Search results for: Spherical spectrum
562 Spherical Spectrum Properties of Quaternionic Operators
Authors: Yiwan Guo, Fahui Zhai
Abstract:
In this paper, the similarity invariant and the upper semi-continuity of spherical spectrum, and the spherical spectrum properties for infinite direct sums of quaternionic operators are characterized, respectively. As an application of some results established, a concrete example about the computation of the spherical spectrum of a compact quaternionic operator with form of infinite direct sums of quaternionic matrices is also given.Keywords: Spherical spectrum, Quaternionic operator, Upper semi-continuity, Direct sum of operators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420561 Estimating an Optimal Neighborhood Size in the Spherical Self-Organizing Feature Map
Authors: Alexandros Leontitsis, Archana P. Sangole
Abstract:
This article presents a short discussion on optimum neighborhood size selection in a spherical selforganizing feature map (SOFM). A majority of the literature on the SOFMs have addressed the issue of selecting optimal learning parameters in the case of Cartesian topology SOFMs. However, the use of a Spherical SOFM suggested that the learning aspects of Cartesian topology SOFM are not directly translated. This article presents an approach on how to estimate the neighborhood size of a spherical SOFM based on the data. It adopts the L-curve criterion, previously suggested for choosing the regularization parameter on problems of linear equations where their right-hand-side is contaminated with noise. Simulation results are presented on two artificial 4D data sets of the coupled Hénon-Ikeda map.Keywords: Parameter estimation, self-organizing feature maps, spherical topology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518560 Gimbal Structure for the Design of 3D Flywheel System
Authors: Cheng-En Tsai, Chung-Chun Hsiao, Fu-Yuan Chang, Liang-Lun Lan, Jia-Ying Tu
Abstract:
New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.Keywords: Gimbal, spherical robot, gyroscope, Lagrangian formulation, flyball.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3055559 Gimbal Structure for the Design of 3D Flywheel System
Authors: Cheng-En Tsai, Chung-Chun Hsiao, Fu-Yuan Chang, Liang-Lun Lan, Jia-Ying Tu
Abstract:
New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.Keywords: Gimbal, spherical robot, gyroscope, Lagrangian formulation, flyball.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077558 Comparison of Regime Transition between Ellipsoidal and Spherical Particle Assemblies in a Model Shear Cell
Authors: M. Hossain, H. P. Zhu, A. B. Yu
Abstract:
This paper presents a numerical investigation of regime transition of flow of ellipsoidal particles and a comparison with that of spherical particle assembly. Particle assemblies constituting spherical and ellipsoidal particle of 2.5:1 aspect ratio are examined at separate instances in similar flow conditions in a shear cell model that is numerically developed based on the discrete element method. Correlations among elastically scaled stress, kinetically scaled stress, coordination number and volume fraction are investigated, and show important similarities and differences for the spherical and ellipsoidal particle assemblies. In particular, volume fractions at points of regime transition are identified for both types of particles. It is found that compared with spherical particle assembly, ellipsoidal particle assembly has higher volume fraction for the quasistatic to intermediate regime transition and lower volume fraction for the intermediate to inertial regime transition. Finally, the relationship between coordination number and volume fraction shows strikingly distinct features for the two cases, suggesting that different from spherical particles, the effect of the shear rate on the coordination number is not significant for ellipsoidal particles. This work provides a glimpse of currently running work on one of the most attractive scopes of research in this field and has a wide prospect in understanding rheology of more complex shaped particles in light of the strong basis of simpler spherical particle rheology.Keywords: Discrete element method, granular rheology, non-spherical particles, regime transition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511557 3D Objects Indexing with a Direct and Analytical Method for Calculating the Spherical Harmonics Coefficients
Authors: S. Hellam, Y. Oulahrir, F. El Mounchid, A. Sadiq, S. Mbarki
Abstract:
In this paper, we propose a new method for threedimensional object indexing based on D.A.M.C-S.H.C descriptor (Direct and Analytical Method for Calculating the Spherical Harmonics Coefficients). For this end, we propose a direct calculation of the coefficients of spherical harmonics with perfect precision. The aims of the method are to minimize, the processing time on the 3D objects database and the searching time of similar objects to a request object. Firstly we start by defining the new descriptor using a new division of 3-D object in a sphere. Then we define a new distance which will be tested and prove his efficiency in the search for similar objects in the database in which we have objects with very various and important size.Keywords: 3D Object indexing, 3D shape descriptor, spherical harmonic, 3D Object similarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476556 Performance Evaluation of Qos Parameters in Cognitive Radio Using Genetic Algorithm
Authors: Maninder Jeet Kaur, Moin Uddin, Harsh K. Verma
Abstract:
The efficient use of available licensed spectrum is becoming more and more critical with increasing demand and usage of the radio spectrum. This paper shows how the use of spectrum as well as dynamic spectrum management can be effectively managed and spectrum allocation schemes in the wireless communication systems be implemented and used, in future. This paper would be an attempt towards better utilization of the spectrum. This research will focus on the decision-making process mainly, with an assumption that the radio environment has already been sensed and the QoS requirements for the application have been specified either by the sensed radio environment or by the secondary user itself. We identify and study the characteristic parameters of Cognitive Radio and use Genetic Algorithm for spectrum allocation. Performance evaluation is done using MATLAB toolboxes.Keywords: Cognitive Radio, Fitness Functions, Fuzzy Logic, Quality of Service (QoS)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2413555 3D Objects Indexing Using Spherical Harmonic for Optimum Measurement Similarity
Authors: S. Hellam, Y. Oulahrir, F. El Mounchid, A. Sadiq, S. Mbarki
Abstract:
In this paper, we propose a method for three-dimensional (3-D)-model indexing based on defining a new descriptor, which we call new descriptor using spherical harmonics. The purpose of the method is to minimize, the processing time on the database of objects models and the searching time of similar objects to request object. Firstly we start by defining the new descriptor using a new division of 3-D object in a sphere. Then we define a new distance which will be used in the search for similar objects in the database.
Keywords: 3D indexation, spherical harmonic, similarity of 3D objects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2230554 Wavelet-Based Spectrum Sensing for Cognitive Radios using Hilbert Transform
Authors: Shiann-Shiun Jeng, Jia-Ming Chen, Hong-Zong Lin, Chen-Wan Tsung
Abstract:
For cognitive radio networks, there is a major spectrum sensing problem, i.e. dynamic spectrum management. It is an important issue to sense and identify the spectrum holes in cognitive radio networks. The first-order derivative scheme is usually used to detect the edge of the spectrum. In this paper, a novel spectrum sensing technique for cognitive radio is presented. The proposed algorithm offers efficient edge detection. Then, simulation results show the performance of the first-order derivative scheme and the proposed scheme and depict that the proposed scheme obtains better performance than does the first-order derivative scheme.Keywords: cognitive radio, Spectrum Sensing, wavelet, edgedetection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2932553 Linear Maps That Preserve Left Spectrum of Diagonal Quaternionic Matrices
Authors: Geng Yuan, Yiwan Guo, Fahui Zhai, Shuhua Zhang
Abstract:
In this paper, we discuss some properties of left spectrum and give the representation of linear preserver map the left spectrum of diagonal quaternionic matrices.Keywords: Quaternionic matrix, left spectrum, linear preserver map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1077552 A Novel Slip Correction Factor for Spherical Aerosol Particles
Authors: Abouzar Moshfegh, Mehrzad Shams, Goodarz Ahmadi, Reza Ebrahimi
Abstract:
A 3D simulation study for an incompressible slip flow around a spherical aerosol particle was performed. The full Navier-Stokes equations were solved and the velocity jump at the gas-particle interface was treated numerically by imposition of the slip boundary condition. Analytical solution to the Stokesian slip flow past a spherical particle was used as a benchmark for code verification, and excellent agreement was achieved. The Simulation results showed that in addition to the Knudsen number, the Reynolds number affects the slip correction factor. Thus, the Cunningham-based slip corrections must be augmented by the inclusion of the effect of Reynolds number for application to Lagrangian tracking of fine particles. A new expression for the slip correction factor as a function of both Knudsen number and Reynolds number was developed.Keywords: CFD, Cunningham correction, Slip correction factor, Spherical aerosol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3540551 2D Spherical Spaces for Face Relighting under Harsh Illumination
