
 

 

 

Abstract—After natural and man-made disasters, robots can 
bypass the danger, expedite the search, and acquire unprecedented 
situational awareness to design rescue plans. Brain-computer interface 
is a promising option to overcome the limitations of tedious manual 
control and operation of robots in the urgent search-and-rescue tasks. 
This study aims to test the feasibility of using electroencephalography 
(EEG) signals to decode human intentions and detect the level of 
consensus on robot-provided information. EEG signals were classified 
using machine-learning and deep-learning methods to discriminate 
search intentions and agreement perceptions. The results show that the 
average classification accuracy for intention recognition and 
consensus assessment is 67% and 72%, respectively, proving the 
potential of incorporating recognizable users’ bioelectrical responses 
into advanced robot-assisted systems for emergency response. 
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I. INTRODUCTION 

OBOTS are being developed and deployed to assist first 
responders in emergency response. For instance, snake 

robots can help rescue workers to search for victims trapped in 
collapsed structures [1], and unmanned aerial and ground 
vehicles can help law enforcement officers to look for suspects 
hidden around dark corners [2]. These robots can bypass the 
danger and expedite the search, and acquire unprecedented 
situational awareness for first responders to make decisions. 
However, robots will not replace humans during emergency 
response, because the tacit sensibilities, procedural knowledge, 
and inherent abilities to deal with unexpected situations 
retained by first responders remain difficult to quantify and 
program. The collaboration between robots and human partners 
has a great potential to improve team performance during 
emergency response. 

However, it remains a challenge to communicate user 
intentions and perceptions to robots in a natural and convenient 
manner, which prevents fluent human-robot collaboration. The 
hands-free requirement from the first responders excludes the 
use of tedious manual control and operation. In unknown, 
unstructured, and obstructed environments, natural-language-
based supervision is not amenable for first responders to 
formulate, and is difficult for robots to understand. Under 
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certain circumstances such as searching for suspects, the use of 
language is prohibited. Hence, a new method is needed to 
naturally and rapidly capture human intentions and perceptions, 
and communicate them to robots for cognitive teaming. The 
emerging brain-computer interface (BCI) can be a promising 
option [3]. It has been demonstrated that EEG signals can be 
processed to decode human mental states [4]. Using BCI to 
capture and communicate human intentions and perceptions to 
robots will enable human-robot cognitive teaming. The robots 
can understand the situation-specific tactics that come with 
human intuition and expertise. For instance, by recognizing the 
search intentions of first responders, the robot can navigate to 
the region of interest, exploit its sensing capability to conduct 
the search, and communicate the acquired information back to 
first responders. In addition, the robot can sense the human 
consensus on the provided information and adjust its next step 
of work to facilitate trust formation and provide interaction 
accordingly. 

Motivated by the above, the objective of this research is to 
test the feasibility of using EEG signals to recognize human 
intentions of using robots to search an area and assess human 
consensus on the robot-acquired information during emergency 
response. Two sets of experiments were conducted to collect 
EEG signals from multiple participants: one for intention 
recognition, and one for consensus assessment. Machine-
learning and deep-learning methods were employed to train the 
classifiers. The contribution of this study is twofold. First, it 
delineates an application of BCI and provides an alternative to 
communicate user intentions and perceptions to robots during 
emergency response. The experiments and results provide 
preliminary insights on applying BCI in human-robot 
collaboration during emergency response. Second, a variety of 
models were trained and compared in this study to identify the 
best-performance model, which provides useful insights on 
selecting appropriate EEG data analysis methods.  

II. LITERATURE REVIEW 

A. EEG Overview 

EEG is a non-invasive method. It uses multiple electrodes 
placed on the scalp to retrieve the electric signals over a period 
for electrodiagnosis of brain abnormalities and monitoring 
nervous systems [5]. Studies have been conducted to 
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demonstrate that cerebral signals can be observed and analyzed 
by the signals detected in different scalp regions. Research has 
concluded that different brain regions take charge of different 
functions. For example, the frontal lobes play important roles 
in cognitive functions such as attention and executive function 
[6]. The medial prefrontal cortex takes part in the arousal of 
memory and influences human decision making which is 
related to the user’s experience [7]. The occipital lobe takes 
charge of visual processing [8], and corresponding signals will 
be detected when a person is exposed to a visual stimulus. The 
temporal lobe takes charge of long-term memory. The left 
temporal cortex is responsible for language recognition and 
processing [9]. The parietal lobe is an area processing various 
input sensory information including external sources and 
internal sources transmitted by muscles or other organs. This 
brain area is in charge of integrating perceived information and 
adjusting human behavior in certain circumstances or tasks 
[10]. Several areas of the parietal lobe are also involved in 
functions of language comprehension [11]. Some researchers 
focus on the single brain function by analyzing signals from 
specific brain regions. For example, when recognizing 
emotions and stress using EEG, researchers tend to analyze the 
difference in activation between the two cortical hemispheres 
because left frontal inactivation is proved to be relative to 
negative emotions and approach-related behaviors, while right 
frontal inactivation may result from positive emotion and 
withdraw behaviors [12]. 

