
Abstract—In the context of spectrum surveillance, a method to 

recover the code of spread spectrum signal is presented, whereas the 

receiver has no knowledge of the transmitter’s spreading sequence. 

The approach is based on a genetic algorithm (GA), which is forced to 

model the received signal. Genetic algorithms (GAs) are well known 

for their robustness in solving complex optimization problems. 

Experimental results show that the method provides a good 

estimation, even when the signal power is below the noise power. 

Keywords—Code estimation, genetic algorithms, spread 

spectrum. 

I. INTRODUCTION

LTHOUGH spread spectrum communications were 

initially developed for military applications, they are now 

widely used for commercial ones, especially for code division 

multiple access (CDMA), or global positioning systems (GPS) 

[1]. They are mainly used to transmit at low power without 

interfered by jamming, to others users or to multi path 

propagation. The spread spectrum techniques are useful for 

secure transmitter, because the receiver has to know the 

sequence used by the transmitter to recover the transmitter 

data [2]–[3]. 

  Our purpose is to automatically determine the spreading 

sequence, whereas the receiver has no knowledge of the 

transmitter’s code. The code estimation performance of the 

proposed algorithm is examined by computer simulations. The 

performance measure of interest in this paper is the mean-

squared error (MSE) for the code estimation. 

  The paper is organized as follows. Section II describes the 

technique of direct sequence spread spectrum (DS-SS) and 

explains the difficulty to recover the data in an unfriendly 

context. Section III describes the system model used in this 

paper. Section IV describes the GAs used to implement our 

proposed code estimator. Our simulation results are presented 

in section V. Section VI concludes the paper.  

II. DS-SS TECHNIQUE

In order to spread the signal power over a broadband 

channel, the direct sequence spread spectrum (DS-SS) 

technique consists in multiplying the information signal with a 

periodic pseudo-noise sequence. 

Let us consider )(tb  the information signal 

)()( b

n

n nTtpbtb                                               (1) 

  Where 1nb  with equal probability and )(tp  is a 

rectangular pulse of duration bT .

  Let us note y , the PN sequence of length k ,

110 ,,, kyyyy                                                              (2) 

  The transmitter signal nŷ  is the product of both waveforms. 

If we consider a direct sequence spread spectrum system 

without noise, 

yby nn
ˆ                                                                               (3) 

  We assume the receiver knows this sequence and can 

despread the signal using a correlator 

kbyybyybyy nnnn ,,,ˆ                                 (4)  

According to the properties of PN sequences [4], the data 

information is then recovered. 

  However it becomes more challenging when the receiver 

doesn’t know exactly the code used by the transmitter. 

  Let us note y~  a sequence similar to y , but not exactly the 

same. Then using a correlator with y~ , we get 

yybyybyy nnn
~,~,~,ˆ                                            (5) 

  According to the properties of PN sequence,  yy ~,  is low 

[4] and then we do not recover the data information.                 

III. SYSTEM DESCRIPTION

Typically direct sequence spread spectrum systems use 

binary or quadrature phase shift keying (BPSK or QPSK) data 

modulation. Usually the PN sequence is a binary maximal 

length sequence or a Gold sequence [3].  

Although our methods can estimate different PN sequences, 

but here we consider a BPSK data modulation, spread by a 

Gold sequence. The baseband channel noise is assumed to be 

white, Gaussian and centered. 

An interesting method to estimate spreading code is 

proposed in [5]. It takes profit of blind identification 

techniques available for multiple FIR channels. In our method 

which is based on genetic algorithm, we use GA to estimate 

PN sequence.  
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IV. GENETIC ALGORITHM BASED CODE ESTIMATION

The efficiency of any global positioning technique can be 

measured in terms of two properties the so-called explorative 

property and the exploitative property [6]. Techniques that 

possess a high explorative property have a slower convergence 

rate and a higher computation complexity but they explore the 

entire space in order to locate the global optimum. Hence 

accuracy is always guaranteed. Techniques such as the family 

of hill-climbing methods possess a high exploitative property, 

and hence they offer fast convergence to an optimum of a 

given subspace. However, this optimum may not be the global 

optimum of the entire solution space. 

GAs [7]–[8] constitute robust global search and 

optimization strategies that can strike an attractive balance 

between exploitation and exploration. These algorithms were 

introduced by Holland [7], and their principles are based on 

the concept of natural evolution. Specially, GAs use a 

population of candidate solutions initially distributed 

randomly over the entire solution space. Hence, GAs are 

highly explorative at the beginning. By evolving this 

population of candidate solution over successive iterations or 

generations, through probabilistic transition operations based 

on Darwinian survival of the fittest, the GA quickly identifies 

and exploits the subspaces, in which the global optimum may 

be located, while at the same time maintains the exploration of 

other parts of the solution space. Hence, while the optimum 

solution is not always located, the GA has a low probability of 

curtailing the exploration in suboptimal, rather than optimal 

solutions.                              

A. Initialization 

Initialization of the GA is performed at the so-called 

( 1g )st generation for each new signaling interval, as seen 

in Fig. 1, by creating p  number of candidate solutions, or 

strings in GA parlance. The set of p  strings is known as a 

population, and p  is known as the population size. These 

strings represent the unknown variables of interest, which in 

this case are the estimated PN sequence. Hence, each string 

will contain k  elements corresponding to the length of the PN 

sequence. 

In order to attain a highly diversified search (exploration) at 

the beginning without knowing where the optimum solution 

may be located, it is desirable to distribute the candidate 

solutions randomly throughout the solution space. As seen in 

Fig. 1, the parameter t  is associated with the GA generation 

corresponding to the termination of the search. 

