Search results for: boundary reinforcement
1012 Experimental Behavior of Composite Shear Walls Having L Shape Steel Sections in Boundary Regions
Authors: S. Bahadır Yüksel, Alptuğ Ünal
Abstract:
The Composite Shear Walls (CSW) with steel encased profiles can be used as lateral-load resisting systems for buildings that require considerable large lateral-load capacity. The aim of this work is to propose the experimental work conducted on CSW having L section folded plate (L shape steel made-up sections) as longitudinal reinforcement in boundary regions. The study in this paper present the experimental test conducted on CSW having L section folded plate as longitudinal reinforcement in boundary regions. The tested 1/3 geometric scaled CSW has aspect ratio of 3.2. L-shape structural steel materials with 2L-19x57x7mm dimensions were placed in shear wall boundary zones. The seismic behavior of CSW test specimen was investigated by evaluating and interpreting the hysteresis curves, envelope curves, rigidity and consumed energy graphs of this tested element. In addition to this, the experimental results, deformation and cracking patterns were evaluated, interpreted and suggestions of the design recommendations were proposed.Keywords: Shear wall, composite shear wall, boundary reinforcement, earthquake resistant structural design, L section.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18341011 Study on Two Way Reinforced Concrete Slab Using ANSYS with Different Boundary Conditions and Loading
Authors: A. Gherbi, L. Dahmani, A. Boudjemia
Abstract:
This paper presents the Finite Element Method (FEM) for analyzing the failure pattern of rectangular slab with various edge conditions. Non-Linear static analysis is carried out using ANSYS 15 Software. Using SOLID65 solid elements, the compressive crushing of concrete is facilitated using plasticity algorithm, while the concrete cracking in tension zone is accommodated by the nonlinear material model. Smeared reinforcement is used and introduced as a percentage of steel embedded in concrete slab. The behavior of the analyzed concrete slab has been observed in terms of the crack pattern and displacement for various loading and boundary conditions. The finite element results are also compared with the experimental data. One of the other objectives of the present study is to show how similar the crack path found by ANSYS program to those observed for the yield line analysis. The smeared reinforcement method is found to be more practical especially for the layered elements like concrete slabs. The value of this method is that it does not require explicit modeling of the rebar, and thus a much coarser mesh can be defined.
Keywords: ANSYS, cracking pattern, displacements, RC Slab, smeared reinforcement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12701010 Adhesion Performance According to Lateral Reinforcement Method of Textile
Authors: Jungbhin You, Taekyun Kim, Jongho Park, Sungnam Hong, Sun-Kyu Park
Abstract:
Reinforced concrete has been mainly used in construction field because of excellent durability. However, it may lead to reduction of durability and safety due to corrosion of reinforcement steels according to damage of concrete surface. Recently, research of textile is ongoing to complement weakness of reinforced concrete. In previous research, only experiment of longitudinal length were performed. Therefore, in order to investigate the adhesion performance according to the lattice shape and the embedded length, the pull-out test was performed on the roving with parameter of the number of lateral reinforcement, the lateral reinforcement length and the lateral reinforcement spacing. As a result, the number of lateral reinforcement and the lateral reinforcement length did not significantly affect the load variation depending on the adhesion performance, and only the load analysis results according to the reinforcement spacing are affected.