Authors: Amr Almaddah, Sadi Vural, Yasushi Mae, Kenichi Ohara, Tatsuo Arai
Abstract:
In this paper, we propose a robust face relighting technique by using spherical space properties. The proposed method is done for reducing the illumination effects on face recognition. Given a single 2D face image, we relight the face object by extracting the nine spherical harmonic bases and the face spherical illumination coefficients. First, an internal training illumination database is generated by computing face albedo and face normal from 2D images under different lighting conditions. Based on the generated database, we analyze the target face pixels and compare them with the training bootstrap by using pre-generated tiles. In this work, practical real time processing speed and small image size were considered when designing the framework. In contrast to other works, our technique requires no 3D face models for the training process and takes a single 2D image as an input. Experimental results on publicly available databases show that the proposed technique works well under severe lighting conditions with significant improvements on the face recognition rates.Keywords: Face synthesis and recognition, Face illumination recovery, 2D spherical spaces, Vision for graphics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753550 Two Degree of Freedom Spherical Mechanism Design for Exact Sun Tracking
Authors: Osman Acar
Abstract:
Sun tracking systems are the systems following the sun ray by a right angle or by predetermined certain angle. In this study, we used theoretical trajectory of sun for latitude of central Anatolia in Turkey. A two degree of freedom spherical mechanism was designed to have a large workspace able to follow the sun's theoretical motion by the right angle during the whole year. An inverse kinematic analysis was generated to find the positions of mechanism links for the predicted trajectory. Force and torque analysis were shown for the first day of the year.
Keywords: Sun tracking, theoretical sun trajectory, spherical mechanism, inverse kinematic analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411549 Fast Wavelength Calibration Algorithm for Optical Spectrum Analyzers
Authors: Thomas Fuhrmann
Abstract:
In this paper an algorithm for fast wavelength calibration of Optical Spectrum Analyzers (OSAs) using low power reference gas spectra is proposed. In existing OSAs a reference spectrum with low noise for precise detection of the reference extreme values is needed. To generate this spectrum costly hardware with high optical power is necessary. With this new wavelength calibration algorithm it is possible to use a noisy reference spectrum and therefore hardware costs can be cut. With this algorithm the reference spectrum is filtered and the key information is extracted by segmenting and finding the local minima and maxima. Afterwards slope and offset of a linear correction function for best matching the measured and theoretical spectra are found by correlating the measured with the stored minima. With this algorithm a reliable wavelength referencing of an OSA can be implemented on a microcontroller with a calculation time of less than one second.
Keywords: correlation, gas reference, optical spectrum analyzer, wavelength calibration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412548 Performance of Nakagami Fading Channel over Energy Detection Based Spectrum Sensing
Authors: M. Ranjeeth, S. Anuradha
Abstract:
Spectrum sensing is the main feature of cognitive radio technology. Spectrum sensing gives an idea of detecting the presence of the primary users in a licensed spectrum. In this paper we compare the theoretical results of detection probability of different fading environments like Rayleigh, Rician, Nakagami-m fading channels with the simulation results using energy detection based spectrum sensing. The numerical results are plotted as Pf Vs Pd for different SNR values, fading parameters. It is observed that Nakagami fading channel performance is better than other fading channels by using energy detection in spectrum sensing. A MATLAB simulation test bench has been implemented to know the performance of energy detection in different fading channel environment.