The frequency of brain waves is also proved significant for 
decoding cortical electrical activity. Typically, the neural 
rhythms can be identified by dominant signal frequency. In 
general, the main frequencies of human brain waves are divided 
into delta (1 – 4 Hz), theta (4 – 8 Hz), alpha (8 – 12 Hz), beta 
(12 – 25 Hz), and gamma band (above 25 Hz) [13]. The 
dominance of certain frequency bands in EEG signals reflects 
brain activities. For example, alpha waves are related to human 
sensory and memory and thus reflect mental activities. Alpha 
suppression indicates engagement and attention to perceived 
information and stimuli. Conversely, increased alpha power is 
an indication of a higher sense of relaxation and disengagement 
[14]. Beta wave is generated in posterior and frontal cerebral 
regions. Higher beta wave power is demonstrated to be 
correlated with focused attention and anxious thinking. Beta 
waves over the motor cortex correlate with body movement and 
muscle contractions. Typical research of beta waves mainly 
focused on motor control, reward feedback, and attention 
detection [15]-[17]. Gamma band has been proved to be 
involved in the human cognitive process. The increment of the 
gamma band reflects a higher level of attention to stimuli [18]. 
EEG can provide various information regarding cerebral 
activities triggered by external stimuli, such as emotion, 
cognitive load, thinking process, attention, and perception. EEG 
wearable devices are widely used in the recognition of 
emotional arousal and cognitive load measurement [19]. 
Existing studies mainly focus on different brain responses 
separately, such as analyzing emotional arousal and stress 
levels independently based on signals from specific brain areas 
which are dominant for the concerned mental state.  

B. EEG-Based Intention Recognition 

EEG has been proved to be efficient in intention 
understanding. Massive researches have been focused on the 
prediction of human intention for different movements. Lew et 
al. [20] demonstrated that readiness potential can detect self-
paced reaching movement intention 500 ms before the actual 
onset. Wang and Makeig [21] found that event-related 
potentials (ERP) in the posterior parietal cortex (PPC) can be 
used to predict intended movement direction with a saccade-or-
reach task experiment. Movement-related EEG potentials 
(MRPs) and event-related desynchronization (ERD) of the 
alpha wave were studied by Babiloni et al. [22] and were proved 
to be correlated with the preparation and execution of finger 
movements. Kim et al. [23] used ERP to detect driver 
emergency braking intention in different simulated driving 
environments. Ge et al. [24] used EEG-fNIRS bimodal system 
to understand the temporal-spatial features when participants do 
different actions. However, these researches mainly focus on 
predicting human intention prior to a movement. In our study, 
we propose to investigate the intention and identity of certain 
choices caused by the consideration of the current situation. 
Because it has been proved that the cortical activity of intended 
movement plays an important role in intention decoding, we 
expected to find the neural correlates of human intention when 
the intention is entire brain activity and cannot be affected by 
the tendency of making certain movements. Therefore, we 
minimized the need for limb movement when designing the 
experiment interface. 

Oh [25] used a Support Vector Machine (SVM) model to 
classify EEG signals. The mission of the research is to classify 
the subject’s intention of ‘agreement’ and ‘disagreement’ while 
reading the contents block. The features used in this research 
were frequency band powers of the brain signals from thirty 
electrodes. The results indicated that the classification 
performance was around 65%. Kang et al. [26] used an 
experiment that asked the subjects to look for a specific object 
in a series of images. The features used in this research are EEG 
data from 32 channels. Four frequency bands are decomposed 
by time-series signals to extract the EEG features. The 
researchers concluded that they acquired transitions of users’ 
intentions when target stimuli appear and classified the 
transitions using the SVM model. They selected the five most 
significant pairs to test the classification model, and the 
classification accuracy was 63.6%. Wang et al. [27] performed 
an oddball task that asks participants to respond quickly and 
accurately when they noticed target stimuli occurred during 
observing a sequence of nontarget stimuli. The main feature of 
this research was the visual P2 of the ERP. This research 
concludes that compared with beautiful objects, the less 
beautiful objects cause negative emotional arousal, and 
generate a higher amplitude of P2. Zhang et al. [28] studied 
human purchase intention by setting up an experiment to ask 
the participants to browse luxury handbags with different brand 
logos. A five-point scale was used to illustrate customers’ 
purchase intention. Features used in this research are three ERP 
components, i.e., N200, N400, and late positive potential (LPP). 
They conclude that consumers’ purchase motivation for luxury 
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handbags is related to the satisfaction of social goals.  