Keywords: Adhesion performance, lateral reinforcement, pull-out test, textile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11311009 The Effect of Geogrid Reinforcement Pre-Stressing on the Performance of Sand Bed Supporting a Strip Foundation
Authors: Ahmed M. Eltohamy
Abstract:
In this paper, an experimental and numerical study was adopted to investigate the effect geogrid soil reinforcement pre-stressing on the pressure settlement relation of sand bed supporting a strip foundation. The studied parameters include foundation depth and pre-stress ratio for the cases of one and two pre-stressed reinforcement layers. The study reflected that pre-stressing of soil reinforcement resulted in a marked enhancement in reinforced bed soil stiffness compared to the reinforced soil without pre-stress. The best benefit of pre-stressing reinforcement was obtained as the overburden pressure and pre-straining ratio increase. Pre-stressing of double reinforcement topmost layers results in further enhancement of stress strain relation of bed soil.Keywords: Geogrid reinforcement, strip footing, pre-stress, bearing capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16491008 An Efficient Method for Solving Multipoint Equation Boundary Value Problems
Authors: Ampon Dhamacharoen, Kanittha Chompuvised
Abstract:
In this work, we solve multipoint boundary value problems where the boundary value conditions are equations using the Newton-Broyden Shooting method (NBSM).The proposed method is tested upon several problems from the literature and the results are compared with the available exact solution. The experiments are given to illustrate the efficiency and implementation of the method.Keywords: Boundary value problem; Multipoint equation boundary value problems, Shooting Method, Newton-Broyden method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17851007 Nonlinear Finite Element Modeling of Unbonded Steel Reinforced Concrete Beams
Authors: Fares Jnaid, Riyad Aboutaha
Abstract:
In this paper, a nonlinear Finite Element Analysis (FEA) was carried out using ANSYS software to build a model able of predicting the behavior of Reinforced Concrete (RC) beams with unbonded reinforcement. The FEA model was compared to existing experimental data by other researchers. The existing experimental data consisted of 16 beams that varied from structurally sound beams to beams with unbonded reinforcement with different unbonded lengths and reinforcement ratios. The model was able to predict the ultimate flexural strength, load-deflection curve, and crack pattern of concrete beams with unbonded reinforcement. It was concluded that when the when the unbonded length is less than 45% of the span, there will be no decrease in the ultimate flexural strength due to the loss of bond between the steel reinforcement and the surrounding concrete regardless of the reinforcement ratio. Moreover, when the reinforcement ratio is relatively low, there will be no decrease in ultimate flexural strength regardless of the length of unbond.
Keywords: FEA, ANSYS, Unbond, Strain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32381006 Development of AA2024 Matrix Composites Reinforced with Micro Yttrium through Cold Compaction with Superior Mechanical Properties
Authors: C. H. S. Vidyasagar, D. B. Karunakar
Abstract:
In this present work, five different composite samples with AA2024 as matrix and varying amounts of yttrium (0.1-0.5 wt.%) as reinforcement are developed through cold compaction. The microstructures of the developed composite samples revealed that the yttrium reinforcement caused grain refinement up to 0.3 wt.% and beyond which the refinement is not effective. The microstructure revealed Al2Cu precipitation which strengthened the composite up to 0.3 wt.% yttrium reinforcement. Upon further increase in yttrium reinforcement, the intermetallics and the precipitation coarsen and their corresponding strengthening effect decreases. The mechanical characterization revealed that the composite sample reinforced with 0.3 wt.% yttrium showed highest mechanical properties like 82 HV of hardness, 276 MPa Ultimate Tensile Strength (UTS), 229 MPa Yield Strength (YS) and an elongation (EL) of 18.9% respectively. However, the relative density of the developed composites decreased with the increase in yttrium reinforcement.
Keywords: Mechanical properties, AA 2024 matrix, yttrium reinforcement, cold compaction, precipitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6581005 Non-reflection Boundary Conditions for Numerical Simulation of Supersonic Flow
Authors: A. Abdalla, A. Kaltayev
Abstract:
This article presents the boundary conditions for the problem of turbulent supersonic gas flow in a plane channel with a perpendicular injection jets. The non-reflection boundary conditions for direct modeling of compressible viscous gases are studied. A formulation using the NSCBC (Navier- Stocks characteristic boundary conditions) through boundaries is derived for the subsonic inflow and subsonic non-reflection outflow situations. Verification of the constructed algorithm of boundary conditions is carried out by solving a test problem of perpendicular sound of jets injection into a supersonic gas flow in a plane channel.