B. Evaluation 

Associated with the p th combination string is a so-called 

figure of merit — more commonly known in GAs as the 

fitness value — which has to be evaluated, as seen in Fig. 1. 

The fitness value, denote by kn yyf ~,ˆ  for Kk ,,1  is 

computed by substituting the elements of both the transmitted 

string and the k th candidate solution into the objective 

function or crosscorrelation of (5). 

Fig. 1. Flowchart depicting the structure of the proposed genetic algorithm 

used to code estimation.   

C. Selection 

The exploitative property of GA is derived from two GA 

operations referred to as selection and crossover [9]. The 

crossover operation will be explained in the next subsection. 

Let us refer to the elements that constitute the optimal solution 

as good elements. Any other elements are referred to as bad 

elements. For example, if the optimal solution constitutes a 

string containing all 1  elements, then any 1  in a string 

will be a good element while any 1 in the string will be a 

bad element. Intuitively, strings having a high fitness in the 

sense of (5) will contain more good elements and hence 

should be exploited further. At the same time, strings having a 

low fitness value should be discarded. As shown in Fig. 1, 

following the evaluation, our population of elements is sorted 

according to their fitness value. Then, the strings which are 

located at the top level of sorted population will be used for 
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subsequent exploitation and exploration of the solution space. 

D. Crossover 

Crossover applies to one or more parents and exchange 

genetic elements (good or bad) with equal probability )( cp

between two different strings, the so-called parents in GA 

parlance [9]. This will produce two new strings, which are 

referred to as offspring. These offspring will constitute the 

new population of the next generation. 

E. Mutation 

Mutation involves the modification of the value of each 

solution string with some small probability. The role of 

mutation is to prevent the premature convergence of the GA to 

suboptimal solutions [9]. If all the strings in the generation 

have a bad element at the same location, then further crossover 

processes between any of these strings will not be able to 

remove the bad element. In order to skip from this situation, 

the mutation operation is used. In Fig. 1, the mutation 

operation refers to the alteration of the value of each element 

in the offspring with a probability denoted by mp . In the case 

of the data string, the mutation process simply inverts the bit 

value of the element concerned from 1  to 1 or vice versa. 

Then these offspring are later made a new generation which 

can select as parents. 

F. Termination 

The GA can be terminated if there is no improvement in the 

maximum fitness value of the population after several 

iterations. This will ensure with a high probability that the 

global optimum is found at the expense of high computational 

complexity and long convergence time. In code estimation, it 

is more desirable to detect the code and also data, fast and at a 

low complexity. Hence, we terminate the GA of Fig. 1 after 

kn yy ~,ˆ  is coming upper than a threshold )(T . By adjusting 

the value of T , the bit error rate (BER) performance of the 

GA-based code estimator can be controlled.  

V. SIMULATION RESULTS

In this section, our simulation results are presented in order 

to demonstrate the performance of the proposed code 

estimator. A summary of the various parameters that are used 

in our simulations is shown in Table I. The channel noise was 

assumed to be white, Gaussian, centered and real. The data 

rate )( bR  and the number of chips per bit )( p  were assumed 

to be known by the receiver. The signature sequence was used 

with a processing gain of 31p . Let us first evaluate the 

BER performance of the proposed code estimator. 

In order to give an impression of how the GA manages to 

estimate the transmitted code over the course of evolution 

given a population of randomly generated possible solutions at 

the beginning, the BER performance of the estimator at each 

generation is shown in Fig. 2 at dbN 5/ 0 . As we have 

mentioned in section IV, the crossover operation will 

efficiently identify the areas in the solution space, where the 

optimal solution might be located. This can be seen from the 

first few generations. However, crossover alone will not find 

the optimal solution, when we do not use mutation. Hence, 

when crossover is used in conjunction with mutation, the BER 

performance is improved significantly, as shown in Fig. 2. 

Fig. 2. BER performance of the proposed GA-based estimator as a function of 

the number of generations, where 100p , 10g , dBSNR 5 , and 

1.0mp .

Fig. 3. BER performance of the proposed GA-based estimator as a various 

signal to noise ratios (SNRs), over 640 transmitted bits where, 100p ,

10g , 2.0cp , and 1.0mp .

Fig. 3 characterizes the BER performance of proposed 

estimator in compare with a receiver which normally knows 

the despreading code. As shown in Fig. 3, when we are in the 

region of approximately dBSNR 4 , the BER 

performance of normally receiver which knows the code, is 

better than the receiver  uses GA-based code estimator, but 

when SNR  is coming upper than dB4 , the BER 
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TABLE I

SUMMARY OF VARIOUS PARAMETERS USED IN 

OUR SIMULATION  

Symbol Description 

Rb Data rate 

p Population size 

pc Crossover probability 

pm Mutation probability

g Number of generation per 

signaling interval 
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performance of GA-based code estimator is greater than 

normally receiver, as shown in Fig. 3. This reality shows that 

in normally receivers, when the noise is powerful, the BER 

performance is going to increase, although the receiver knows 

the despreading code. But as we have mentioned in section IV, 

when we use GA-based code estimator, our receiver can find a 

near optimum code, according to the dynamic parameter of the 

system. 

VI. CONCLUSION

In this paper, GAs were developed in order to estimate the 

spread spectrum transmitter PN sequence. Our results showed 

that as a code estimator, the GA was capable of tracking the 

variations of the signal to noise ratio (SNR). The proposed 

estimator was capable of attaining a near-optimum BER 

performance at low 0/ N  values. Extensions to the cases 

where very long spreading codes are used present an 

interesting future topic. 
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