C. EEG-Based Perception Assessment 

Researches have proved that EEG-measured error-related 
potentials (ErrPs) can be used in robotic control. ErrP signal can 
be generated in the brain if human users recognize an error that 
is generated either by the users themselves or someone else 
such as their intelligent machine partner [29]. Several BCIs 
have been established based on this theory. ErrP signals can be 
detected by the robot system, and the robot corrects its behavior 
to achieve EEG-based robotic control from human perspective 
[30]. Blais et al. [31] demonstrated that oscillatory activity in 
the alpha band can reflect the trust decisions by conducting a 
coin toss game with a trustworthy and untrustworthy person. Oh 
et al. [32] proved that beta waves are more powerful in 
situations of trust than mistrust using an experiment of word 
elicitation. Trust is related to low beta and mid beta waves, 
while mistrust is related to high beta waves. Researches also 
find that there is a relationship between neural signals and trust 
when analyzing human-machine interaction. Wang et al. [33] 
illustrated that the frontal and occipital areas of the brain are 
correlated with trust. Akash et al. [34] developed a classifier 
model for sensing human trust during HCI using EEG signals. 
Participants in their experiment were told to be a driver and an 
obstacle detection sensor would alert the participants of 
obstacles. Participants were asked to choose to trust or not trust 
the report based on previous experience with system feedback. 
In their experiment, the only stimulus was obstacle detected and 
the participants could not refer to the real driving scenario but 
just make decisions based on experience. 

III. METHOD 

A. Method Overview 

Fig. 1 presents an overview of the EEG data analysis 
methods. After collecting EEG raw signals, the first step was 
signal preprocessing. A high-pass filter was applied to remove 
the signals with a frequency less than 1 Hz. Next, two types of 
algorithms were used for classification, the traditional machine 
learning algorithms, and deep learning algorithms. For machine 
learning algorithms, the data were further pre-processed via 
independent component analysis (ICA) using EEGLAB to 
remove artifacts [35]. The duration of each decision was 
divided into consecutive 1-second epochs with 0.5-second of 
overlapping. After signal preprocessing, the next part was 
feature extraction. Besides time-domain features and 
frequency-domain features extracted by Fast Fourier transform, 
discrete wavelet transform was applied to acquire features from 
decomposed frequency bands. After extracting all the features, 
the highly correlated features were removed, and the optimal 
feature combination and feature numbers were determined by 
feature recursive elimination and cross-validated selection 
method. Thereafter, five different machine learning classifiers 
were used to train the model. For deep learning algorithms, we 
trained the filtered data using different deep learning 
algorithms. Finally, a best-performance model for individual 
decision classification was selected based on the cross-

validation score of each classifier. 
 

 

Fig. 1 Method Overview 

B. Data Analysis 

1) Feature Extraction 

For EEG signals, two time-domain features and two 
frequency-domain features were extracted from each of the 
channels. The mean and variance of each trial were extracted as 
time-domain features, and the mean frequency and signal power 
of each trial were extracted as frequency-domain features. The 
mean frequency was defined as the mean frequency of the 
power spectrum. Therefore, 28 time-domain features (14 
channels * 2 features) and 28 frequency-domain features were 
extracted for each epoch. The features are defined as follows. 
(1) Mean value  

 

µ ∑ 𝑥   (1)

 
(2) Variance  

 

𝜎 ∑ |𝑥 µ|   (2)

 
(3) Signal power  

 
𝐸 ∑ |𝑥 |   (3)

 
Besides the traditional time-domain and frequency-domain 

features, the spectral power features were extracted by applying 
Discrete Wavelet Transform (DWT) [36] for all 14 channels. 
Since the neural signal is a non-stationary signal, which means 
the statistics of the signals vary over time, DWT can provide 
the characteristics of both time and frequency information 
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simultaneously rather than just provide frequency information 
by Fourier Transform used in extracting frequency domain 
features. In this paper, a 5-level DWT decomposition filter was 
applied to the EEG signals of all channels to acquire frequency 
bands for each timestamp. The corresponding frequency bands 
and their band names for each DWT level are shown in Table I. 
Mean, variance, and signal power were calculated from each 
decomposed frequency band for each channel. In total, 210 
features (5 frequency bands * 14 channels *3 features) were 
extracted. 