Keywords: WENO scheme, non-reflection boundary conditions, NSCBC, supersonic flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21961004 Effect of Transverse Reinforcement on the Behavior of Tension Lap splice in High-Strength Reinforced Concrete Beams
Authors: Ahmed H. Abdel-Kareem, Hala. Abousafa, Omia S. El-Hadidi
Abstract:
The results of an experimental program conducted on seventeen simply supported concrete beams to study the effect of transverse reinforcement on the behavior of lap splice of steel reinforcement in tension zones in high strength concrete beams, are presented. The parameters included in the experimental program were the concrete compressive strength, the lap splice length, the amount of transverse reinforcement provided within the splice region, and the shape of transverse reinforcement around spliced bars. The experimental results showed that the displacement ductility increased and the mode of failure changed from splitting bond failure to flexural failure when the amount of transverse reinforcement in splice region increased, and the compressive strength increased up to 100 MPa. The presence of transverse reinforcement around spliced bars had pronounced effect on increasing the ultimate load, the ultimate deflection, and the displacement ductility. The prediction of maximum steel stresses for spliced bars using ACI 318-05 building code was compared with the experimental results. The comparison showed that the effect of transverse reinforcement around spliced bars has to be considered into the design equations for lap splice length in high strength concrete beams.
Keywords: Ductility, high strength concrete, tension lap splice, transverse reinforcement, steel stresses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47121003 Application of Novel Conserving Immersed Boundary Method to Moving Boundary Problem
Authors: S. N. Hosseini, S. M. H. Karimian
Abstract:
A new conserving approach in the context of Immersed Boundary Method (IBM) is presented to simulate one dimensional, incompressible flow in a moving boundary problem. The method employs control volume scheme to simulate the flow field. The concept of ghost node is used at the boundaries to conserve the mass and momentum equations. The Present method implements the conservation laws in all cells including boundary control volumes. Application of the method is studied in a test case with moving boundary. Comparison between the results of this new method and a sharp interface (Image Point Method) IBM algorithm shows a well distinguished improvement in both pressure and velocity fields of the present method. Fluctuations in pressure field are fully resolved in this proposed method. This approach expands the IBM capability to simulate flow field for variety of problems by implementing conservation laws in a fully Cartesian grid compared to other conserving methods.
Keywords: Immersed Boundary Method, conservation of mass and momentum laws, moving boundary, boundary condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19901002 Experimental Simulation of Soil Boundary Condition for Dynamic Studies
Authors: Omar.S. Qaftan, T. T. Sabbagh
Abstract:
This paper studies the free-field response by adopting a flexible membrane container as soil boundary for experimental shaking table tests. The influence of the soil container boundary on the soil behaviour and the dynamic soil properties under seismic effect were examined. A flexible container with 1/50 scale factor was adopted in the experimental tests, including construction, instrumentation, and determination of the results of dynamic tests on a shaking table. Horizontal face displacements and accelerations were analysed to determine the influence of the container boundary on the performance of the soil. The outputs results show that the flexible boundary container allows more displacement and larger accelerations. The soil in a rigid wall container cannot deform as similar as the soil in the real field does. Therefore, the response of flexible container tested is believed to be more reliable for soil boundary than that in the rigid container.Keywords: Soil, boundary, seismic, earthquake, ground motion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11021001 High Accuracy Eigensolutions in Elasticity for Boundary Integral Equations by Nyström Method
Authors: Pan Cheng, Jin Huang, Guang Zeng
Abstract:
Elastic boundary eigensolution problems are converted into boundary integral equations by potential theory. The kernels of the boundary integral equations have both the logarithmic and Hilbert singularity simultaneously. We present the mechanical quadrature methods for solving eigensolutions of the boundary integral equations by dealing with two kinds of singularities at the same time. The methods possess high accuracy O(h3) and low computing complexity. The convergence and stability are proved based on Anselone-s collective compact theory. Bases on the asymptotic error expansion with odd powers, we can greatly improve the accuracy of the approximation, and also derive a posteriori error estimate which can be used for constructing self-adaptive algorithms. The efficiency of the algorithms are illustrated by numerical examples.Keywords: boundary integral equation, extrapolation algorithm, aposteriori error estimate, elasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36451000 Hydrodynamic Modeling of Infinite Reservoir using Finite Element Method