Keywords: Spectrum sensing, Energy detection, fading channels, Probability of detection, probability of false alarm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3099547 Development of a Three-Dimensional-Flywheel Robotic System
Authors: Chung-Chun Hsiao, Yu-Kai, Ting, Kai-Yuan Liu, Pang-Wei Yen, Jia-Ying Tu
Abstract:
In this paper, a new design of spherical robotic system based on the concepts of gimbal structure and gyro dynamics is presented. Robots equipped with multiple wheels and complex steering mechanics may increase the weight and degrade the energy transmission efficiency. In addition, the wheeled and legged robots are relatively vulnerable to lateral impact and lack of lateral mobility. Therefore, the proposed robotic design uses a spherical shell as the main body for ground locomotion, instead of using wheel devices. Three spherical shells are structured in a similar way to a gimbal device and rotate like a gyro system. The design and mechanism of the proposed robotic system is introduced. In addition, preliminary results of the dynamic model based on the principles of planar rigid body kinematics and Lagrangian equation are included. Simulation results and rig construction are presented to verify the concepts.
Keywords: Gyro, gimbal, Lagrange equation, spherical robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059546 Production of Spherical Cementite within Bainitic Matrix Microstructures in High Carbon Powder Metallurgy Steels
Authors: O. Altuntaş, A. Güral
Abstract:
The hardness-microstructure relationships of spherical cementite in bainitic matrix obtained by a different heat treatment cycles carried out to high carbon powder metallurgy (P/M) steel were investigated. For this purpose, 1.5 wt.% natural graphite powder admixed in atomized iron powders and the mixed powders were compacted under 700 MPa at room temperature and then sintered at 1150 °C under a protective argon gas atmosphere. The densities of the green and sintered samples were measured via the Archimedes method. A density of 7.4 g/cm3 was obtained after sintering and a density of 94% was achieved. The sintered specimens having primary cementite plus lamellar pearlitic structures were fully quenched from 950 °C temperature and then over-tempered at 705 °C temperature for 60 minutes to produce spherical-fine cementite particles in the ferritic matrix. After by this treatment, these samples annealed at 735 °C temperature for 3 minutes were austempered at 300 °C salt bath for a period of 1 to 5 hours. As a result of this process, it could be able to produced spherical cementite particle in the bainitic matrix. This microstructure was designed to improve wear and toughness of P/M steels. The microstructures were characterized and analyzed by SEM and micro and macro hardness.
Keywords: Powder metallurgy steel, heat treatment, bainite, spherical cementite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994545 Use of Detectors Technology for Gamma Ray Issued from Radioactive Isotopes and its Impact on Knowledge of Behavior of the Stationary Case of Solid Phase Holdup
Authors: Abbas Ali Mahmood Karwi
Abstract:
For gamma radiation detection, assemblies having scintillation crystals and a photomultiplier tube, also there is a preamplifier connected to the detector because the signals from photomultiplier tube are of small amplitude. After pre-amplification the signals are sent to the amplifier and then to the multichannel analyser. The multichannel analyser sorts all incoming electrical signals according to their amplitudes and sorts the detected photons in channels covering small energy intervals. The energy range of each channel depends on the gain settings of the multichannel analyser and the high voltage across the photomultiplier tube. The exit spectrum data of the two main isotopes studied ,putting data in biomass program ,process it by Matlab program to get the solid holdup image (solid spherical nuclear fuel)Keywords: Multichannel analyzer, Spectrum, Energies, Fluids holdup, Image