 
TABLE I 

FREQUENCY BANDS AND CLASSICAL BAND NAMES FOR DWT LEVELS 

DWT Level Frequency Range Band Name 

1 25-45 Hz Gamma 

2 16-25 Hz High Beta 

3 12-16 Hz Low Beta 

4 8-12 Hz Alpha 

5 4-8 Hz Theta 

2) Feature Selection 

The feature set consisted of 266 features (28+28+210) 
extracted from each trial of each participant. The features were 
the potential variables for predicting the binary classes (e.g., 
search or not search, agree or disagree). Since the feature set 
was much large with limited samples, dimension reduction was 
applied to select a subset of the features to remove highly 
correlated features and nonrelevant features to improve 
accuracy for prediction. Principle Component Analysis (PCA) 
is a popular method for dimension reduction of EEG feature 
selection. However, after PCA processing, features are 
transformed into new components without the knowledge of 
what features are eliminated. In this paper, the correlation was 
computed between each of the two features and removed 
features that have a correlation value exceeding 0.8. The first 
procedure removed more than two-thirds of the total features 
that were highly correlated with reserved features. Secondly, 
feature elimination and cross-validated selection (RFECV) 
were used to find the best number of features. The Recursive 
Feature Elimination (RFE) method was applied as the algorithm 
to eliminate the least important feature in each iteration. The 
score was tested in each iteration based on the accuracy while 
performing Cross-Validation (CV), and the importance of each 
feature was obtained by Random Forest (RF) classification. The 
CV number was set to be four. The method was iterated with 
the least important feature being dropped in each iteration. The 
whole process was iterated 50 times to find the optimal feature 
combination with the best number of features. 

3) Classifier Training  

• Machine-Learning Methods 

For classifier training, the generalization and prediction 
performance of each classifier was estimated by CV test and the 
accuracy of classifiers was demonstrated. CV checked the 
generalization performance when a classifier was applied to a 
new data set. To reduce variability and ensure the classifier was 
applied to general use, five-fold CV was performed in the 
dataset. The dataset was divided into five partitions, while each 

time one subset was performed as a testing set, and the other 
four subsets were performed as the training set. The fitness in 
prediction was measured by computing the mean score of the 
five CVs. The five-fold CV ensured a more unbiased result of 
model prediction performance. The classification algorithms 
considered in the paper are Logistic Regression, Naïve Bayes, 
Linear Support Vector Machine (SVM Linear), Linear 
Discriminant Analysis (LDA), and k-Nearest Neighbors (KNN) 
[37] classifiers, which were widely used in EEG signal 
classification [37]-[40]. 

• Deep-Learning Methods 

The user intention and perception reflected by complex EEG 
signals can be decoded by different strategies and algorithms. 
The decoding process is transformed into a classification task 
by various decoding methods. Besides traditional machine 
learning methods described above, the deep learning network is 
also widely used in user intention and perception detection. The 
difference between a traditional machine learning approach and 
a deep learning approach is that the deep learning approach does 
not require manual work and human intervention to deal with 
feature processing. Convolutional Neural Network (CNN) can 
be applied to classify a series of spectrograms and find 
distinctive frequency-domain features automatically [41]. In 
recent years deep learning has shown promising results in 
decoding EEG signals due to the ability to understand raw and 
complex signals with massive data. The review made by Roy et 
al. demonstrated that about 40% of the studies used CNNs and 
14% of the studies used Recurrent Neural Networks (RNNs). 
Most of the studies used raw time-series data to train the deep-
learning data, and the accuracy was proved higher than 
traditional baselines in the studies [42].  

In the paper, we applied different neural networks to the EEG 
data for decision-making classification in search-and-rescue 
situations. CNN, Depthwise Separable Convolution, Deep 
Convolutional Neural Networks (Deep ConvNet), Shallow 
Convolutional Neural Networks (Shallow ConvNet), and RNN 
were tested in the paper. Class weight was used to handle the 
imbalance data which is significantly varied among individuals. 
To reduce overfitting, the dropout rate was set to be 0.5. The 
data for each participant were divided into three datasets: 
training set, test set, and validation set. The models were fit and 
improved based on the training and validation set and evaluated 
by the test set. A high-pass FIR filter with 1 Hz lower cut-off 
frequency was applied to raw signals to remove eye artifacts. 
The same time window technology was applied for the data pre-
processing of deep learning classifiers. 

• ConvNet 

The CNN model was developed by Gehr [43]. The multiple-
channel time-series data was cut into short time frames. Fast 
Fourier Transform (FFT) was applied to transform the signals 
for each frame into three frequency bands, which are theta, 
alpha, and beta waves to generate a series of spectral 
topography maps of each channel, and then projected onto a 2D 
scalp map. The 2D images are inputs to ConvNet for feature 
learning and aggregation. For the network, the architecture 
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consists of two convolutional-max-pooling blocks and a 
softmax classification layer. The loss function was categorical 
cross-entropy and the optimizer was RMSProp. 

• Depthwise Separable Convolution network 

EEGNet was used as the Depthwise Separable Convolution 
network developed by Lawhernet al [44]. The architecture 
consists of a temporal convolution, a depthwise convolution, a 
separable convolution, and a pointwise convolution. The 
temporal convolution was applied to acquire the frequency 
map, and a depthwise convolution was connected to learn 
spatial filters based on the frequency filters. A separable 
convolution learned the temporal filters for each feature map. 
At the end of the architecture, a softmax classification layer was 
applied. The loss function was categorical cross-entropy and the 
optimizer was Adam. 

