Search results for: Numerical wave tank
2628 A Numerical Investigation on the Dynamic Stall of a Wind Turbine Section Using Different Turbulent Models
Authors: S. A. Ahmadi, S. Sharif, R. Jamshidi
Abstract:
In this article, the flow behavior around a NACA 0012 airfoil which is oscillating with different Reynolds numbers and in various amplitudes has been investigated numerically. Numerical simulations have been performed with ANSYS software. First, the 2- D geometry has been studied in different Reynolds numbers and angles of attack with various numerical methods in its static condition. This analysis was to choose the best turbulent model and comparing the grids to have the optimum one for dynamic simulations. Because the analysis was to study the blades of wind turbines, the Reynolds numbers were not arbitrary. They were in the range of 9.71e5 to 22.65e5. The angle of attack was in the range of -41.81° to 41.81°. By choosing the forward wind speed as the independent parameter, the others like Reynolds and the amplitude of the oscillation would be known automatically. The results show that the SST turbulent model is the best choice that leads the least numerical error with respect the experimental ones. Also, a dynamic stall phenomenon is more probable at lower wind speeds in which the lift force is less.
Keywords: Dynamic stall, Numerical simulation, Wind turbine, Turbulent Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20062627 Three Steps of One-way Nested Grid for Energy Balance Equations by Wave Model
Authors: Worachat Wannawong, Usa W. Humphries, Prungchan Wongwises, Suphat Vongvisessomjai
Abstract:
The three steps of the standard one-way nested grid for a regional scale of the third generation WAve Model Cycle 4 (WAMC4) is scrutinized. The model application is enabled to solve the energy balance equation on a coarse resolution grid in order to produce boundary conditions for a smaller area by the nested grid technique. In the present study, the model takes a full advantage of the fine resolution of wind fields in space and time produced by the available U.S. Navy Global Atmospheric Prediction System (NOGAPS) model with 1 degree resolution. The nested grid application of the model is developed in order to gradually increase the resolution from the open ocean towards the South China Sea (SCS) and the Gulf of Thailand (GoT) respectively. The model results were compared with buoy observations at Ko Chang, Rayong and Huahin locations which were obtained from the Seawatch project. In addition, the results were also compared with Satun based weather station which was provided from Department of Meteorology, Thailand. The data collected from this station presented the significant wave height (Hs) reached 12.85 m. The results indicated that the tendency of the Hs from the model in the spherical coordinate propagation with deep water condition in the fine grid domain agreed well with the Hs from the observations.Keywords: energy balance equation, Gulf of Thailand, nested gridapplication, South China Sea, wave model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15962626 Numerical Approximation to the Performance of CUSUM Charts for EMA (1) Process
Authors: K. Petcharat, Y. Areepong, S. Sukparungsri, G. Mititelu
Abstract:
These paper, we approximate the average run length (ARL) for CUSUM chart when observation are an exponential first order moving average sequence (EMA1). We used Gauss-Legendre numerical scheme for integral equations (IE) method for approximate ARL0 and ARL1, where ARL in control and out of control, respectively. We compared the results from IE method and exact solution such that the two methods perform good agreement.Keywords: Cumulative Sum Chart, Moving Average Observation, Average Run Length, Numerical Approximations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21632625 Optimized Fuzzy Control by Particle Swarm Optimization Technique for Control of CSTR
Authors: Saeed Vaneshani, Hooshang Jazayeri-Rad
Abstract:
Fuzzy logic control (FLC) systems have been tested in many technical and industrial applications as a useful modeling tool that can handle the uncertainties and nonlinearities of modern control systems. The main drawback of the FLC methodologies in the industrial environment is challenging for selecting the number of optimum tuning parameters. In this paper, a method has been proposed for finding the optimum membership functions of a fuzzy system using particle swarm optimization (PSO) algorithm. A synthetic algorithm combined from fuzzy logic control and PSO algorithm is used to design a controller for a continuous stirred tank reactor (CSTR) with the aim of achieving the accurate and acceptable desired results. To exhibit the effectiveness of proposed algorithm, it is used to optimize the Gaussian membership functions of the fuzzy model of a nonlinear CSTR system as a case study. It is clearly proved that the optimized membership functions (MFs) provided better performance than a fuzzy model for the same system, when the MFs were heuristically defined.Keywords: continuous stirred tank reactor (CSTR), fuzzy logiccontrol (FLC), membership function(MF), particle swarmoptimization (PSO)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32012624 The Splitting Upwind Schemes for Spectral Action Balance Equation