Authors: M. A. Ghorbani, M. Pasbani Khiavi
Abstract:
In this paper, the dam-reservoir interaction is analyzed using a finite element approach. The fluid is assumed to be incompressible, irrotational and inviscid. The assumed boundary conditions are that the interface of the dam and reservoir is vertical and the bottom of reservoir is rigid and horizontal. The governing equation for these boundary conditions is implemented in the developed finite element code considering the horizontal and vertical earthquake components. The weighted residual standard Galerkin finite element technique with 8-node elements is used to discretize the equation that produces a symmetric matrix equation for the damreservoir system. A new boundary condition is proposed for truncating surface of unbounded fluid domain to show the energy dissipation in the reservoir, through radiation in the infinite upstream direction. The Sommerfeld-s and perfect damping boundary conditions are also implemented for a truncated boundary to compare with the proposed far end boundary. The results are compared with an analytical solution to demonstrate the accuracy of the proposed formulation and other truncated boundary conditions in modeling the hydrodynamic response of an infinite reservoir.Keywords: Reservoir, finite element, truncated boundary, hydrodynamic pressure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2306999 Fourier Galerkin Approach to Wave Equation with Absorbing Boundary Conditions
Authors: Alexandra Leukauf, Alexander Schirrer, Emir Talic
Abstract:
Numerical computation of wave propagation in a large domain usually requires significant computational effort. Hence, the considered domain must be truncated to a smaller domain of interest. In addition, special boundary conditions, which absorb the outward travelling waves, need to be implemented in order to describe the system domains correctly. In this work, the linear one dimensional wave equation is approximated by utilizing the Fourier Galerkin approach. Furthermore, the artificial boundaries are realized with absorbing boundary conditions. Within this work, a systematic work flow for setting up the wave problem, including the absorbing boundary conditions, is proposed. As a result, a convenient modal system description with an effective absorbing boundary formulation is established. Moreover, the truncated model shows high accuracy compared to the global domain.Keywords: Absorbing boundary conditions, boundary control, Fourier Galerkin approach, modal approach, wave equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888998 Image Processing on Geosynthetic Reinforced Layers to Evaluate Shear Strength and Variations of the Strain Profiles
Authors: S. K. Khosrowshahi, E. Güler
Abstract:
This study investigates the reinforcement function of geosynthetics on the shear strength and strain profile of sand. Conducting a series of simple shear tests, the shearing behavior of the samples under static and cyclic loads was evaluated. Three different types of geosynthetics including geotextile and geonets were used as the reinforcement materials. An image processing analysis based on the optical flow method was performed to measure the lateral displacements and estimate the shear strains. It is shown that besides improving the shear strength, the geosynthetic reinforcement leads a remarkable reduction on the shear strains. The improved layer reduces the required thickness of the soil layer to resist against shear stresses. Consequently, the geosynthetic reinforcement can be considered as a proper approach for the sustainable designs, especially in the projects with huge amount of geotechnical applications like subgrade of the pavements, roadways, and railways.Keywords: Image processing, soil reinforcement, geosynthetics, simple shear test, shear strain profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1045997 Natural Convection Boundary Layer Flow of a Viscoelastic Fluid on Solid Sphere with Newtonian Heating
Authors: A.R.M. Kasim, N.F. Mohammad, Aurangzaib, S. Sharidan
Abstract:
The present paper considers the steady free convection boundary layer flow of a viscoelastic fluid on solid sphere with Newtonian heating. The boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. Thus, the augmentation an extra boundary condition is needed to perform the numerical computational. The governing boundary layer equations are first transformed into non-dimensional form by using special dimensionless group and then solved by using an implicit finite difference scheme. The results are displayed graphically to illustrate the influence of viscoelastic K and Prandtl Number Pr parameters on skin friction, heat transfer, velocity profiles and temperature profiles. Present results are compared with the published papers and are found to concur very well.Keywords: boundary layer flow, Newtonian heating, sphere, viscoelastic fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408996 Thermosolutal MHD Mixed Marangoni Convective Boundary Layers in the Presence of Suction or Injection
Authors: Noraini Ahmad, Seripah Awang Kechil, Norma Mohd Basir
Abstract:
The steady coupled dissipative layers, called Marangoni mixed convection boundary layers, in the presence of a magnetic field and solute concentration that are formed along the surface of two immiscible fluids with uniform suction or injection effects is examined. The similarity boundary layer equations are solved numerically using the Runge-Kutta Fehlberg with shooting technique. The Marangoni, buoyancy and external pressure gradient effects that are generated in mixed convection boundary layer flow are assessed. The velocity, temperature and concentration boundary layers thickness decrease with the increase of the magnetic field strength and the injection to suction. For buoyancy-opposed flow, the Marangoni mixed convection parameter enhances the velocity boundary layer but decreases the temperature and concentration boundary layers. However, for the buoyancy-assisted flow, the Marangoni mixed convection parameter decelerates the velocity but increases the temperature and concentration boundary layers.Keywords: Magnetic field, mixed Marangoni convection, similarity boundary layers, solute concentration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882995 Influence of Flexural Reinforcement on the Shear Strength of RC Beams without Stirrups
Authors: Guray Arslan, Riza S. O. Keskin
Abstract:
Numerical investigations were conducted to study the influence of flexural reinforcement ratio on the diagonal cracking strength and ultimate shear strength of reinforced concrete (RC) beams without stirrups. Three-dimensional nonlinear finite element analyses (FEAs) of the beams with flexural reinforcement ratios ranging from 0.58% to 2.20% subjected to a mid-span concentrated load were carried out. It is observed that the load-deflection and loadstrain curves obtained from the numerical analyses agree with those obtained from the experiments. It is concluded that flexural reinforcement ratio has a significant effect on the shear strength and deflection capacity of RC beams without stirrups. The predictions of diagonal cracking strength and ultimate shear strength of beams obtained by using the equations defined by a number of codes and researchers are compared with each other and with the experimental values.Keywords: Finite element, flexural reinforcement, reinforced concrete beam, shear strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2695994 Experimental and Numerical Investigation of Air Ejector with Diffuser with Boundary Layer Suction
Authors: Vaclav Dvorak
Abstract:
The article deals with experimental and numerical investigation of axi-symmetric subsonic air to air ejector with diffuser adapted for boundary layer suction. The diffuser, which is placed behind the mixing chamber of the ejector, has high divergence angle and therefore low efficiency. To increase the efficiency, the diffuser is equipped with slot enabling boundary layer suction. The effect of boundary layer suction on flow in ejector, static pressure distribution on the mixing chamber wall and characteristic were measured and studied numerically. Both diffuser and ejector efficiency were evaluated. The diffuser efficiency was increased, however, the efficiency of ejector itself remained low.Keywords: Air ejector, boundary layer suction, CFD, diffuser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2815993 Solution of Two-Point Nonlinear Boundary Problems Using Taylor Series Approximation and the Ying Buzu Shu Algorithm
Authors: U. C. Amadi, N. A. Udoh
Abstract:
One of the major challenges faced in solving initial and boundary problems is how to find approximate solutions with minimal deviation from the exact solution without so much rigor and complications. The Taylor series method provides a simple way of obtaining an infinite series which converges to the exact solution for initial value problems and this method of solution is somewhat limited for a two point boundary problem since the infinite series has to be truncated to include the boundary conditions. In this paper, the Ying Buzu Shu algorithm is used to solve a two point boundary nonlinear diffusion problem for the fourth and sixth order solution and compare their relative error and rate of convergence to the exact solution.