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731544 Modern Spectrum Sensing Techniques for Cognitive Radio Networks: Practical Implementation and Performance Evaluation
Authors: Antoni Ivanov, Nikolay Dandanov, Nicole Christoff, Vladimir Poulkov
Abstract:
Spectrum underutilization has made cognitive radio a promising technology both for current and future telecommunications. This is due to the ability to exploit the unused spectrum in the bands dedicated to other wireless communication systems, and thus, increase their occupancy. The essential function, which allows the cognitive radio device to perceive the occupancy of the spectrum, is spectrum sensing. In this paper, the performance of modern adaptations of the four most widely used spectrum sensing techniques namely, energy detection (ED), cyclostationary feature detection (CSFD), matched filter (MF) and eigenvalues-based detection (EBD) is compared. The implementation has been accomplished through the PlutoSDR hardware platform and the GNU Radio software package in very low Signal-to-Noise Ratio (SNR) conditions. The optimal detection performance of the examined methods in a realistic implementation-oriented model is found for the common relevant parameters (number of observed samples, sensing time and required probability of false alarm).Keywords: Cognitive radio, dynamic spectrum access, GNU Radio, spectrum sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1166543 An Implicit Representation of Spherical Product for Increasing the Shape Variety of Super-quadrics in Implicit Surface Modeling
Authors: Pi-Chung Hsu
Abstract:
Super-quadrics can represent a set of implicit surfaces, which can be used furthermore as primitive surfaces to construct a complex object via Boolean set operations in implicit surface modeling. In fact, super-quadrics were developed to create a parametric surface by performing spherical product on two parametric curves and some of the resulting parametric surfaces were also represented as implicit surfaces. However, because not every parametric curve can be redefined implicitly, this causes only implicit super-elliptic and super-hyperbolic curves are applied to perform spherical product and so only implicit super-ellipsoids and hyperboloids are developed in super-quadrics. To create implicit surfaces with more diverse shapes than super-quadrics, this paper proposes an implicit representation of spherical product, which performs spherical product on two implicit curves like super-quadrics do. By means of the implicit representation, many new implicit curves such as polygonal, star-shaped and rose-shaped curves can be used to develop new implicit surfaces with a greater variety of shapes than super-quadrics, such as polyhedrons, hyper-ellipsoids, superhyperboloids and hyper-toroids containing star-shaped and roseshaped major and minor circles. Besides, the newly developed implicit surfaces can also be used to define new primitive implicit surfaces for constructing a more complex implicit surface in implicit surface modeling.Keywords: Implicit surfaces, Soft objects, Super-quadrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473542 Comparison of Parameterization Methods in Recognizing Spoken Arabic Digits
Authors: Ali Ganoun
Abstract:
This paper proposes evaluation of sound parameterization methods in recognizing some spoken Arabic words, namely digits from zero to nine. Each isolated spoken word is represented by a single template based on a specific recognition feature, and the recognition is based on the Euclidean distance from those templates. The performance analysis of recognition is based on four parameterization features: the Burg Spectrum Analysis, the Walsh Spectrum Analysis, the Thomson Multitaper Spectrum Analysis and the Mel Frequency Cepstral Coefficients (MFCC) features. The main aim of this paper was to compare, analyze, and discuss the outcomes of spoken Arabic digits recognition systems based on the selected recognition features. The results acqired confirm that the use of MFCC features is a very promising method in recognizing Spoken Arabic digits.