Authors: Anirut Luadsong, Nitima Aschariyaphotha
Abstract:
The spectral action balance equation is an equation that used to simulate short-crested wind-generated waves in shallow water areas such as coastal regions and inland waters. This equation consists of two spatial dimensions, wave direction, and wave frequency which can be solved by finite difference method. When this equation with dominating convection term are discretized using central differences, stability problems occur when the grid spacing is chosen too coarse. In this paper, we introduce the splitting upwind schemes for avoiding stability problems and prove that it is consistent to the upwind scheme with same accuracy. The splitting upwind schemes was adopted to split the wave spectral action balance equation into four onedimensional problems, which for each small problem obtains the independently tridiagonal linear systems. For each smaller system can be solved by direct or iterative methods at the same time which is very fast when performed by a multi-processor computer.Keywords: upwind scheme, parallel algorithm, spectral action balance equation, splitting method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16872623 An Effective Noise Resistant FM Continuous-Wave Radar Vital Sign Signal Detection Method
Authors: Lu Yang, Meiyang Song, Xiang Yu, Wenhao Zhou, Chuntao Feng
Abstract:
To address the problem that the FM continuous-wave (FMCW) radar extracts human vital sign signals which are susceptible to noise interference and low reconstruction accuracy, a detection scheme for the sign signals is proposed. Firstly, an improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) algorithm is applied to decompose the radar-extracted thoracic signals to obtain several intrinsic modal functions (IMF) with different spatial scales, and then the IMF components are optimized by a backpropagation (BP) neural network improved by immune genetic algorithm (IGA). The simulation results show that this scheme can effectively separate the noise, accurately extract the respiratory and heartbeat signals and improve the reconstruction accuracy and signal to-noise ratio of the sign signals.
Keywords: Frequency modulated continuous wave radar, ICEEMDAN, BP Neural Network, vital signs signal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4782622 Wall Pressure Fluctuations in Naturally Developing Boundary Layer Flows on Axisymmetric Bodies
Authors: Chinsuk Hong
Abstract:
This paper investigates the characteristics of wall pressure fluctuations in naturally developing boundary layer flows on axisymmetric bodies experimentally. The axisymmetric body has a modified ellipsoidal blunt nose. Flush-mounted microphones are used to measure the wall pressure fluctuations in the boundary layer flow over the body. The measurements are performed in a low noise wind tunnel. It is found that the correlation between the flow regime and the characteristics of the pressure fluctuations is distinct. The process from small fluctuation in laminar flow to large fluctuation in turbulent flow is investigated. Tollmien-Schlichting wave (T-S wave) is found to generate and develop in transition. Because of the T-S wave, the wall pressure fluctuations in the transition region are higher than those in the turbulent boundary layer.Keywords: Wall Pressure Fluctuation, Boundary Layer Flow, Transition, Turbulent Flow, Axisymmetric Body, Flow Noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17022621 Power Electronic Solution for High Energetic Efficiency of a Thermo Plant
Authors: Aziza Benaboud, Alfred Rufer
Abstract:
In this paper the authors propose a flexible electronic solution, to improve the energetic efficiency of a thermo plant. This is achieved by replacing the mechanical gear box, placed traditionally between a gas turbine and a synchronous generator; by a power electronic converter. After reminding problematic of gear boxes and interest of a proposed electronic solution in high power plants, the authors describe a new control strategy for an indirect frequency converter, which is characterized by its high efficiency due to the use of SWM: Square Wave Modulation. The main advantage of this mode is the quasi absence of switching losses. A control method is also proposed to resolve some problems incurred by using square wave modulation, in particular to reduce the harmonics distortion of the output inverter voltage and current. Simulation examples as well as experimental results are included.
