Search results for: Pressure Flushing
1348 Evolution of Developing Flushing Cone during the Pressurized Flushing in Reservoir Storage
Authors: Meshkati M. E., Dehghani A. A., Naser G., E mamgholizadeh S., Mosaedi A.
Abstract:
Sedimentation in reservoirs and the corresponding loss of storage capacity is one of the most serious problems in dam engineering. Pressurized flushing, a way to remove sediments from the reservoir, is flushing under a pressurized flow condition and nearly constant water level. Pressurized flushing has only local effects around the outlet. Sediment in the vicinity of the outlet openings is scoured and a funnel shaped crater is created. In this study, the temporal development of flushing cone under various hydraulic conditions was studied experimentally. Time variations of parameters such as maximum length and width of flushing and also depth of scouring cone was measured. Results indicated that an increase in flow velocity (and consequently in Froude number) established new hydraulically conditions for flushing mechanism and so a sudden growth was observed in the amount of sediment released and also scouring dimenssions. In addition, a set of nondimensional relationships were identified for temporal variations of flushing scour dimenssions, which can eventuallt be used to estimate the development of flushing cone.Keywords: Pressure Flushing, Dam, Sediment, Scouring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19571347 Optimization of Control Parameters for MRR in Injection Flushing Type of EDM on Stainless Steel 304 Workpiece
Authors: M. S. Reza, M. Hamdi, A.S. Hadi
Abstract:
The operating control parameters of injection flushing type of electrical discharge machining process on stainless steel 304 workpiece with copper tools are being optimized according to its individual machining characteristic i.e. material removal rate (MRR). Lower MRR during EDM machining process may decrease its- machining productivity. Hence, the quality characteristic for MRR is set to higher-the-better to achieve the optimum machining productivity. Taguchi method has been used for the construction, layout and analysis of the experiment for each of the machining characteristic for the MRR. The use of Taguchi method in the experiment saves a lot of time and cost of preparing and machining the experiment samples. Therefore, an L18 Orthogonal array which was the fundamental component in the statistical design of experiments has been used to plan the experiments and Analysis of Variance (ANOVA) is used to determine the optimum machining parameters for this machining characteristic. The control parameters selected for this optimization experiments are polarity, pulse on duration, discharge current, discharge voltage, machining depth, machining diameter and dielectric liquid pressure. The result had shown that the higher the discharge voltage, the higher will be the MRR.Keywords: ANOVA, EDM, Injection Flushing, L18 OrthogonalArray, MRR, Stainless Steel 304
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18211346 Optimization of Control Parameters for EWR in Injection Flushing Type of EDM on Stainless Steel 304 Workpiece
Authors: M. S. Reza, M. Hamdi, S. H. Tomadi, A. R. Ismail
Abstract:
The operating control parameters of injection flushing type of electrical discharge machining process on stainless steel 304 workpiece using copper tools are being optimized according to its individual machining characteristic i.e. Electrode Wear Ratio (EWR). Higher EWR would give bad dimensional precision for the EDM machined workpiece because of high electrode wear. Hence, the quality characteristic for EWR is set to lower-the-better to achieve the optimum dimensional precision for the machined workpiece. Taguchi method has been used for the construction, layout and analysis of the experiment for EWR machining characteristic. The use of Taguchi method in the experiment saves a lot of time and cost of preparing and machining the experiment samples. Therefore, an L18 Orthogonal array which was the fundamental component in the statistical design of experiments has been used to plan the experiments and Analysis of Variance (ANOVA) is used to determine the optimum machining parameters for this machining characteristic. The control parameters selected for this optimization experiments are polarity, pulse on duration, discharge current, discharge voltage, machining depth, machining diameter and dielectric liquid pressure. The result had shown that negative polarity machining parameter setting will decreases EWR.Keywords: ANOVA, EDM, Injection Flushing, L18Orthogonal Array, EWR, Stainless Steel 304
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18481345 Bed Evolution under One-Episode Flushing in a Truck Sewer in Paris, France
Authors: Gashin Shahsavari, Gilles Arnaud-Fassetta, Roberto Bertilotti, Alberto Campisano, Fabien Riou
Abstract:
Sewer deposits have been identified as a major cause of dysfunctions in combined sewer systems regarding sewer management, which induces different negative consequents resulting in poor hydraulic conveyance, environmental damages as well as worker’s health. In order to overcome the problematics of sedimentation, flushing has been considered as the most operative and cost-effective way to minimize the sediments impacts and prevent such challenges. Flushing, by prompting turbulent wave effects, can modify the bed form depending on the hydraulic properties and geometrical characteristics of the conduit. So far, the dynamics of the bed-load during high-flow events in combined sewer systems as a complex environment is not well understood, mostly due to lack of measuring devices capable to work in the “hostile” in combined sewer system correctly. In this regards, a one-episode flushing issue from an opening gate valve with weir function was carried out in a trunk sewer in Paris to understand its cleansing efficiency on the sediments (thickness: 0-30 cm). During more than 1h of flushing within 5 m distance in downstream of this flushing device, a maximum flowrate and a maximum level of water have been recorded at 5 m in downstream of the gate as 4.1 m3/s and 2.1 m respectively. This paper is aimed to evaluate the efficiency of this type of gate for around 1.1 km (from the point -50 m to +1050 m in downstream from the gate) by (i) determining bed grain-size distribution and sediments evolution through the sewer channel, as well as their organic matter content, and (ii) identifying sections that exhibit more changes in their texture after the flush. For the first one, two series of sampling were taken from the sewer length and then analyzed in laboratory, one before flushing and second after, at same points among the sewer channel. Hence, a non-intrusive sampling instrument has undertaken to extract the sediments smaller than the fine gravels. The comparison between sediments texture after the flush operation and the initial state, revealed the most modified zones by the flush effect, regarding the sewer invert slope and hydraulic parameters in the zone up to 400 m from the gate. At this distance, despite the increase of sediment grain-size rages, D50 (median grainsize) varies between 0.6 mm and 1.1 mm compared to 0.8 mm and 10 mm before and after flushing, respectively. Overall, regarding the sewer channel invert slope, results indicate that grains smaller than sands (< 2 mm) are more transported to downstream along about 400 m from the gate: in average 69% before against 38% after the flush with more dispersion of grain-sizes distributions. Furthermore, high effect of the channel bed irregularities on the bed material evolution has been observed after the flush.Keywords: Bed-material load evolution, combined sewer systems, flushing efficiency, sediment transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19731344 Valuation on MEMS Pressure Sensors and Device Applications
Authors: Nurul Amziah Md Yunus, Izhal Abdul Halin, Nasri Sulaiman, Noor Faezah Ismail, Ong Kai Sheng
Abstract:
The MEMS pressure sensor has been introduced and presented in this paper. The types of pressure sensor and its theory of operation are also included. The latest MEMS technology, the fabrication processes of pressure sensor are explored and discussed. Besides, various device applications of pressure sensor such as tire pressure-monitoring system, diesel particulate filter and others are explained. Due to further miniaturization of the device nowadays, the pressure sensor with nanotechnology (NEMS) is also reviewed. The NEMS pressure sensor is expected to have better performance as well as lower in its cost. It has gained an excellent popularity in many applications.Keywords: Pressure sensor, diaphragm, MEMS, automotive application, biomedical application, NEMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56861343 Improving the Design of Blood Pressure and Blood Saturation Monitors
Authors: L. Parisi
Abstract:
A blood pressure monitor or sphygmomanometer can be either manual or automatic, employing respectively either the auscultatory method or the oscillometric method. The manual version of the sphygmomanometer involves an inflatable cuff with a stethoscope adopted to detect the sounds generated by the arterial walls to measure blood pressure in an artery. An automatic sphygmomanometer can be effectively used to monitor blood pressure through a pressure sensor, which detects vibrations provoked by oscillations of the arterial walls. The pressure sensor implemented in this device improves the accuracy of the measurements taken.
Keywords: Blood pressure, blood saturation, sensors, actuators, design improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37381342 Design of SiC Capacitive Pressure Sensor with LC-Based Oscillator Readout Circuit
Authors: Azza M. Anis, M. M. Abutaleb, Hani F. Ragai, M. I. Eladawy
Abstract:
This paper presents the characterization and design of a capacitive pressure sensor with LC-based 0.35 µm CMOS readout circuit. SPICE is employed to evaluate the characteristics of the readout circuit and COMSOL multiphysics structural analysis is used to simulate the behavior of the pressure sensor. The readout circuit converts the capacitance variation of the pressure sensor into the frequency output. Simulation results show that the proposed pressure sensor has output frequency from 2.50 to 2.28 GHz in a pressure range from 0.1 to 2 MPa almost linearly. The sensitivity of the frequency shift with respect to the applied pressure load is 0.11 GHz/MPa.
