{"title":"Three Steps of One-way Nested Grid for Energy Balance Equations by Wave Model","authors":"Worachat Wannawong, Usa W. Humphries,Prungchan Wongwises, Suphat Vongvisessomjai","volume":51,"journal":"International Journal of Physical and Mathematical Sciences","pagesStart":270,"pagesEnd":278,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/4190","abstract":"The three steps of the standard one-way nested grid\r\nfor a regional scale of the third generation WAve Model Cycle 4\r\n(WAMC4) is scrutinized. The model application is enabled to solve\r\nthe energy balance equation on a coarse resolution grid in order to\r\nproduce boundary conditions for a smaller area by the nested grid\r\ntechnique. In the present study, the model takes a full advantage of the\r\nfine resolution of wind fields in space and time produced by the available\r\nU.S. Navy Global Atmospheric Prediction System (NOGAPS)\r\nmodel with 1 degree resolution. The nested grid application of the\r\nmodel is developed in order to gradually increase the resolution from\r\nthe open ocean towards the South China Sea (SCS) and the Gulf of\r\nThailand (GoT) respectively. The model results were compared with\r\nbuoy observations at Ko Chang, Rayong and Huahin locations which\r\nwere obtained from the Seawatch project. In addition, the results were\r\nalso compared with Satun based weather station which was provided\r\nfrom Department of Meteorology, Thailand. The data collected from\r\nthis station presented the significant wave height (Hs) reached 12.85\r\nm. The results indicated that the tendency of the Hs from the model\r\nin the spherical coordinate propagation with deep water condition in\r\nthe fine grid domain agreed well with the Hs from the observations.","references":"[1] C. Amante and B. W. Eakins, 1 Arc-Minute Global Relief Model:\r\nProcedures, Data Sources and Analysis (ETOPO1), NOAA, National\r\nGeophysical Data Center, Boulder, Colorado, U.S.A. (2008), 21.\r\n[2] G. J. Komen, K. Hasselmann and S. Hasselmann, On the existence of\r\na fully developed windsea spectrum, Journal of Physical Oceanography,\r\n14(1984), 1271-1285.\r\n[3] G. Komen, L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann and\r\nP.A.E.M. Janseen, Dynamics and modelling of ocean waves, Cambridge\r\nUniversity Press, UK. (1994), 532.\r\n[4] G. Ph. van Vledder, Directional response of wind waves to turning\r\nwinds, Commun. Hydraul. Geotech. Eng., Delft University of Technology,\r\nThe Netherlands, 1990.\r\n[5] H. Gunther, S. Hasselmann and P.A.E.M. Janssen, WAM model Cycle\r\n4, Technical Report No. 4, Hamburg, Germany, 1992.\r\n[6] H. L. Tolman, Wind wave propagation in tidal seas, Commun. Hydraul.\r\nGeotech. Eng., Delft University of Technology, The Netherlands, 1990.\r\n[7] J. Monbaliu, R. Padilla-Hernandez, J. C. Hargreaves, J. C. Carretero-\r\nAlbiach, W. Luo, M. Sclavo and H. Gunther, The spectral wave model\r\nWAM adapted for applications with high spatial resolution, Coastal\r\nEngineering, 41(2000), 4-62.\r\n[8] K. Hasselmann, T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright,\r\nK. Enke, J. I. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman,\r\nA. Meerbrug, P. Mauller, D. J. Olvers, K. Richter, W. Sell and H.\r\nWalden, Measurements of wind-wave growth and swell decay during the\r\nJoint North Sea Wave Project (JONSWAP), Deutsche Hydrographische\r\nZeitschrift, 8(1973), 95.\r\n[9] M. O. Edwards, Global Gridded Elevation and Bathymetry on 5-Minute\r\nGeographic Grid (ETOPO5), NOAA, National Geophysical Data Center,\r\nBoulder, Colorado, U.S.A., 1989.\r\n[10] M. Gomez Lahoz and J. C. Carretero Albiach, A two-way nesting\r\nprocedure for the WAM model: Application to the Spanish coast, The\r\nAmerican Society of Mechanical Engineer, 119(1997), 20-24.\r\n[11] P.A.E.M. Janssen, Quasi-linear theory of wind-wave generation applied\r\nto wave forecasting, Journal of Physical Oceanography, 19(1991), 745-\r\n754.\r\n[12] P. H. LeBlond and L. A. Mysak, Waves in the ocean. Elsevier, Amsterdam,\r\n1978.\r\n[13] S. Hasselmann, K. Hasselmann, E. Bauer, P.A.E.M. Janssen, G. J.\r\nKomen, L. Bertotti, P. Lionello, A. Guillaume, V. C. Cardone, J. A.\r\nGreenwood, M. Reistad, L. Zambresky and J. A. Ewing, The WAM\r\nmodel-a third generation ocean wave prediction model, Journal of\r\nPhysical Oceanography, 18(1988), 1775-1810.\r\n[14] S. Hasselmann, K. Hasselmann, J. H. Allender and T. P. Barnett,\r\nComputations and parameterizations of the nonlinear energy transfer\r\nin a gravity-wave spectrum, Part II: Parameterizations of the nonlinear\r\nenergy transfer for application in wave models, Journal of Physical\r\nOceanography, 15(1985), 1378-1391.\r\n[15] S. Vongvisessomjai, Impacts of Typhoon Vae and Linda on wind waves\r\nin the upper gulf of Thailand and east coast, Songklanakarin Journal of\r\nScience and Technology, 29(2007), 1199-1216.\r\n[16] S. Vongvisessomjai, Tropical cyclone disasters in the Gulf of Thailand,\r\nSongklanakarin Journal of Science and Technology, 31(2009), 213-227.\r\n[17] S. Vongvisessomjai, P. Chatanantavet and P. Srivihok, Interaction of\r\ntide and salinity barrier: Limitation of numerical model, Songklanakarin\r\nJournal of Science and Technology, 30(2008), 531-538.\r\n[18] T. F. Hogan and T. E. Rosmond, The description of the Navy Operational\r\nGlobal Atmospheric System-s spectral forecast model, Monthly Weather\r\nReview, 119(1991), 1786-1815.\r\n[19] W. Wannawong, U. W. Humphries and A. Luadsong, The application\r\nof curvilinear coordinate for primitive equation in the Gulf of Thailand,\r\nThai Journal of Mathematics, 6(2008), 89-108.\r\n[20] W. Wannawong, U. W. Humphries, P. Wongwises, S. Vongvisessomjai\r\nand W. Lueangaram, A numerical study of two coordinates for energy\r\nbalance equations by wave model, Thai Journal of Mathematics,\r\n8(2010), 197-214.\r\n[21] W. Wannawong, U. W. Humphries, P. Wongwises, S. Vongvisessomjai\r\nand W. Lueangaram, Numerical modeling and computation of storm\r\nsurge for primitive equation by hydrodynamic model, Thai Journal of\r\nMathematics, 8(2010), 347-363.\r\n[22] W. Wannawong, U. W. Humphries, P. Wongwises, S. Vongvisessomjai\r\nand W. Lueangaram, Numerical Analysis of Wave and Hydrodynamic\r\nModels for Energy Balance and Primitive Equations, International\r\nJournal of Mathematical and Statistical Sciences, 4(2010), 140-150.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 51, 2011"}