Keywords: Angle shift, high efficiency, indirect converter, gas turbine, NPC three level converter, square wave modulation SWM, switching angle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18692620 Dissipation of Higher Mode using Numerical Integration Algorithm in Dynamic Analysis
Authors: Jin Sup Kim, Woo Young Jung, Minho Kwon
Abstract:
In general dynamic analyses, lower mode response is of interest, however the higher modes of spatially discretized equations generally do not represent the real behavior and not affects to global response much. Some implicit algorithms, therefore, are introduced to filter out the high-frequency modes using intended numerical error. The objective of this study is to introduce the P-method and PC α-method to compare that with dissipation method and Newmark method through the stability analysis and numerical example. PC α-method gives more accuracy than other methods because it based on the α-method inherits the superior properties of the implicit α-method. In finite element analysis, the PC α-method is more useful than other methods because it is the explicit scheme and it achieves the second order accuracy and numerical damping simultaneously.Keywords: Dynamic, α-Method, P-Method, PC α-Method, Newmark method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30762619 On Constructing a Cubically Convergent Numerical Method for Multiple Roots
Authors: Young Hee Geum
Abstract:
We propose the numerical method defined by
xn+1 = xn − λ[f(xn − μh(xn))/]f'(xn) , n ∈ N,
and determine the control parameter λ and μ to converge cubically. In addition, we derive the asymptotic error constant. Applying this proposed scheme to various test functions, numerical results show a good agreement with the theory analyzed in this paper and are proven using Mathematica with its high-precision computability.
Keywords: Asymptotic error constant, iterative method , multiple root, root-finding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15072618 Hydrodynamic Characteristics of a New Sewer Overflow Screening Device: CFD Modeling & Analytical Study
Authors: M. A. Aziz, M. A. Imteaz, J. Naser, D. I. Phillips
Abstract:
Some of the major concerns regarding sewer overflows to receiving water bodies include serious environmental, aesthetic and public health problems. A noble self-cleansing sewer overflow screening device having a sewer overflow chamber, a rectangular tank and a slotted ogee weir to capture the gross pollutants has been investigated. Computational Fluid Dynamics (CFD) techniques are used to simulate the flow phenomena with two different inlet orientations; parallel and perpendicular to the weir direction. CFD simulation results are compared with analytical results. Numerical results show that the flow is not uniform (across the width of the inclined surface) near the top of the inclined surface. The flow becomes uniform near the bottom of the inclined surface, with significant increase of shear stress. The simulation results promises for an effective and efficient self-cleansing sewer overflow screening device by comparing hydrodynamic results.
Keywords: Hydrodynamic Characteristics, Ogee Spillway, Screening, Sewer Overflow Device.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21782617 A Numerical Method for Diffusion and Cahn-Hilliard Equations on Evolving Spherical Surfaces
Authors: Jyh-Yang Wu, Sheng-Gwo Chen
Abstract:
In this paper, we present a simple effective numerical geometric method to estimate the divergence of a vector field over a curved surface. The conservation law is an important principle in physics and mathematics. However, many well-known numerical methods for solving diffusion equations do not obey conservation laws. Our presented method in this paper combines the divergence theorem with a generalized finite difference method and obeys the conservation law on discrete closed surfaces. We use the similar method to solve the Cahn-Hilliard equations on evolving spherical surfaces and observe stability results in our numerical simulations.Keywords: Conservation laws, diffusion equations, Cahn-Hilliard Equations, evolving surfaces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15042616 Some Exact Solutions of the (2+1)-Dimensional Breaking Soliton Equation using the Three-wave Method
Authors: Mohammad Taghi Darvishi, Mohammad Najafi
Abstract:
This paper considers the (2+1)-dimensional breaking soliton equation in its bilinear form. Some exact solutions to this equation are explicitly derived by the idea of three-wave solution method with the assistance of Maple. We can see that the new idea is very simple and straightforward.