• Deep ConvNet and Shallow ConvNet 

A Deep ConvNet and a Shallow ConvNet developed by 
Schirrmeister et al. [45] were applied to the EEG data. The 
architecture of Deep ConvNet was four convolution-max-
pooling blocks followed by three max-pooling blocks and a 
dense softmax classification layer. The first convolutional 
block contains a temporal convolution layer and a spatial 
convolution layer based on the electrodes. The Shallow 
ConvNet has a larger kernel size with shallow architecture 
compared with Deep ConvNet. Like the deep ConvNet, the 
architecture of the first two layers is the temporal convolution 
and a spatial convolution. A mean pooling layer and a dense 
softmax classification layer were followed by the two 
convolution layers. The loss function was categorical cross-
entropy and the optimizer was Adam. 

• RNN 

A long short-term memory (LTSM) network was used. Two 
LSTM layers followed by a dense sigmoid classification layer 
were created. The loss function was binary cross-entropy and 
the optimizer was RMSProp. 

IV. EXPERIMENTS 

Two experiments were designed to reflect the situations 
during emergency response. In the first experiment, we 
proposed to detect human intention about whether to search a 
rubble pile or not. In the second experiment, we simulated a 
robot partner to provide information to participants, and then 
assess human perception (i.e. consensus) on the information 
provided by the robot. The neural response of participants was 
recorded by Emotiv Epoc+ wearable EEG device with 14 
channels (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, 
F8, and AF4) and two reference sensors (P3 and P4). During 
the experiment, participants were asked to sit still throughout 
the experiment and keep silent to avoid noise impacts.  

Example images shown to the participants in the two 
experiments are shown in Fig. 2. Experiment #1 was designed 
to collect EEG signals for recognizing search intentions. Images 
of different collapsed structures were presented to the 
participants. Among the images, 30 were taken from real 

disaster areas, and 30 were synthesized from three-dimensional 
(3D) models. The participants were instructed to decide 
whether they were willing to use a robot to search the disaster 
areas. The participants’ answers, “Yes, proceed to search” and 
“No, leave to find another place”, were recorded and associated 
with the EEG data. This experiment provided 60 decisions for 
the data from each participant. The decisions were then 
proceeded using the time window technology mentioned in the 
“Data Acquisition and Preprocessing” section above to enlarge 
the dataset.  

Experiment #2 was designed to assess participant perception 
when an assistive robot provided information to the 
participants. In this experiment, there were 80 pictures of rubble 
piles captured in a simulated 3D disaster site shown to the 
participants. The participants were told that there is an assistive 
robot accompanying them, and the robot reported to them that 
there was a victim detected under the shown rubble piles. To 
detect the agreement perception, the participants were asked to 
decide if they agreed with the information provided by the 
robot. The design of experiment #2 was similar to experiment 
#1. However, to get enough sample size to build an individual 
model, each participant was asked to conduct 80 trials in total. 
This resulted in 80 decisions from each participant and the same 
time window technology was applied to enlarge the dataset. To 
avoid random selection caused by fatigue, the trials were 
divided into two groups with 40 trials each. Participants were 
asked to do the first group in the morning, and the second group 
in the afternoon for the same day. All the participants were 
asked to sit still and avoid head and body movements to reduce 
noise. To make the classification algorithm clearer, all the 
pictures shown to participants were rubbles with voids detected 
by robots. 

V. RESULTS 

In this research, five machine learning classifiers and five 
deep learning classifiers were tested using two types of brain-
related human behavior data. Because the EEG signals vary 
among individuals, the intra-subjective classifier was adopted 
for higher model performance. The result of experiment #1 
illustrates the best-performance classifier when determining the 
search intention of each participant. The result of experiment 
#2 demonstrates the best-performance classifier when 
determining the agreement perception of each participant.  

Fig. 3 shows some results of experiment #1. Fig. 3 (a) shows 
the distributions of the accuracy of each machine learning 
classification method and Fig. 3 (b) shows the accuracy 
distribution of each deep learning classification method for 
each participant (P1 to P7). The range of each bar in the figure 
indicates the maximum and minimum accuracy calculated by 
mean accuracy ± std. The two figures demonstrate that on 
average, the deep learning methods provide better accuracy 
than machine learning methods for all participants. Figs. 3 (c) 
and (d) show the ROC curve of the best-performance classifiers 
of machine learning and deep learning, respectively. Most of 
the curves are above the threshold except for some parts of the 
curves of both classifiers for participant 5. The detailed results 
of Fig. 3 are shown in Table II. Comparing the classifiers 
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separately, the best-performance classifier among machine 
learning methods was shown to be the SVM Linear classifier. 
There were five over seven participants achieved the best 
accuracy using the SVM linear classification method and the 
highest accuracy, 69.9 ± 8.4, was also achieved by the SVM 
linear classifier from participant 5. For deep learning methods, 
EEGNet stands out as the best-performance classifier. Five over 
seven participants achieved their best accuracy using the 

EEGNet classifier. Participant 4 and participant 7 reached a 
more than 70 mean accuracy by this classifier and the best 
accuracy among the seven participants was also achieved by 
using the EEGNet classifier, which is 73.3 ± 6.9 from 
participant 4. By comparing the detailed results between 
machine learning and deep learning classifiers for all the 
participants, it is concluded that for this experiment purpose, 
deep learning classifiers provide more accurate predictions. 