Keywords: CMOS LC-based oscillator, micro pressure sensor, silicon carbide
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16691341 Estimation of Systolic and Diastolic Pressure using the Pulse Transit Time
Authors: Soo-young Ye, Gi-Ryon Kim, Dong-Keun Jung, Seong-wan Baik, Gye-rok Jeon
Abstract:
In this paper, algorithm estimating the blood pressure was proposed using the pulse transit time (PTT) as a more convenient method of measuring the blood pressure. After measuring ECG and pressure pulse, and photoplethysmography, the PTT was calculated from the acquired signals. Thereafter, the system to indirectly measure the systolic pressure and the diastolic pressure was composed using the statistic method. In comparison between the blood pressure indirectly measured by proposed algorithm estimating the blood pressure and real blood pressure measured by conventional sphygmomanometer, the systolic pressure indicates the mean error of ±3.24mmHg and the standard deviation of 2.53mmHg, while the diastolic pressure indicates the satisfactory result, that is, the mean error of ±1.80mmHg and the standard deviation of 1.39mmHg. These results are satisfied with the regulation of ANSI/AAMI for certification of sphygmomanometer that real measurement error value should be within the mean error of ±5mmHg and the standard deviation of 8mmHg. These results are suggest the possibility of applying to portable and long time blood pressure monitoring system hereafter.Keywords: Blood pressure, Systolic, Diastolic, Pulse transit time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 65791340 Metal Berthelot Tubes with Windows for Observing Cavitation under Static Negative Pressure
Authors: K. Hiro, Y. Imai, T. Sasayama
Abstract:
Cavitation under static negative pressure is not revealed well. The Berthelot method to generate such negative pressure can be a means to study cavitation inception. In this study, metal Berthelot tubes built in observation windows are newly developed and are checked whether high static negative pressure is generated or not. Negative pressure in the tube with a pair of a corundum plate and an aluminum gasket increased with temperature cycles. The trend was similar to that as reported before.
Keywords: Berthelot method, negative pressure, cavitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10561339 Evaluation of Carbon Dioxide Pressure through Radial Velocity Difference in Arterial Blood Modeled by Drift Flux Model
Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes
Abstract:
In this paper, we are interested to determine the carbon dioxide pressure in the arterial blood through radial velocity difference. The blood was modeled as a two phase mixture (an aqueous carbon dioxide solution with carbon dioxide gas) by Drift flux model and the Young-Laplace equation. The distributions of mixture velocities determined from the considered model permitted the calculation of the radial velocity distributions with different values of mean mixture pressure and the calculation of the mean carbon dioxide pressure knowing the mean mixture pressure. The radial velocity distributions are used to deduce a calculation method of the mean mixture pressure through the radial velocity difference between two positions which is measured by ultrasound. The mean carbon dioxide pressure is then deduced from the mean mixture pressure.Keywords: Mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity difference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11771338 Design of Saddle Support for Horizontal Pressure Vessel
Authors: Vinod Kumar, Navin Kumar, Surjit Angra, Prince Sharma
Abstract:
This paper presents the design analysis of saddle support of a horizontal pressure vessel. Since saddle have the vital role to support the pressure vessel and to maintain its stability, it should be designed in such a way that it can afford the vessel load and internal pressure of the vessel due to liquid contained in the vessel. A model of horizontal pressure vessel and saddle support is created in ANSYS. Stresses are calculated using mathematical approach and ANSYS software. The analysis reveals the zone of high localized stress at the junction part of the pressure vessel and saddle support due to operating conditions. The results obtained by both the methods are compared with allowable stress value for safe designing.
Keywords: ANSYS, Pressure Vessel, Saddle, Support.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 261411337 The Effect of Angle of Attack on Pressure Drag from a Cam Shaped Tube
Authors: Arash Mir Abdolah Lavasani
Abstract:
The pressure drag from a cam shaped tube in cross flows have been investigated experimentally using pressure distribution measurement. The range of angle of attack and Reynolds number based on an equivalent circular tube are within 0≤α≤360° and 2×104< Reeq < 3.4 ×104, respectively. It is found that the pressure drag coefficient is at its highest at α=90° and 270° over the whole range of Reynolds number. Results show that the pressure drag coefficient of the cam shaped tube is lower than that of circular tube with the same surface area for more of the angles of attack. Furthermore, effects of the diameter ratio and finite length of the cam shaped tube upon the pressure drag coefficient are discussed.
