of mobile robot and allows for the operation of different robot types with a consistent concept and user interface.Keywords: 3-D simulation system, augmented reality, teleoperation of mobile robots, user interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041436 Intelligent Path Planning for Rescue Robot
Authors: Sohrab Khanmohammadi, Raana Soltani Zarrin
Abstract:
In this paper, a heuristic method for simultaneous rescue robot path-planning and mission scheduling is introduced based on project management techniques, multi criteria decision making and artificial potential fields path-planning. Groups of injured people are trapped in a disastrous situation. These people are categorized into several groups based on the severity of their situation. A rescue robot, whose ultimate objective is reaching injured groups and providing preliminary aid for them through a path with minimum risk, has to perform certain tasks on its way towards targets before the arrival of rescue team. A decision value is assigned to each target based on the whole degree of satisfaction of the criteria and duties of the robot toward the target and the importance of rescuing each target based on their category and the number of injured people. The resulted decision value defines the strength of the attractive potential field of each target. Dangerous environmental parameters are defined as obstacles whose risk determines the strength of the repulsive potential field of each obstacle. Moreover, negative and positive energies are assigned to the targets and obstacles, which are variable with respects to the factors involved. The simulation results show that the generated path for two cases studies with certain differences in environmental conditions and other risk factors differ considerably.Keywords: Artificial potential field, GERT, path planning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844435 Autonomic Sonar Sensor Fault Manager for Mobile Robots
Authors: Martin Doran, Roy Sterritt, George Wilkie
Abstract:
NASA, ESA, and NSSC space agencies have plans to put planetary rovers on Mars in 2020. For these future planetary rovers to succeed, they will heavily depend on sensors to detect obstacles. This will also become of vital importance in the future, if rovers become less dependent on commands received from earth-based control and more dependent on self-configuration and self-decision making. These planetary rovers will face harsh environments and the possibility of hardware failure is high, as seen in missions from the past. In this paper, we focus on using Autonomic principles where self-healing, self-optimization, and self-adaption are explored using the MAPE-K model and expanding this model to encapsulate the attributes such as Awareness, Analysis, and Adjustment (AAA-3). In the experimentation, a Pioneer P3-DX research robot is used to simulate a planetary rover. The sonar sensors on the P3-DX robot are used to simulate the sensors on a planetary rover (even though in reality, sonar sensors cannot operate in a vacuum). Experiments using the P3-DX robot focus on how our software system can be adapted with the loss of sonar sensor functionality. The autonomic manager system is responsible for the decision making on how to make use of remaining ‘enabled’ sonars sensors to compensate for those sonar sensors that are ‘disabled’. The key to this research is that the robot can still detect objects even with reduced sonar sensor capability.Keywords: Autonomic, self-adaption, self-healing, self-optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1002434 Effect of Sintering Temperature Curve in Wick Manufactured for Loop Heat Pipe
Authors: Shen-Chun Wu, Chuo-Jeng Huang, Wun-Hong Yang, Jy-Cheng Chang, Chien-Chun Kung
Abstract:
This investigation examines the effect of the sintering temperature curve in manufactured nickel powder capillary structure (wick) for a loop heat pipe (LHP). The sintering temperature curve is composed of a region of increasing temperature; a region of constant temperature and a region of declining temperature. The most important region is that in which the temperature increases, as an index in the stage in which the temperature increases. The wick of nickel powder is manufactured in the stage of fixed sintering temperature and the time between the stage of constant temperature and the stage of falling temperature. When the slope of the curve in the region of increasing temperature is unity (equivalent to 10 °C/min), the structure of the wick is complete and the heat transfer performance is optimal. The result of experiment test demonstrates that the heat transfer performance is optimal at 320W; the minimal total thermal resistance is approximately 0.18°C/W, and the heat flux is 17W/cm2; the internal parameters of the wick are an effective pore radius of 3.1 μm, a permeability of 3.25×10-13m2 and a porosity of 71%.Keywords: Loop heat pipe (LHP), capillary structure (wick), sintered temperature curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094433 Electroencephalography-Based Intention Recognition and Consensus Assessment during Emergency Response
Abstract:
After natural and man-made disasters, robots can bypass the danger, expedite the search, and acquire unprecedented situational awareness to design rescue plans. Brain-computer interface is a promising option to overcome the limitations of tedious manual control and operation of robots in the urgent search-and-rescue tasks. This study aims to test the feasibility of using electroencephalography (EEG) signals to decode human intentions and detect the level of consensus on robot-provided information. EEG signals were classified using machine-learning and deep-learning methods to discriminate search intentions and agreement perceptions. The results show that the average classification accuracy for intention recognition and consensus assessment is 67% and 72%, respectively, proving the potential of incorporating recognizable users’ bioelectrical responses into advanced robot-assisted systems for emergency response.
Keywords: Consensus assessment, electroencephalogram, EEG, emergency response, human-robot collaboration, intention recognition, search and rescue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 344432 Slugging Frequency Correlation for Inclined Gas-liquid Flow
Authors: V. Hernandez-Perez, M. Abdulkadir, B. J. Azzopardi
Abstract:
In this work, new experimental data for slugging frequency in inclined gas-liquid flow are reported, and a new correlation is proposed. Scale experiments were carried out using a mixture of air and water in a 6 m long pipe. Two different pipe diameters were used, namely, 38 and 67 mm. The data were taken with capacitance type sensors at a data acquisition frequency of 200 Hz over an interval of 60 seconds. For the range of flow conditions studied, the liquid superficial velocity is observed to influence the frequency strongly. A comparison of the present data with correlations available in the literature reveals a lack of agreement. A new correlation for slug frequency has been proposed for the inclined flow, which represents the main contribution of this work.Keywords: slug frequency, inclined flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3163