 

 

Fig. 2 Example Images Presented to Participants: (a) An example of a real image and questions of experiment #1; (b) An example of synthetic 
image and questions of experiment #2 

 

 

Fig. 3 Results of experiment #1: (a) Performance of machine-learning classifiers for individual intention prediction, (b) Performance of deep-
learning classifiers for individual intention prediction; for both (a) and (b), the range is calculated by mean ± standard deviation, (c) ROC curve 
of the best machine learning classifier for each participant, (d) ROC curve of the best deep learning classifier for each participant; for both (c) 

and (d), the dashed dark blue line represents the threshold AUC = 0.5 
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TABLE II 
COMPARISON OF BEST-PERFORMANCE MACHINE-LEARNING CLASSIFIER AND 

DEEP-LEARNING CLASSIFIER FOR EXPERIMENT #1 

Participant 
Best-performance 

Classifier 
Mean Accuracy ± 

std 
Min Max AUC

P1 RNN 65.0±10.9 54.1 75.9 0.71 

P2 EEGNet 63.3±7.5 55.8 70.8 0.67 

P3 SVM Linear 63.8±7.3 56.5 71.1 0.56 

P4 EEGNet 73.3±7.0 66.3 80.3 0.66 

P5 SVM Linear 69.9±8.4 61.5 78.3 0.61 

P6 EEGNet 61.7±7.5 54.2 69.2 0.62 

P7 EEGNet 71.7±7.5 64.2 79.2 0.66 

 

Table III shows the overall best-performance classifier for 
each participant in experiment #1. From Table III, we can see 
that five over seven participants get the best accuracy from the 
deep learning classifier, and among them, four participants get 
the best accuracy from the EEGNet classifier. The highest 
accuracy among all the participants was 73.3 ± 7.0 and was 
achieved by participant 4 using the EEGNet classifier. 

 
TABLE III 

BEST-PERFORMANCE CLASSIFIER FOR EXPERIMENT #1 

Participant Classifier Mean Accuracy ± Std Min Max AUC

Best-Performance Machine-Learning Classifier 

P1 SVM Linear 60.8±5.6 55.2 66.4 0.55 

P2 Naïve Bayes 61.4±4.9 56.5 66.3 0.65 

P3 SVM Linear 63.8±7.3 56.6 71.1 0.56 

P4 SVM Linear 68.1±6.2 61.8 74.3 0.72 

P5 SVM Linear 69.9±8.4 61.5 78.3 0.61 

P6 SVM Linear 57.6±2.1 55.5 59.6 0.60 

P7 LDA 65.1±3.8 61.3 68.9 0.57 

Best-Performance Deep-Learning Classifier 

P1 RNN 65.0±10.9 54.1 75.9 0.71 

P2 EEGNet 63.3±7.4 55.9 70.8 0.67 

P3 ShallowConvNet 63.3±4.5 58.8 67.9 0.75 

P4 EEGNet 73.3±6.9 66.4 80.3 0.66 

P5 EEGNet 68.3±6.9 61.4 75.3 0.57 

P6 EEGNet 61.7±7.5 54.2 69.1 0.62 

P7 EEGNet 71.7±7.5 64.2 79.1 0.66 

 

We analyzed the receiver operating characteristic (ROC) and 
area under the ROC curve (AUC) for the best-performance 
machine-learning models and best-performance deep-learning 
models of the two experiments. ROC curve can be used to check 
the ability to distinguish classes. ROC is a probability curve 
with false positive rate as the x-axis and true positive rate as the 
y-axis. AUC value is between 0 and 1, and a higher AUC value 
indicates better model performance. For experiment #1, the best 
AUC was 0.71 from participant 1 using the deep learning 
method RNN. The AUCs for deep learning methods are all 
higher than those for machine learning methods (see Table II 
for details). Based on this result, it is concluded that for 
experiment #1, EEGNet is outstanding and can be considered 
as a good inter-subjective classifier for intension prediction 
purposes. However, there are three participants achieved better 
accuracy using other classifiers, the best model for intention 
prediction should be an intra-subjective model. In experiment 
#1, an average accuracy of 67% was achieved for the results of 
individual classifiers. 