Keywords: Pressure Drag, Cam Shaped, Experimental.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23801336 Effect of L/D Ratio on the Performance of a Four-Lobe Pressure Dam Bearing
Authors: G. Bhushan, S. S. Rattan, N. P. Mehta
Abstract:
A four-lobe pressure dam bearing which is produced by cutting two pressure dams on the upper two lobes and two relief-tracks on the lower two lobes of an ordinary four-lobe bearing is found to be more stable than a conventional four-lobe bearing. In this paper a four-lobe pressure dam bearing supporting rigid and flexible rotors is analytically investigated to determine its performance when L/D ratio is varied in the range 0.75 to 1.5. The static and dynamic characteristics are studied at various L/D ratios. The results show that the stability of a four-lobe pressure dam bearing increases with decrease in L/D ratios both for rigid as well as flexible rotors.Keywords: Four-lobe pressure dam bearing, finite-elementmethod, L/D ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26421335 Performance Evaluation of Powder Metallurgy Electrode in Electrical Discharge Machining of AISI D2 Steel Using Taguchi Method
Authors: Naveen Beri, S. Maheshwari, C. Sharma, Anil Kumar
Abstract:
In this paper an attempt has been made to correlate the usefulness of electrodes made through powder metallurgy (PM) in comparison with conventional copper electrode during electric discharge machining. Experimental results are presented on electric discharge machining of AISI D2 steel in kerosene with copper tungsten (30% Cu and 70% W) tool electrode made through powder metallurgy (PM) technique and Cu electrode. An L18 (21 37) orthogonal array of Taguchi methodology was used to identify the effect of process input factors (viz. current, duty cycle and flushing pressure) on the output factors {viz. material removal rate (MRR) and surface roughness (SR)}. It was found that CuW electrode (made through PM) gives high surface finish where as the Cu electrode is better for higher material removal rate.
Keywords: Electrical discharge machining (EDM), Powder Metallurgy (PM), Taguchi method, Material Removal Rate (MRR), Surface Roughness (SR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43181334 Modeling the Vapor Pressure of Biodiesel Fuels
Authors: O. Castellanos Díaz, F. Schoeggl, H. W. Yarranton, M. A. Satyro, T. M. Lovestead, T. J. Bruno
Abstract:
The composition, vapour pressure, and heat capacity of nine biodiesel fuels from different sources were measured. The vapour pressure of the biodiesel fuels is modeled assuming an ideal liquid phase of the fatty acid methyl esters constituting the fuel. New methodologies to calculate the vapour pressure and ideal gas and liquid heat capacities of the biodiesel fuel constituents are proposed. Two alternative optimization scenarios are evaluated: 1) vapour pressure only; 2) vapour pressure constrained with liquid heat capacity. Without physical constraints, significant errors in liquid heat capacity predictions were found whereas the constrained correlation accurately fit both vapour pressure and liquid heat capacity.Keywords: Biodiesel fuels, Fatty acid methyl ester, Heat capacity, Modeling, Vapour pressure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60101333 Measurement of Reverse Flow Generated at Cold Exit of Vortex Tube
Authors: Mohd Hazwan bin Yusof, Hiroshi Katanoda
Abstract:
In order to clarify the structure of the cold flow discharged from the vortex tube (VT), the pressure of the cold flow was measured, and a simple flow visualization technique using a 0.75mm-diameter needle and an oily paint is made to study the reverse flow at the cold exit. It is clear that a negative pressure and positive pressure region exist at a certain pressure and cold fraction area, and that a reverse flow is observed in the negative pressure region.
Keywords: Flow visualization, Pressure measurement, Reverse flow, Vortex tube.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19271332 Fracture Pressure Predict Based on Well Logs of Depleted Reservoir in Southern Iraqi Oilfield
Authors: Raed H. Allawi
Abstract:
Fracture pressure is the main parameter applied in wells design and used to avoid drilling problems like lost circulation. Thus, this study aims to predict the fracture pressure of oil reservoirs in the southern Iraq Oilfield. The data required to implement this study included bulk density, compression wave velocity, gamma-ray, and leak-off test. In addition, this model is based on the pore pressure which is measured based on the Modular Formation Dynamics Tester (MDT). Many measured values of pore pressure were used to validate the accurate model. Using sonic velocity approaches, the mean absolute percentage error (MAPE) was about 4%. The fracture pressure results were consistent with the measurement data, actual drilling report, and events. The model's results will be a guide for successful drilling in future wells in the same oilfield.
