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A Numerical Method for Diffusion and Cahn-Hilliard
Equations on Evolving Spherical Surfaces
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Abstract—In this paper, we present a simple effective numerical
geometric method to estimate the divergence of a vector field over a
curved surface. The conservation law is an important principle in
physics and mathematics. However, many well-known numerical
methods for solving diffusion equations do not obey conservation
laws. Our presented method in this paper combines the divergence
theorem with a generalized finite difference method and obeys the
conservation law on discrete closed surfaces. We use the similar
method to solve the Cahn-Hilliard equations on evolving spherical
surfaces and observe stability results in our numerical simulations.
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I. INTRODUCTION

INDING numerical methods to compute partial differential
equations on evolving surfaces is an interesting and
difficult problem. These methods have many important
applications in fluid dynamics, magnetohydrodynamics, image
processing, and so on. See more details in [1], [2], [9]. In this
note, we shall introduce a new numerical method for solving
the diffusion equation on evolving closed surfaces that we
proposed in 2016. This method is an intrinsic geometric
method to deal with the discrete conservation law on evolving
regular surfaces, and we shall improve the Cahn-Hilliard
equation on evolving spherical surfaces by this method.
The Cahn-Hilliard equation with a variable mobility on a
regular closed surface ¥ takes the form:

% =V [MU(X,t)Vuu(x ),

XeZ,0<t<T. and w(u(x,t))=F'(U(X,t))— A u(X,1)

where the quantity u(x,t) is the difference between the mole
fractions of binary mixtures. The function Fu) :%(uz —1)?*is
the Helmholtz free energy per unit volume of a homogeneous
fluid, and ¢ is a positive constant. See [10], [11] for more

details.

II. PRELIMINARIES

First, we introduce a discrete Laplace-Beltrami operator on a
stationary surface that we proposed in 2013 and 2014 [3], [4].
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A. The Local Tangential Method [3]

Let S =(V,F)be a triangular mesh with vV = {p, |1<i<n,}
the list of vertices and F ={T, |[1<k <n,} the list of triangles.
We introduce the approximating tangent plane TS(p) at the
vertex p of as:

1. The unit normal vector N,(p) at the vertex p in S is
given by the weighted normal vector

N,.(p)= ZWTK Nn/

kel (p)

SwN,

kel (p)

, (1)

where N, is the unit normal vector of the triangle T,
including a vertex p. We refer to [3] for more details.
2. The approximating tangent space TS(pP) of S at p is

now determined by

TS(p)={weR* |wLN,(p)}. )

We can choose an orthonormal basis €,,€, for the tangent
plane TS(p) of S at p . Hence, {e,e,N,(p)} forms an

orthonormal basis for R® and every €X around p can be

assigned a new Xyz -coordinate by

x(@)e, + y(@e, =(@-p)—((a-p)-N,(MIN,(p) (3)

and

2(q) = h(x(p), Y(P)) =(d—=p)- N, (p) . 4)

Obviously, the new coordinate of p is (0,0,0).

B. Discrete Tangential Gradient Vector
Since the gradient V. f of a smooth function f on a
regular surface ¥ with a parametrization x(u,V)is given by
_ fG-1fF fE-fF

V. f = X, + X 5
" EG-F* ' EG-F* " ©)

where E, F, and G are the coefficients of the 1* fundamental

0
form of X and f :6% f(x(u,v)) and f, :E f(x(u,v)) , We
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need to approximate the local parametrization of X around p
and the differential quantities of the function f .

We shall construct a local parametrization by representing
the regular surface ¥ as locally a graph surface around the
vertex p . Consider the triangular mesh S = (V,F) ofaclosed

surface ¥ with mesh size r > 0. Given a vertex peV, let
P,, J=0,,---,n be the neighboring vertices of p with
p(l = pn N
(X,,Y,,2,) , and we denote h(x,,y,)=2, .

Suppose that the new coordinate of p, is
We use the

polynomial fitting for the height function h of = around p.
By the Taylor expansion, one has

h(x;,y;)—h(0,0)=x;h,(0,0)+y;h, (0,0)

+%(x?h (6)

Joxx

(0,0) +2x,y,h, (0,0) + yj?hyy(0,0))
+-+0(r").

foreach j=1,---,n.

Xl Xn

Set A _ X2 x? and @;, j=1,---,n is a set of
XY, XY,
yoooe !

real numbers. Then, we have

h,(0,0) =" o, (hu,,v,) ~h(0,0))+O(r) (7)
j=1
al
if A i =01 0 0 0 0)and
aﬂ
h(0,0)= & (hu,.v)-h©.0)+0r) (8
j=1
al
if A :|=(0 10 0 0.
a"
Similarly, we can also approximate the differential

quantities of the function f on X . Therefore, the gradient

vector V, f at p can be approximated by

f,(1+h2)-fhh,

1
V,f(p)=————| fl1+h?)-fhh | 9
P = | L)~ Thi ©)
f,+f,
We refer to [5] for the detail of the high-order approach.
Theorem 1. Using above notations, one has
V. f(p)=V,f(p)+0O(r’) (10)
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where

f,(1+h?)- f,hh,

f,(1+h2)- f,hh, |
f,+f,

V.f(p)= (11)