 
 TABLE IV  

COMPARISON OF BEST-PERFORMANCE MACHINE-LEARNING CLASSIFIER AND 

DEEP-LEARNING CLASSIFIER FOR EXPERIMENT #2 

Participant
Best-performance 

Classifier
Mean Accuracy 

± Std 
Min Max AUC

P1 CNN 73.8 ± 3.6 70.2 77.4 0.62 

P2 EEGNet 75.0 ± 7.7 67.3 82.7 0.56 

P3 RNN 80.0 ± 2.8 77.2 82.8 0.83 

P4 RNN 72.5 ± 5.6 66.9 78.1 0.64 

P5 CNN 78.8 ± 3.4 75.4 82.2 0.57 

P6 LDA 74.1 ± 5.0 79.1 69.1 0.76 

P7 SVM 57.1 ± 2.2 54.9 59.3 0.44 

 
TABLE V 

BEST-PERFORMANCE CLASSIFIER FOR EXPERIMENT #2 

Participant Classifier Mean Accuracy ± Std Min Max AUC

Best-Performance Machine-Learning Classifier 

P1 LDA 68.9 ± 3.1 65.8 71.9 0.53 

P2 LDA 68.6 ± 0.3 68.3 68.8 0.56 

P3 SVM Linear 65.9 ± 0.3 65.6 66.2 0.62 

P4 Logistic Regression 59.8 ± 9.6 50.2 69.4 0.54 

P5 SVM Linear 69.3 ± 1.8 67.4 71.1 0.55 

P6 SVM Linear 74.1 ± 5.0 69.1 79.1 0.76 

P7 SVM Linear 57.1 ± 2.2 54.9 59.3 0.44 

Best-Performance Deep-Learning Classifier 

P1 CNN 73.8 ± 3.6 70.2 77.4 0.62 

P2 EEGNet 75.0 ± 7.7 67.3 82.7 0.56 

P3 RNN 80.0 ± 2.8 77.2 82.8 0.83 

P4 RNN 72.5 ± 5.6 66.9 78.1 0.64 

P5 CNN 78.8 ± 3.4 75.4 82.2 0.57 

P6 EEGNet 63.8 ± 13.6 50.2 77.3 0.61 

P7 CNN 58.1 ± 7.2 50.9 65.3 0.49 

 

Experiment #2 provided data to perform the analysis on 
agreement perception. The performance results of each 
classifier are shown in Fig. 4. Figs. 4 (a) and (b) indicate that 
the overall mean accuracy of deep learning classifiers is higher 
than the mean accuracy of machine learning classifiers. 
However, the standard deviations in the deep learning 
classifiers are much larger than those in machine learning 
methods. The results indicated an unstable accuracy when 
performing the deep learning classifiers for this experiment 
purpose. Figs. 4 (c) and (d) demonstrate the ROC curves of the 
best-performance classifiers of each participant. The curves in 
Fig. 4 (c) are for machine learning classifiers. Some of the 
curves are under the threshold of AUC = 0.5, which indicates a 
relatively bad performance that is even worse than random 
choices. Curves in Fig. 4 (d) show a much better result, which 
represents the best deep learning performance of each 
participant. Details of Fig.4 are listed in Table IV. Comparing 
the results separately, for the machine learning classifiers, the 
SVM Linear classifier achieved the best performance among 
the seven participants. Four over seven participants were found 
to reach the best mean accuracy using the SVM Linear 
classifier, while the highest accuracy of 74.1 ± 5.0 was also 
achieved by the classifier. For deep learning classifiers, in this 
experiment, there was no obvious outstanding classifier among 
the seven participants. However, there was a participant who 
achieved an accuracy of 80 ± 2.8, which was the highest 
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accuracy among all the participants, and was the only one who 
achieved an accuracy of more than 80. It is concluded that deep 

learning classifiers perform better than machine learning 
classifiers in most cases (see Tables IV and V for details). 

 

 

Fig. 4 Results of experiment #2: (a) Performance of machine-learning classifiers for individual intention prediction; (b) Performance of 
deep-learning classifiers for individual intention prediction. For both (a) and (b), the range is calculated by mean ± standard deviation; (c) ROC 

curve of the best machine learning classifier for each participant; (d) ROC curve of the best deep learning classifier for each participant. For 
both (c) and (d), the dashed dark blue line represents the threshold AUC = 0.5 

 
In Table V, although there is no dominant classifier like 

EEGNet in experiment #1, the result indicated that generally, 
deep learning classifiers have a higher proportion of being the 
best classifier for a participant. There are five over seven 
participants achieved the best prediction performance using 
deep learning classifiers, among which CNN and RNN were 
both chosen twice as the best classifier. The highest mean 
accuracy was achieved by participant 3, which is 80.0 with a 
standard deviation of only 2.8. Participant 3 also got the highest 
AUC of 0.83. It is concluded that the deep learning classifiers 
achieve higher accuracy than the machine learning methods 
when comparing the accuracy across the participants. The 
variety of best classifiers among different participants in 
experiment #2 indicated the fact that the EEG signal is highly 
independent, thus the intra-subjective model for this kind of 
signal will perform better than the inter-subjective model. In 
experiment #2, the average accuracy was 72% for the individual 
classifiers. 