Keywords: Pore pressure, fracture pressure, overburden pressure, effective stress, drilling events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841331 Evaluation of Longitudinal and Hoop Stresses and a Critical Study of Factor of Safety (FoS) in Design of a Glass-Fiber Pressure Vessel
Authors: Zainul Huda, Muhammad Hani Ajani
Abstract:
The design, manufacture, and operation of thin-walled pressure vessels must be based on maximum safe operating pressure and an adequate factor of safety (FoS). This research paper first reports experimental evaluation of longitudinal and hoops stresses based on working pressure as well as maximum pressure; and then includes a critical study of factor of safety (FoS) in the design of a glass fiber pressure vessel. Experimental work involved the use of measuring instruments and the readings from pressure gauges. Design calculations involved the computations of design stress and FoS; the latter was based on breaking strength of 55 MPa for the glass fiber (pressure-vessel material). The experimentally determined FoS value has been critically compared with the general FoS allowed in the design of glass fiber pressure vessels.
Keywords: Thin-walled pressure vessel, hoop stress, longitudinal stress, factor of safety (FoS), fiberglass.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77831330 Pressure Study on Mn Doped KDP System under Hydrostatic Pressure
Authors: W. Paraguassu, S. Guerini, C. M. R. Remédios, P. T. C. Freire
Abstract:
High Pressure Raman scattering measurements of KDP:Mn were performed at room temperatures. The X-ray powder diffraction patterns taken at room temperature by Rietveld refinement showed that doped samples of KDP-Mn have the same tetragonal structure of a pure KDP crystal, but with a contraction of the crystalline cell. The behavior of the Raman spectra, in particular the emergence of a new modes at 330 cm-1, indicates that KDP:Mn undergoes a structural phase transition with onset at around 4 GP. First principle density-functional theory (DFT) calculations indicate that tetrahedral rotation with pressure is predominantly around the c crystalline direction. Theoretical results indicates that pressure induced tetrahedral rotations leads to change tetrahedral neighborhood, activating librations/bending modes observed for high pressure phase of KDP:Mn with stronger Raman activity.
Keywords: Dipotassium molybdate, High pressure, Raman scattering, Phase transition, ab initio
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15331329 Sensing Pressure for Authentication System Using Keystroke Dynamics
Authors: Hidetoshi Nonaka, Masahito Kurihara
Abstract:
In this paper, an authentication system using keystroke dynamics is presented. We introduced pressure sensing for the improvement of the accuracy of measurement and durability against intrusion using key-logger, and so on, however additional instrument is needed. As the result, it has been found that the pressure sensing is also effective for estimation of real moment of keystroke.
Keywords: Biometric authentication, Keystroke dynamics, Pressure sensing, Time-frequency analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22221328 A CFD Analysis of Flow through a High-Pressure Natural Gas Pipeline with an Undeformed and Deformed Orifice Plate
Authors: R. Kiš, M. Malcho, M. Janovcová
Abstract:
This work aims to present a numerical analysis of the natural gas which flows through a high-pressure pipeline and an orifice plate, through the use of CFD methods. The paper contains CFD calculations for the flow of natural gas in a pipe with different geometry used for the orifice plates. One of them has a standard geometry and a shape without any deformation and the other is deformed by the action of the pressure differential. It shows the behavior of natural gas in a pipeline using the velocity profiles and pressure fields of the gas in both models with their differences. The entire research is based on the elimination of any inaccuracy which should appear in the flow of the natural gas measured in the high-pressure pipelines of the gas industry and which is currently not given in the relevant standard.