Keywords: Soliton solution, computerized symbolic computation, painleve analysis, (2+1)-dimensional breaking soliton equation, Hirota's bilinear form.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19092615 Development of Moving Multifocal Electroretinogram with a Precise Perimetry Apparatus
Authors: Naoto Suzuki
Abstract:
A decline in visual sensitivity at arbitrary points on the retina can be measured using a precise perimetry apparatus along with a fundus camera. However, the retinal layer associated with this decline cannot be identified accurately with current medical technology. To investigate cryptogenic diseases, such as macular dystrophy, acute zonal occult outer retinopathy (AZOOR), and multiple evanescent white dot syndrome (MEWDS), we evaluated an electroretinogram (ERG) function that allows moving the center of the multifocal hexagonal stimulus array to a chosen position. Macular dystrophy is a generalized term used for a variety of functional disorders of the macula lutea, and the ERG shows a diminution of the b-wave in these disorders. AZOOR causes an acute functional disorder to an outer layer of the retina, and the ERG shows a-wave and b-wave amplitude reduction as well as delayed 30 Hz flicker responses. MEWDS causes acute visual loss and the ERG shows a decrease in a-wave amplitude. We combined an electroretinographic optical system and a perimetric optical system into an experimental apparatus that has the same optical system as that of a fundus camera. We also deployed an EO-50231 Edmund infrared camera, a 45-degree cold mirror, a lens with a 25-mm focal length, a halogen lamp, and an 8-inch monitor. Then, we also employed a differential amplifier with gain 10, a 50 Hz notch filter, a high-pass filter with a 21.2 Hz cut-off frequency, and two non-inverting amplifiers with gains 1001 and 11. In addition, we used a USB-6216 National Instruments I/O device, a NE-113A Nihon Kohden plate electrode, a SCB-68A shielded connector block, and LabVIEW 2017 software for data retrieval. The software was used to generate the multifocal hexagonal stimulus array on the computer monitor with C++Builder 10.2 and to move the center of the array toward the left and right and up and down. Cone and bright flash ERG results were observed using the moving ERG function. The a-wave, b-wave, c-wave, and the photopic negative response were identified with cone ERG. The moving ERG function allowed the identification of the retinal layer causing visual alterations.
Keywords: Moving ERG, multifocal ERG, precise perimetry, retinal layers, visual sensitivity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6082614 Thermomechanical Damage Modeling of F114 Carbon Steel
Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi
Abstract:
The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.
Keywords: Thermomechanical fatigue, failure, numerical simulation, fracture, damages.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14942613 Experimental Demonstration of an Ultra-Low Power Vertical-Cavity Surface-Emitting Laser for Optical Power Generation
Authors: S. Nazhan, Hassan K. Al-Musawi, Khalid A. Humood
Abstract:
This paper reports on an experimental investigation into the influence of current modulation on the properties of a vertical-cavity surface-emitting laser (VCSEL) with a direct square wave modulation. The optical output power response, as a function of the pumping current, modulation frequency, and amplitude, is measured for an 850 nm VCSEL. We demonstrate that modulation frequency and amplitude play important roles in reducing the VCSEL’s power consumption for optical generation. Indeed, even when the biasing current is below the static threshold, the VCSEL emits optical power under the square wave modulation. The power consumed by the device to generate light is significantly reduced to > 50%, which is below the threshold current, in response to both the modulation frequency and amplitude. An operating VCSEL device at low power is very desirable for less thermal effects, which are essential for a high-speed modulation bandwidth.
Keywords: VCSELs, optical power generation, power consumption, square wave modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5662612 Torsional Statics of Circular Nanostructures: Numerical Approach
Authors: M.Z. Islam, C.W. Lim
Abstract:
Based on the standard finite element method, a new finite element method which is known as nonlocal finite element method (NL-FEM) is numerically implemented in this article to study the nonlocal effects for solving 1D nonlocal elastic problem. An Eringen-type nonlocal elastic model is considered. In this model, the constitutive stress-strain law is expressed interms of integral equation which governs the nonlocal material behavior. The new NL-FEM is adopted in such a way that the postulated nonlocal elastic behavior of material is captured by a finite element endowed with a set of (cross-stiffness) element itself by the other elements in mesh. An example with their analytical solutions and the relevant numerical findings for various load and boundary conditions are presented and discussed in details. It is observed from the numerical solutions that the torsional deformation angle decreases with increasing nonlocal nanoscale parameter. It is also noted that the analytical solution fails to capture the nonlocal effect in some cases where numerical solutions handle those situation effectively which prove the reliability and effectiveness of numerical techniques.Keywords: NL-FEM, nonlocal elasticity, nanoscale, torsion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17492611 Sediment Transport Monitoring in the Port of Veracruz Expansion Project