Keywords: Speech Recognition, Spectrum Analysis, Burg Spectrum, Walsh Spectrum Analysis, Thomson Multitaper Spectrum, MFCC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592541 Analysis of Gamma-Ray Spectra Using Levenberg-Marquardt Method
Authors: A. H. Fatah, A. H. Ahmed
Abstract:
Levenberg-Marquardt method (LM) was proposed to be applied as a non-linear least-square fitting in the analysis of a natural gamma-ray spectrum that was taken by the Hp (Ge) detector. The Gaussian function that composed of three components, main Gaussian, a step background function and tailing function in the lowenergy side, has been suggested to describe each of the y-ray lines mathematically in the spectrum. The whole spectrum has been analyzed by determining the energy and relative intensity for the strong y-ray lines.Keywords: Gamma-Ray, Spectrum analysis, Non-linear leastsquare fitting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410540 Comparison of Response Surface Designs in a Spherical Region
Authors: Boonorm Chomtee, John J. Borkowski
Abstract:
The objective of the research is to study and compare response surface designs: Central composite designs (CCD), Box- Behnken designs (BBD), Small composite designs (SCD), Hybrid designs, and Uniform shell designs (USD) over sets of reduced models when the design is in a spherical region for 3 and 4 design variables. The two optimality criteria ( D and G ) are considered which larger values imply a better design. The comparison of design optimality criteria of the response surface designs across the full second order model and sets of reduced models for 3 and 4 factors based on the two criteria are presented.Keywords: design optimality criteria, reduced models, response surface design, spherical design region
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1259539 Monitoring of Spectrum Usage and Signal Identification Using Cognitive Radio
Authors: O. S. Omorogiuwa, E. J. Omozusi
Abstract:
The monitoring of spectrum usage and signal identification, using cognitive radio, is done to identify frequencies that are vacant for reuse. It has been established that ‘internet of things’ device uses secondary frequency which is free, thereby facing the challenge of interference from other users, where some primary frequencies are not being utilised. The design was done by analysing a specific frequency spectrum, checking if all the frequency stations that range from 87.5-108 MHz are presently being used in Benin City, Edo State, Nigeria. From the results, it was noticed that by using Software Defined Radio/Simulink, we were able to identify vacant frequencies in the range of frequency under consideration. Also, we were able to use the significance of energy detection threshold to reuse this vacant frequency spectrum, when the cognitive radio displays a zero output (that is decision H0), meaning that the channel is unoccupied. Hence, the analysis was able to find the spectrum hole and identify how it can be reused.
Keywords: Spectrum, interference, telecommunication, cognitive radio, frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 861538 Spread Spectrum Code Estimation by Genetic Algorithm
Authors: V. R. Asghari, M. Ardebilipour
Abstract:
In the context of spectrum surveillance, a method to recover the code of spread spectrum signal is presented, whereas the receiver has no knowledge of the transmitter-s spreading sequence. The approach is based on a genetic algorithm (GA), which is forced to model the received signal. Genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems. Experimental results show that the method provides a good estimation, even when the signal power is below the noise power.Keywords: Code estimation, genetic algorithms, spread spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570537 K-Means for Spherical Clusters with Large Variance in Sizes
Authors: A. M. Fahim, G. Saake, A. M. Salem, F. A. Torkey, M. A. Ramadan
Abstract:
Data clustering is an important data exploration technique with many applications in data mining. The k-means algorithm is well known for its efficiency in clustering large data sets. However, this algorithm is suitable for spherical shaped clusters of similar sizes and densities. The quality of the resulting clusters decreases when the data set contains spherical shaped with large variance in sizes. In this paper, we introduce a competent procedure to overcome this problem. The proposed method is based on shifting the center of the large cluster toward the small cluster, and recomputing the membership of small cluster points, the experimental results reveal that the proposed algorithm produces satisfactory results.Keywords: K-Means, Data Clustering, Cluster Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3280536 Reliability Factors Based Fuzzy Logic Scheme for Spectrum Sensing
Authors: Tallataf Rasheed, Adnan Rashdi, Ahmad Naeem Akhtar
Abstract:
The accurate spectrum sensing is a fundamental requirement of dynamic spectrum access for deployment of Cognitive Radio Network (CRN). To acheive this requirement a Reliability factors based Fuzzy Logic (RFL) Scheme for Spectrum Sensing has been proposed in this paper. Cognitive Radio User (CRU) predicts the presence or absence of Primary User (PU) using energy detector and calculates the Reliability factors which are SNR of sensing node, threshold of energy detector and decision difference of each node with other nodes in a cooperative spectrum sensing environment. Then the decision of energy detector is combined with Reliability factors of sensing node using Fuzzy Logic. These Reliability Factors used in RFL Scheme describes the reliability of decision made by a CRU to improve the local spectrum sensing. This Fuzzy combining scheme provides the accuracy of decision made by sensornode. The simulation results have shown that the proposed technique provide better PU detection probability than existing Spectrum Sensing Techniques.Keywords: Cognitive radio, spectrum sensing, energy detector, reliability factors, fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1064535 Iterative Learning Control of Two Coupled Nonlinear Spherical Tanks
Authors: A. R. Tavakolpour-Saleh, A. R. Setoodeh, E. Ansari
Abstract:
This paper presents modeling and control of a highly nonlinear system including, non-interacting two spherical tanks using iterative learning control (ILC). Consequently, the objective of the paper is to control the liquid levels in the nonlinear tanks. First, a proportional-integral-derivative (PID) controller is applied to the plant model as a suitable benchmark for comparison. Then, dynamic responses of the control system corresponding to different step inputs are investigated. It is found that the conventional PID control is not able to fulfill the design criteria such as desired time constant. Consequently, an iterative learning controller is proposed to accurately control the coupled nonlinear tanks system. The simulation results clearly demonstrate the superiority of the presented ILC approach over the conventional PID controller to cope with the nonlinearities presented in the dynamic system.Keywords: Iterative learning control, spherical tanks, nonlinear system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1248534 JEWEL: A Cosmological Model Due to the Geometrical Displacement of Galactic Object Like Black, White and Worm Holes
Authors: Francesco Pia
Abstract:
Stellar objects such as black, white and worm holes can be the subject of speculative reasoning if represented in a simplified and geometric form in order to be able to move them; and the cosmological model is one of the most important contents in relation to speculations that can then open the way to other aspects that are not strictly speculative but practical, precisely in the Universe represented by us. In this work, thanks to the hypothesis of a very large number of black, white and worm holes present in our Universe, we imagine that they can be moved; it was therefore thought to align them on a plane and following a redistribution, and the boundaries of this plane were ideally joined, giving rise to a sphere that has the stellar objects examined radially distributed. Thanks to geometrical displacements of these stellar objects that do not make each one of them lose their functionality in the region in which they are located, at the end of the speculative process it is possible to highlight a spherical layer that allows a flow from the outside and inside this spherical shell allowing to relate to other external and internal spherical layers; this aspect that seems useful to describe the universe we live in, for example inside one of the spherical shells just described. The name "Jewel" was chosen because, imagining the speculative process present in this work at the end of steps, the cosmological model tends to be "luminous". This cosmological model includes, for each internal part of a generic layer, different and numerous moments of our universe thanks to an eternal flow inward. There are many aspects to explore, one of these is the connection between the outermost and the inside of the spherical layers.
Keywords: Black hole, cosmological model, cosmology, white hole.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 570533 An Adaptive Opportunistic Transmission for Unlicensed Spectrum Sharing in Heterogeneous Networks
Authors: Daehyoung Kim, Pervez Khan, Hoon Kim
Abstract:
Efficient utilization of spectrum resources is a fundamental issue of wireless communications due to its scarcity. To improve the efficiency of spectrum utilization, the spectrum sharing for unlicensed bands is being regarded as one of key technologies in the next generation wireless networks. A number of schemes such as Listen-Before-Talk(LBT) and carrier sensor adaptive transmission (CSAT) have been suggested from this aspect, but more efficient sharing schemes are required for improving spectrum utilization efficiency. This work considers an opportunistic transmission approach and a dynamic Contention Window (CW) adjustment scheme for LTE-U users sharing the unlicensed spectrum with Wi-Fi, in order to enhance the overall system throughput. The decision criteria for the dynamic adjustment of CW are based on the collision evaluation, derived from the collision probability of the system. The overall performance can be improved due to the adaptive adjustment of the CW. Simulation results show that our proposed scheme outperforms the Distributed Coordination Function (DCF) mechanism of IEEE 802.11 MAC.Keywords: Spectrum sharing, adaptive opportunistic transmission, unlicensed bands, heterogeneous networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374