Keywords: Ying Buzu Shu, nonlinear boundary problem, Taylor series algorithm, infinite series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 455992 Assessment of Using Wastage Steel as Welded Reinforcement
Authors: Muhammad Murtaza Nasir, Safdar Abbas Zaidi, Kamran Khan
Abstract:
This work is carried out to evaluate the possibility of using to-be-wasted steel as reinforcement after welding together pieces of reinforcing steel bars, left over during construction activities. Tests were performed on a total of nine samples. These were made by welding pieces of reinforcing steel bars purchased from the local scrap steel market. The samples were tested in uniaxial tension using a universal testing machine (UTM). It was found that the failure of the welded bars is governed by the thickness of the weld. It is concluded that suitable design of the weld is essential for achieving the desired level of ductility/elongation of these bars, if they are to be used as conventional reinforcement in reinforced concrete members.
Keywords: Ductility/elongation, low cost housing, reinforced concrete, welding, welded reinforcement, wastage steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789991 Efficiency of Geocell Reinforcement for Using in Expanded Polystyrene Embankments via Numerical Analysis
Authors: S. N. Moghaddas Tafreshi, S. M. Amin Ghotbi
Abstract:
This paper presents a numerical study for investigating the effectiveness of geocell reinforcement in reducing pressure and settlement over EPS geofoam blocks in road embankments. A 3-D FEM model of soil and geofoam was created in ABAQUS, and geocell was also modeled realistically using membrane elements. The accuracy of the model was tested by comparing its results with previous works. Sensitivity analyses showed that reinforcing the soil cover with geocell has a significant influence on the reduction of imposed stresses over geofoam and consequently decreasing its deformation.
Keywords: EPS geofoam, road embankments, geocell, reinforcement, lightweight fill.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313990 Comparison of Numerical and Laboratory Results of Pull-out Test on Soil–Geogrid Interactions
Authors: Parisa Ahmadi Oliaei, Seyed Abolhassan Naeini
Abstract:
The knowledge of soil–reinforcement interaction parameters is particularly important in the design of reinforced soil structures. The pull-out test is one of the most widely used tests in this regard. The results of tensile tests may be very sensitive to boundary conditions, and more research is needed for a better understanding of the pull-out response of reinforcement, so numerical analysis using the finite element method can be a useful tool for the understanding of the pull-out response of soil-geogrid interaction. The main objective of the present study is to compare the numerical and experimental results of a pull-out test on geogrid-reinforced sandy soils interactions. Plaxis 2D finite element software is used for simulation. In the present study, the pull-out test modeling has been done on sandy soil. The effect of geogrid hardness was also investigated by considering two different types of geogrids. The numerical results curve had a good agreement with the pull-out laboratory results.
Keywords: Plaxis, pull-out test, sand, soil-geogrid interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 432989 Variational Iteration Method for the Solution of Boundary Value Problems
Authors: Olayiwola M.O., Gbolagade A .W., Akinpelu F. O.
Abstract:
In this work, we present a reliable framework to solve boundary value problems with particular significance in solid mechanics. These problems are used as mathematical models in deformation of beams. The algorithm rests mainly on a relatively new technique, the Variational Iteration Method. Some examples are given to confirm the efficiency and the accuracy of the method.
Keywords: Variational iteration method, boundary value problems, convergence, restricted variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102988 Sliding Mode Control with Fuzzy Boundary Layer to Air-Air Interception Problem
Authors: Mustafa Resa Becan
Abstract:
The performance of a type of fuzzy sliding mode control is researched by considering the nonlinear characteristic of a missile-target interception problem to obtain a robust interception process. The variable boundary layer by using fuzzy logic is proposed to reduce the chattering around the switching surface then is applied to the interception model which was derived. The performances of the sliding mode control with constant and fuzzy boundary layer are compared at the end of the study and the results are evaluated.
Keywords: Sliding mode control, fuzzy, boundary layer, interception problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010987 An Asymptotic Solution for the Free Boundary Parabolic Equations
Authors: Hsuan-Ku Liu, Ming Long Liu
Abstract:
In this paper, we investigate the solution of a two dimensional parabolic free boundary problem. The free boundary of this problem is modelled as a nonlinear integral equation (IE). For this integral equation, we propose an asymptotic solution as time is near to maturity and develop an integral iterative method. The computational results reveal that our asymptotic solution is very close to the numerical solution as time is near to maturity.