Authors: Francisco Liaño-Carrera, José Isaac Ramírez-Macías, David Salas-Monreal, Mayra Lorena Riveron-Enzastiga, Marcos Rangel-Avalos, Adriana Andrea Roldán-Ubando
Abstract:
The construction of most coastal infrastructure developments around the world are usually made considering wave height, current velocities and river discharges; however, little effort has been paid to surveying sediment transport during dredging or the modification to currents outside the ports or marinas during and after the construction. This study shows a complete survey during the construction of one of the largest ports of the Gulf of Mexico. An anchored Acoustic Doppler Current Velocity profiler (ADCP), a towed ADCP and a combination of model outputs were used at the Veracruz port construction in order to describe the hourly sediment transport and current modifications in and out of the new port. Owing to the stability of the system the new port was construction inside Vergara Bay, a low wave energy system with a tidal range of up to 0.40 m. The results show a two-current system pattern within the bay. The north side of the bay has an anticyclonic gyre, while the southern part of the bay shows a cyclonic gyre. Sediment transport trajectories were made every hour using the anchored ADCP, a numerical model and the weekly data obtained from the towed ADCP within the entire bay. The sediment transport trajectories were carefully tracked since the bay is surrounded by coral reef structures which are sensitive to sedimentation rate and water turbidity. The survey shows that during dredging and rock input used to build the wave breaker sediments were locally added (< 2500 m2) and local currents disperse it in less than 4 h. While the river input located in the middle of the bay and the sewer system plant may add more than 10 times this amount during a rainy day or during the tourist season. Finally, the coastal line obtained seasonally with a drone suggests that the southern part of the bay has not been modified by the construction of the new port located in the northern part of the bay, owing to the two subsystem division of the bay.
Keywords: Acoustic Doppler current profiler, time series, port construction, construction around coral reefs, sediment transport monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12742610 A Study on Prediction of Cavitation for Centrifugal Pump
Authors: Myung Jin Kim, Hyun Bae Jin, Wui Jun Chung
Abstract:
In this study, to accurately predict cavitation of a centrifugal pump, numerical analysis was compared with experimental results modeled on a small industrial centrifugal pump. In this study, numerical analysis was compared with experimental results modeled on a small industrial centrifugal pump for reliable prediction on cavitation of a centrifugal pump. To improve validity of the numerical analysis, transient analysis was conducted on the calculated domain of full-type geometry, such as an experimental apparatus. The numerical analysis from the results was considered to be a reliable prediction of cavitaion.Keywords: Centrifugal Pump, Cavitation, NPSH, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42222609 Propagation of Nonlinear Surface Waves in Relativistically Degenerate Quantum Plasma Half-Space
Authors: Swarniv Chandra, Parthasona Maji, Basudev Ghosh
Abstract:
The nonlinear self-interaction of an electrostatic surface wave on a semibounded quantum plasma with relativistic degeneracy is investigated by using quantum hydrodynamic (QHD) model and the Poisson’s equation with appropriate boundary conditions. It is shown that a part of the second harmonic generated through self-interaction does not have a true surface wave character but propagates obliquely away from the plasma-vacuum interface into the bulk of plasma.
Keywords: Harmonic Generation, Quantum Plasma, Quantum Hydrodynamic Model, Relativistic Degeneracy, Surface waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22662608 Assessment of Solar Hydrogen Production in an Energetic Hybrid PV-PEMFC System
Authors: H. Rezzouk, M. Hatti, H. Rahmani, S. Atoui
Abstract:
This paper discusses the design and analysis of a hybrid PV-Fuel cell energy system destined to power a DC load. The system is composed of a photovoltaic array, a fuel cell, an electrolyzer and a hydrogen tank. HOMER software is used in this study to calculate the optimum capacities of the power system components that their combination allows an efficient use of solar resource to cover the hourly load needs. The optimal system sizing allows establishing the right balance between the daily electrical energy produced by the power system and the daily electrical energy consumed by the DC load using a 28 KW PV array, a 7.5 KW fuel cell, a 40KW electrolyzer and a 270 Kg hydrogen tank. The variation of powers involved into the DC bus of the hybrid PV-fuel cell system has been computed and analyzed for each hour over one year: the output powers of the PV array and the fuel cell, the input power of the elctrolyzer system and the DC primary load. Equally, the annual variation of stored hydrogen produced by the electrolyzer has been assessed. The PV array contributes in the power system with 82% whereas the fuel cell produces 18%. 38% of the total energy consumption belongs to the DC primary load while the rest goes to the electrolyzer.