1+h’+h’

C. Discrete Laplace-Beltrami Operator
If X is a local vector field X = Ax, +Bx, on x(U)c X .
The divergence Div X , of X is defined as a function
Div,X :x(U) > R given by the trace of the linear map
Y(p) >V, X for p in X . A direct computation yields

Div, X = —— [Q(A EG—F2)+%(B EG—Fz)}, (12)

JEG-F? Ldu

Note that the divergence theorem gives

jDinx =Ix-n (13)

where n is the unit outward normal vector on oU .
The Laplace-Beltrami operator A, f acting on the function

f is defined by A f=Div(V,f) and has the local

representation

A, f

1 _Jef_ & .
JEG-F*|u| JEG-F* *

S R S S A N S S BT
ulJEG-F*> ') V|JEG-F* '

See [7], [8] for details.

We use the divergence theorem to give a discrete
approximation of the divergence of a vector field X defined
on a triangular surface mesh S =(V,F) . Consider a
vertex peV and let p, , j=0,1---,n, be the neighboring
vertices of p with p, = p, . These vertices p; are labeled
counterclockwise about the normal vector N, (p). Let T, be
the triangle with vertices p, p,, and p,,, . We define the
approximating outer normal vectors n(T,, p,)and n(T, p,,,)
of the triangle T, at the vertex p, and p,,, in X by

j+1

(pj+1 _pj)/\NA(pj)
|(pj+1 _pj)/\NA(pj)"

n(TJ.,pj)z| (15)

and
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(pj+l_ pj)/\NA(ij)
(P =P ANL(RL)

n(T,;,p,.)= : (16)

Since
J~X 'n:’i Hpj+l - ij
& =0 6
+X(pj+l)'n(Tja pj)+2X(pj+l)'n(Tja pj+l)
£X(p))-n(T,, pL)1+0()

(1+0(r*)[2X (p,)n(T;, p,)
(17)

and

IDisz = (ihjkl + O(rz))J(Disz (p)+0(r)). (18)

We can now define the discrete divergence Div,X of a

vector field on the triangular surface mesh S by

Div, X (p) = — {Z pw;pJH((2X(pj)+X(pm)).n(Tj,pj) (19)

Sl

k=0

+(X(p)+2X(p,.))-n(T,.p,.)]

where |Tk| denotes the area of the triangle T, .
Theorem 2. Let f be a smooth function defined on a regular
surface = and the vector field V , f on S satisty

V. f=V,f+0(r") (20)

where V f is the gradient vector field of f on T . Then, we

have

A, f(p)=Div,(V,H)(p)+O(r) . 2]

III. DISCRETE ALGORITHMS OF PDES ON EVOLVING
SURFACES

Next, we discuss the discrete algorithms about the diffusion
equation and Cahn-Hilliard equation on evolving surfaces.

A. Diffusion Equations on Evolving Surfaces

Let {(t)}, te[0,T], denote a moving oriented regular
surfaces in R’ . Suppose that these regular surfaces are moving
with prescribed velocity field X(t)(p(t)), p(t)eZ(t). We
want to solve the surface diffusion equation:

oh+hv,, -X—A, h=0

() (1)

(22)

on evolving surfaces X(t) . Here, 0, =0, + X -V is the material

derivative. See Elliott and Ranner [11] for more details.
After some direct computations, one has
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dh(t)
dt
- 4C(t)(U,V)H (t)(U,V)] = Az(t)h(t)(uvv)a

1 .
(u,v)+Eh(t)(u,v)[dlvz(t)v (t)(u,v) 23)

where H(t)(U,V) is the mean curvature on the surface Z(t).

The is the equation for the conservation law on the evolving
surface 2() with the velocity field
X(®)(u,v) =V {)(u,v)+c)(u,v)N()u,v) . See [6] about
these computations.

Since the divergence theorem, integrating (22) on a portion
U(t) c (1), one has

[oin+hv, X = [a,,h (24)
u(t) u(t)
and this is equivalent to
d
m [h=[a,h= [v..h-n. (25)
u() u() au(t)
After an explicit time discretization, (25) becomes
1
—| [h=[h|=[a,hm = [(V.h")n@)  (26)
F g ) fer-
or
h””J: h"+z"|A_h" 27
[ )= g
After space discretization, (27) yields
DT
h"*‘(p"*‘)=%[(h"(p")+rmznh"(p))] (28)
k

e
Now our two-step algorithm can be stated as follows.

Step 1:For each p, use the above method to compute the

Laplae-Beltrami operator A,h’(p’) and set

hi(p")y=h'(p")+7'A,h'(p’) (29)

Step 2:Let p; ,k =0,1,---,n, be the neighboring vertices of p’
labeled

counterclockwise about the normal vector N, (p’) of the

with p)=p) . These vertices p, are
surface X' at the vertex p’ in the space R’. Let T

be the triangle with vertices p', p)and p/, ,j=0.
We set
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hj“(p“l): Zk|TkJ| HJ(pJ).