Keywords: Integral equation, asymptotic solution, free boundary problem, American exchange option.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473986 Investigation on Flexural Behavior of Non-Crimp 3D Orthogonal Weave Carbon Composite Reinforcement
Authors: Sh. Minapoor, S. Ajeli
Abstract:
Non-crimp three-dimensional (3D) orthogonal carbon fabrics are one of the useful textiles reinforcements in composites. In this paper, flexural and bending properties of a carbon non-crimp 3D orthogonal woven reinforcement are experimentally investigated. The present study is focused on the understanding and measurement of the main bending parameters including flexural stress, strain, and modulus. For this purpose, the three-point bending test method is used and the load-displacement curves are analyzed. The influence of some weave's parameters such as yarn type, geometry of structure, and fiber volume fraction on bending behavior of non-crimp 3D orthogonal carbon fabric is investigated. The obtained results also represent a dataset for the simulation of flexural behavior of non-crimp 3D orthogonal weave carbon composite reinforcement.Keywords: Non-crimp 3D orthogonal weave, carbon composite reinforcement, flexural behavior, three-point bending.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781985 Laboratory Evaluation of Geogrids Used for Stabilizing Soft Subgrades
Authors: Magdi M. E. Zumrawi, Nehla Mansour
Abstract:
This paper aims to assess the efficiency of using geogrid reinforcement for subgrade stabilization. The literature of applying geogrid reinforcement technique for pavements built on soft subgrades and the previous experiences were reviewed. Laboratory tests were conducted on soil reinforced with geogrids in one or several layers. The soil specimens were compacted in four layers with or without geogrid sheets. The California Bearing Ratio (CBR) test, in soaking condition, was performed on natural soil and soil-geogrid specimens. The test results revealed that the CBR value is much affected by the geogrid sheet location and the number of sheets used in the soil specimen. When a geogrid sheet was placed at the 1st layer of the soil, there was an increment of 26% in the CBR value. Moreover, the CBR value was significantly increased by 62% when geogrid sheets were placed at all four layers. The high CBR value is attributed to interface friction and interlock involved in the geogrid/ soil interactions. It could be concluded that geogrid reinforcement is successful and more economical technique.Keywords: Geogrid, reinforcement, stabilization, subgrade.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2801984 Impact of Rebar-Reinforcement on Flexural Response of Shear-Critical Ultrahigh-Performance Concrete Beams
Authors: Yassir M. Abbas, Mohammad Iqbal Khan, Galal Fares
Abstract:
In the present work, the structural responses of 12 ultra-high-performance concrete (UHPC) beams to four-point loading conditions were experimentally and analytically studied. The inclusion of a fibrous system in the UHPC material increased its compressive and flexural strengths by 31.5% and 237.8%, respectively. Based on the analysis of the load-deflection curves of UHPC beams, it was found that UHPC beams with a low reinforcement ratio are prone to sudden brittle failure. This failure behavior was changed, however, to a ductile one in beams with medium to high ratios. The implication is that improving UHPC beam tensile reinforcement could result in a higher level of safety. More reinforcement bars also enabled the load-deflection behavior to be improved, particularly after yielding.
Keywords: Ultra-high-performance concrete, moment capacity, RC beams, hybrid fiber, ductility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132983 Comparison Results of Two-point Fuzzy Boundary Value Problems
Authors: Hsuan-Ku Liu
Abstract:
This paper investigates the solutions of two-point fuzzy boundary value problems as the form x = f(t, x(t)), x(0) = A and x(l) = B, where A and B are fuzzy numbers. There are four different solutions for the problems when the lateral type of H-derivative is employed to solve the problems. As f(t, x) is a monotone function of x, these four solutions are reduced to two different solutions. As f(t, x(t)) = λx(t) or f(t, x(t)) = -λx(t), solutions and several comparison results are presented to indicate advantages of each solution.
Keywords: Fuzzy derivative, lateral type of H-derivative, fuzzy differential equations, fuzzy boundary value problems, boundary value problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532