Keywords: Electrolyzer, Hydrogen, Hydrogen Fueled Cell, Photovoltaic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15872607 Experimental and Numerical Studies of Drag Reduction on a Circular Cylinder
Authors: A.O. Ladjedel, B.T.Yahiaoui, C.L.Adjlout, D.O.Imine
Abstract:
In the present paper; an experimental and numerical investigations of drag reduction on a grooved circular cylinder have been performed. The experiments were carried out in closed circuit subsonic wind tunnel (TE44); the pressure distribution on the cylinder was conducted using a TE44DPS differential pressure scanner and the drag forces were measured using the TE81 balance. The display unit is linked to a computer, loaded with DATASLIM software for data analysis and logging of result. The numerical study was performed using the code ANSYS FLUENT solving the Reynolds Averaged Navier-Stokes (RANS) equations. The k-ε and k- ω SST models were tested. The results obtained from the experimental and numerical investigations have showed a reduction in the drag when using longitudinal grooves namely 2 and 6 on the cylinder.Keywords: Circular cylinder, Drag, grooves, pressure distribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28242606 Induction Heating Process Design Using Comsol® Multiphysics Software Version 4.2a
Authors: K. Djellabi, M. E. H. Latreche
Abstract:
Induction heating computer simulation is a powerful tool for process design and optimization, induction coil design, equipment selection, as well as education and business presentations. The authors share their vast experience in the practical use of computer simulation for different induction heating and heat treating processes. In this paper treated with mathematical modeling and numerical simulation of induction heating furnaces with axisymmetric geometries for the numerical solution, we propose finite element methods combined with boundary (FEM) for the electromagnetic model using COMSOL® Multiphysics Software. Some numerical results for an industrial furnace are shown with high frequency.
Keywords: Numerical methods, Induction furnaces, Induction Heating, Finite element method, Comsol Multiphysics software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80542605 Numerical Simulation of Free Surface Water Wave for the Flow around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method
Authors: Saadia Adjali, Omar Imine, Mohammed Aounallah, Mustapha Belkadi
Abstract:
Steady three-dimensional and two free surface waves generated by moving bodies are presented, the flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. The results of several simulations are reported. The first study was performed for NACA0012 of hydrofoil with different meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second simulation a mathematically defined Wigley hull form is used to investigate the application of a commercial CFD code in prediction of the total resistance and its components from tangential and normal forces on the hull wetted surface. The computed resistance and wave profiles are used to estimate the coefficient of the total resistance for Wigley hull advancing in calm water under steady conditions. The commercial CFD software FLUENT version 12 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26. The shear stress k-ωSST model is used for turbulence modeling and the volume of fluid technique is employed to simulate the free-surface motion. The second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRIC scheme for VOF discretization. The results obtained compare well with the experimental data.Keywords: Free surface flows, Breaking waves, Boundary layer, Wigley hull, Volume of fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35622604 Numerical Simulation of Free Surface Water Wave for the Flow around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method
Authors: Saadia Adjali, Omar Imine, Mohammed Aounallah, Mustapha Belkadi
Abstract:
Steady three-dimensional and two free surface waves generated by moving bodies are presented, the flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. The results of several simulations are reported. The first study was performed for NACA0012 of hydrofoil with different meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second simulation a mathematically defined Wigley hull form is used to investigate the application of a commercial CFD code in prediction of the total resistance and its components from tangential and normal forces on the hull wetted surface. The computed resistance and wave profiles are used to estimate the coefficient of the total resistance for Wigley hull advancing in calm water under steady conditions. The commercial CFD software FLUENT version 12 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26. The shear stress k-ωSST model is used for turbulence modeling and the volume of fluid technique is employed to simulate the free-surface motion. The second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRIC scheme for VOF discretization. The results obtained compare well with the experimental data.Keywords: Free surface flows, breaking waves, boundary layer, Wigley hull, volume of fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33022603 Investigating Performance of Numerical Distance Relay with Higher Order Antialiasing Filter
Authors: Venkatesh C., K. Shanti Swarup
Abstract:
This paper investigates the impact on operating time delay and relay maloperation when 1st,2nd and 3rd order analog antialiasing filters are used in numerical distance protection. RC filter with cut-off frequency 90 Hz is used. Simulations are carried out for different SIR (Source to line Impedance Ratio), load, fault type and fault conditions using SIMULINK, where the voltage and current signals are fed online to the developed numerical distance relay model. Matlab is used for plotting the impedance trajectory. Investigation results shows that, about 75 % of the simulated cases, numerical distance relay operating time is not increased even-though there is a time delay when higher order filters are used. Relay maloperation (selectivity) also reduces (increases) when higher order filters are used in numerical distance protection.