Zk ITKM

One can find the proofs of the convergence and conservation
law of this method in [6].

(30)

B. Cahn-Hilliard Equation on Evolving Surfaces
We solve the Cahn-Hilliard equation

u = Azm(u3 -u- ngsz) (31
on an evolving surface Z(t).
Set g=u’—u—g’A U, then (31) can be rewritten as
u=A R
t 3Z(t)¢ . (32)
p=U"—U—g"A U

Using the explicit time discretization, the first equation in
(28) becomes

un+1 _ un )
o =A.¢ (33)
or
un+1:un+TnAZ"¢n' (34)
The function ¢" is given by
n n ) n 2 n
§=)-u-gau, (35)

time is 0.750010 ;u is in [-1.009368, 1.000777] ’

0.8
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IV. SIMULATIONS

Now we solve (32) with ¢ =0.1 on two different evolving

surfaces. All initial conditions of our simulations are the same
2
random numbers in [-0.5,0.5], and the time step is 1:)0 .

We solve (32) on the unit sphere moving with a prescribed
velocity

0.5s7 cos(str)sin(0.5z7)

X(t, p) = 0 (36)
0
and
0.5s cos(stzr)cos(0.5zx)
Y(t,p) = 0 (37)
0

where p =(X,Y,Z) in the unit sphere and S is a nonzero real

number. We show all solution of (34) at times are 0.75 and 1.
Fig. 1 shows the solution of (32) on a stationary unit sphere.

Figs. 2-7 present the numerical solutions of (32) with

$=1,2,10,50,250, and 500 . Fig. 8 is the solution with

X(t, p) = (5007 cos(500tz)sin(0.52z) 0 0). Fig. 9 shows

the Ginzberg-Landau free energy of (32) on the moving
surfaces with different S in (36).

Figs. 10-15 show the numerical solution on a unit sphere
with velocity field Y.

V.CONCLUSION

Conservation laws play important key roles in the partial
differential equation on surfaces. An efficient numerical
method should at least obey the conservation law. Our
proposed method obeys the discrete conservation law.
Furthermore, the Ginzberg-Landau free energy is decreasing in
our simulations.

time is 1.000000 ;u is in [-1.0155845, 1.014014]

Fig. 1 The solution of (26) on a unit sphere
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time is 0.749990 ;u is in [-1.019768, 0.997043] time is 1.000000 ;u is in [-1.014120, 1.002422]

-1

Fig. 2 The solution of (26) with S =1 in the velocity field X

time is 0.780020 ;u is in [-0.999106, 0.951625] time ig 1.000000 ;uis in [-1.027274, 1.001971]

Fig. 3 The solution of (26) with S =2 in the velocity field X

time is 0.750020 ;u is in [-1.011092, 0.999249]

time is 1.000000 ;u is in [-1.107884, 1.112073]

Fig. 4 The solution of (26) with $ =10 in the velocity field X
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time is 0.750020 ;uis in [-1.016822, 1.080852] tirme is 1.000000 ;u is in [-1.120905, 1.094731]

A A

Fig. 5 The solution of (26) with S =50 in the velocity field X

tirme is 0.750020 ;u is in [-1.034125, 1.101276] time is 1.000000 u is in [-1.114554, 1.092615]

1

Fig. 6 The solution of (26) with S =250 in the velocity field X

tirne is 0.750030 ;u is in [-1.112117, 1.070451] time is 1.000000 ;u is in [-1.107081, 1.093221]

-1

Fig. 7 The solution of (26) with S =500 in the velocity field X
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time is 0.750036 [u is in [-1.277243, 1.267223] tirme is 1.000000 ;u is in [-1.221201, 1.260011)
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Fig. 9 The Ginzberg-Landau free energy with different S

time is 0.749390 ;u is in [-1.011312, 1.001270]

time is 1.000000 ;u is in [-1.022961, 1.021533]

N 05 o

Fig. 10 The solution of (26) with S =1 in the velocity field Y
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tirme is 0.750030 ;u is in [-1.010774, 0.981199)] tirne is 1.000000 ;u is in [-1.028409, 1.040651]

D5~

DEA

K] -1 K

Fig. 11 The solution of (26) with S =2 in the velocity field Y

tirme is 0.749990 ;u is in [-0.998474, 1.0256810] time is 1.000000 ;u is in [-1.049353, 1.121454]

Fig. 12 The solution of (26) with S =10 in the velocity field Y

time is 0.750010 ;u is in [1.161068, 1.178141] time is 1.000000 ;u is in [-0.996826, 1.039807]

Fig. 13 The solution of (26) with S =50 in the velocity field Y
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time is 0.748560 [u is in [-1.211271, 1.230381] time is 1.000000 ;u is in [-1.003698, 1.033267]

0
T 0s

Fig. 14 The solution of (26) with S =250 in the velocity field Y

time is 0.750115 ;u is in [-1.093096, 1.056197) time is 1.000000 ;u is in [-1.072962, 1.046766)

0E-i

NEE S

0.5 .

-1

4 A

Fig. 15 The solution of (26) with S =500 in the velocity field Y

-1
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