 

VI. DISCUSSION 

This study proves the feasibility of using EEG signals to 
detect human intentions and the level of consensus on robot-
provided information under emerging response situations. 
Instead of assessing intentions and perceptions that are 
triggered by specific events, this research directly treats the 
human intention as entire brain activity. Therefore, it provides 
a BCI as an alternative to communicate intentions and 
perceptions in human-robot collaboration during emergency 
response. It has the great potential to facilitate search and rescue 
when manual control and operation and natural language-based 
commands are not feasible. Moreover, the EEG-based 
consensus assessment proposed in this study allows the 
machine to understand human’s agreement on robot-provided 
information, which is helpful to establish a BCI to evaluate 
human trust level and further improve trust in automation by 
adjusting machine behavior. 

This research provides insights on selecting appropriate 
models for EEG-based intention perception recognition by 
comparing various machine learning and deep learning models. 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:17, No:5, 2023 

325International Scholarly and Scientific Research & Innovation 17(5) 2023 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
5,

 2
02

3 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
10

0.
pd

f



 

 

The models were compared based on the AUC values, which 
are commonly used as a summary of the model skill. In general, 
deep-learning-based methods performed better for most 
participants than traditional machine-learning methods. It is 
found that EEG signals are individually different, and intra-
subjective approaches would achieve a better result than inter-
subjective approaches. This may be because that human 
intention and agreement perception is complex brain activity 
and almost all the cortical regions are involved in the process, 
which will cause significant differences among different 
people. Future studies can examine the impact of subject-
specific information, such as age, gender, and level of 
experience on the classifier selection, and build suitable 
classifiers for groups of individuals that share the common 
characteristics. 

Because of the limitation of current EEG sensing technology, 
a quiet and stable environment is required, and users were asked 
to stay steady to reduce artifacts. Movements of users may lead 
to massive noise and get unsatisfactory results. This hardware 
limitation may hinder the EEG-based application in the real 
search-and-rescue situation, where the disaster site is noisy and 
distracting, and the first responders and spontaneous volunteers 
need to walk around the site to observe the disaster site. 
However, the use of EEG signals for guiding robots during 
emergency response is still promising with teleoperation. If the 
first responders and volunteers cannot reach the disaster site in 
first-time, machines such as unmanned autonomous vehicles 
can be used to transmit the picture or recording to the first 
responders and allow them to teleoperate the search-and-rescue 
process. By detecting user intention to search certain areas, the 
on-site assistive intelligent machine could get more data for the 
interested area. By user perception assessment, the intelligent 
machine could understand the effect of current human-robot 
collaboration and adjust the provided information in time. 

Although the accuracy is comparable with the state of the art 
in the area of implicit intention and perception prediction using 
EEG, it is still not reliable enough for practical application. The 
wrong prediction may lead to a massive decrease in human 
trust, especially for significant decisions in search and rescue. 
The assisted robots are expected to share responsibility with 
human partners so that guaranteed correct prediction is needed. 
The performance of prediction needs to be further improved in 
future research. In the experiment, only limited participants 
were involved. More participants could be involved in future 
research to make the result more robust. 

VII. CONCLUSION 

An EEG-based method is proposed to enhance the 
communication between human and robot in urban search and 
rescue environments by decoding brain signals. To better assist 
first responders and spontaneous volunteers, an intelligent robot 
should understand human intention and perception of the 
current situation. In this paper, we identified and predicted 
human intention in the first experiment, and studied how human 
subjects responded to robot advice in the second experiment. 
To decode human intention, EEG data were used to study the 
physiological response of subjects when they make decisions 

on their own. Individual classifiers are established to decode 
and predict subjects’ intentions. To study human agreement 
perception during a human-robot collaboration task, the human 
response to robot advice was analyzed. Individual classifiers are 
developed to distinguish subjects’ agreement perception of the 
robot. Different machine learning and deep learning algorithms 
were used to develop the intention prediction models and 
perception assessment models. For machine learning 
algorithms, significant features were extracted, and an optimal 
number of features was selected to develop the best model given 
the data. For the deep learning algorithm, frequency features 
were selected automatically based on the frequency and/or 
spatial characteristics. It is concluded that the features of 
frequency bands play a more important role than other features 
during the feature selection process. By comparing the 
performance of machine learning models, it is found that SVM 
Linear and LDA classifiers have higher mean accuracy. The 
comparison between the performance of machine learning 
classifiers and deep learning classifiers indicates that generally, 
deep learning models performed better than traditional 
machine-learning algorithms. It is concluded that human 
intention and agreement perception to assistive robots in 
search-and-rescue situations to some extent can be captured and 
predicted by EEG signals using various classification 
algorithms. However, the prediction accuracy varies among 
different individuals. The accuracy of a generalized classifier 
cannot be guaranteed since the psychological signals vary 
significantly among participants, which is in accordance with 
current findings. Individual classifiers would be more helpful 
for search-and-rescue situations. 
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