Keywords: Antialiasing, capacitive voltage transformers, delay estimation, discrete Fourier transform (DFT), distance measurement, low-pass filters, source to line impedance ratio (SIR), protective relaying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27972602 The Evaluation of Load-Bearing Capacity of the Planar CHS Joint Using Finite Modeling
Authors: Anežka Jurčíková, Miroslav Rosmanit
Abstract:
The subject of this paper is to verify the behavior of the truss-type CHS joint which is beyond the scope of use of the EN 1993-1-8. This is performed by using the numerical modeling in program ANSYS and the analytical methods recommended in the CIDECT publication. The recommendations for numerical modeling of such types of joints as well as for evaluation of load-bearing capacity of the joint are given in this paper. The results from both analytical and numerical models are compared.
Keywords: ANSYS, CHS joints, FEM, Lattice structure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19212601 Bayesian Inference for Phase Unwrapping Using Conjugate Gradient Method in One and Two Dimensions
Authors: Yohei Saika, Hiroki Sakaematsu, Shota Akiyama
Abstract:
We investigated statistical performance of Bayesian inference using maximum entropy and MAP estimation for several models which approximated wave-fronts in remote sensing using SAR interferometry. Using Monte Carlo simulation for a set of wave-fronts generated by assumed true prior, we found that the method of maximum entropy realized the optimal performance around the Bayes-optimal conditions by using model of the true prior and the likelihood representing optical measurement due to the interferometer. Also, we found that the MAP estimation regarded as a deterministic limit of maximum entropy almost achieved the same performance as the Bayes-optimal solution for the set of wave-fronts. Then, we clarified that the MAP estimation perfectly carried out phase unwrapping without using prior information, and also that the MAP estimation realized accurate phase unwrapping using conjugate gradient (CG) method, if we assumed the model of the true prior appropriately.
Keywords: Bayesian inference using maximum entropy, MAP estimation using conjugate gradient method, SAR interferometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17512600 Numerical Simulation of Liquid Nitrogen Spray Equipment for Space Environmental Simulation Facility
Authors: He Chao, Zhang Lei, Liu Ran, Li Ang
Abstract:
Temperature regulating system by gaseous nitrogen is of importance to the space environment simulator, which keeps the shrouds in the temperature range from -150°C to +150°C. Liquid nitrogen spray equipment is one of the most critical parts in the temperature regulating system by gaseous nitrogen. Y type jet atomizer and internal mixing atomizer of the liquid nitrogen spray equipment are studied in this paper, 2D/3D atomizer model was established and grid division was conducted respectively by the software of Catia and ICEM. Based on the above preparation, numerical simulation on the spraying process of the atomizer by FLUENT is performed. Using air and water as the medium, comparison between the tests and numerical simulation was conducted and the results of two ways match well. Hence, it can be conclude that this atomizer model can be applied in the numerical simulation of liquid nitrogen spray equipment.Keywords: Space environmental simulator, liquid nitrogen spray, Y type jet atomizer, internal mixing atomizer, numerical simulation, fluent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20082599 Numerical Simulation of Investment Casting of Gold Jewelry: Experiments and Validations
Authors: Marco Actis Grande, Somlak Wannarumon
Abstract:
This paper proposes the numerical simulation of the investment casting of gold jewelry. It aims to study the behavior of fluid flow during mould filling and solidification and to optimize the process parameters, which lead to predict and control casting defects such as gas porosity and shrinkage porosity. A finite difference method, computer simulation software FLOW-3D was used to simulate the jewelry casting process. The simplified model was designed for both numerical simulation and real casting production. A set of sensor acquisitions were allocated on the different positions of the wax tree of the model to detect filling times, while a set of thermocouples were allocated to detect the temperature during casting and cooling. Those detected data were applied to validate the results of the numerical simulation to the results of the real casting. The resulting comparisons signify that the numerical simulation can be used as an effective tool in investment-casting-process optimization and casting-defect prediction.Keywords: Computer fluid dynamic, Investment casting, Jewelry, Mould filling, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2737