Keywords: Orifice plate, high-pressure pipeline, natural gas, CFD analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39011327 On the Numerical and Experimental Analysis of Internal Pressure in Air Bearings
Authors: Abdurrahim Dal, Tuncay Karaçay
Abstract:
Dynamics of a rotor supported by air bearings is strongly depends on the pressure distribution between the rotor and the bearing. In this study, internal pressure in air bearings is numerical and experimental analyzed for different radial clearances. Firstly the pressure distribution between rotor and bearing is modeled using Reynold's equation and this model is solved numerically. The rotor-bearing system is also modeled in four degree of freedom and it is simulated for different radial clearances. Then, in order to validate numerical results, a test rig is designed and the rotor bearing system is run under the same operational conditions. Pressure signals of left and right bearings are recorded. Internal pressure variations are compared for numerical and experimental results for different radial clearances.Keywords: Air bearing, internal pressure, Reynold’s equation, rotor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21381326 About Methods of Additional Mining Pressure Figuring while Reconstruction of Tunnels
Authors: M. Moistsrapishvili, I. Ugrekhelidze, T. Baramashvili, D. Malaghuradze
Abstract:
At the end of the 20th century it was actual the development of transport corridors and the improvement of their technical parameters. With this purpose, many countries and Georgia among them manufacture to construct new highways, railways and also reconstruction-modernization of the existing transport infrastructure. It is necessary to explore the artificial structures (bridges and tunnels) on the existing tracks as they are very old. Conference report includes the peculiarities of reconstruction of tunnels, because we think that this theme is important for the modernization of the existing road infrastructure. We must remark that the methods of determining mining pressure of tunnel reconstructions are worked out according to the jobs of new tunnels but it is necessary to foresee additional mining pressure which will be formed during their reconstruction. In this report there are given the methods of figuring the additional mining pressure while reconstruction of tunnels, there was worked out the computer program, it is determined that during reconstruction of tunnels the additional mining pressure is 1/3rd of main mining pressure.Keywords: Mining pressure, Reconstruction of tunnels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16761325 Lateral Pressure in Squat Silos under Eccentric Discharge
Authors: Y. Z. Zhu, S. P. Meng, W. W. Sun
Abstract:
The influence of eccentric discharge of stored solids in squat silos has been highly valued by many researchers. However, calculation method of lateral pressure under eccentric flowing still needs to be deeply studied. In particular, the lateral pressure distribution on vertical wall could not be accurately recognized mainly because of its asymmetry. In order to build mechanical model of lateral pressure, flow channel and flow pattern of stored solids in squat silo are studied. In this passage, based on Janssen-s theory, the method for calculating lateral static pressure in squat silos after eccentric discharge is proposed. Calculative formulae are deduced for each of three possible cases. This method is also focusing on unsymmetrical distribution characteristic of silo wall normal pressure. Finite element model is used to analysis and compare the results of lateral pressure and the numerical results illustrate the practicability of the theoretical method.Keywords: Squat silo, eccentric discharge, lateral pressure, asymmetric distribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31591324 A Simulation for Estimation of the Blood Pressure using Arterial Pressure-volume Model
Authors: Gye-rok Jeon, Jae-hee Jung, In-cheol Kim, Ah-young Jeon, Sang-hwa Yoon, Jung-man Son, Jae-hyung Kim, Soo-young Ye, Jung-hoon Ro, Dong-hyun Kim, Chul-han Kim
Abstract:
A analysis on the conventional the blood pressure estimation method using an oscillometric sphygmomanometer was performed through a computer simulation using an arterial pressure-volume (APV) model. Traditionally, the maximum amplitude algorithm (MAP) was applied on the oscillation waveforms of the APV model to obtain the mean arterial pressure and the characteristic ratio. The estimation of mean arterial pressure and characteristic ratio was significantly affected with the shape of the blood pressure waveforms and the cutoff frequency of high-pass filter (HPL) circuitry. Experimental errors are due to these effects when estimating blood pressure. To find out an algorithm independent from the influence of waveform shapes and parameters of HPL, the volume oscillation of the APV model and the phase shift of the oscillation with fast fourier transform (FFT) were testified while increasing the cuff pressure from 1 mmHg to 200 mmHg (1 mmHg per second). The phase shift between the ranges of volume oscillation was then only observed between the systolic and the diastolic blood pressures. The same results were also obtained from the simulations performed on two different the arterial blood pressure waveforms and one hyperthermia waveform.Keywords: Arterial blood pressure, oscillometric method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33361323 Pressure Induced Isenthalpic Oscillations with Condensation and Evaporation in Saturated Two-Phase Fluids
Authors: Joel V. Madison, Hans E. Kimmel
Abstract:
Saturated two-phase fluid flows are often subject to pressure induced oscillations. Due to compressibility the vapor bubbles act as a spring with an asymmetric non-linear characteristic. The volume of the vapor bubbles increases or decreases differently if the pressure fluctuations are compressing or expanding; consequently, compressing pressure fluctuations in a two-phase pipe flow cause less displacement in the direction of the pipe flow than expanding pressure fluctuations. The displacement depends on the ratio of liquid to vapor, the ratio of pressure fluctuations over average pressure and on the exciting frequency of the pressure fluctuations. In addition, pressure fluctuations in saturated vapor bubbles cause condensation and evaporation within the bubbles and change periodically the ratio between liquid to vapor, and influence the dynamical parameters for the oscillation. The oscillations are conforming to an isenthalpic process at constant enthalpy with no heat transfer and no exchange of work. The paper describes the governing non-linear equation for twophase fluid oscillations with condensation and evaporation, and presents steady state approximate solutions for free and for pressure induced oscillations. Resonance criteria and stability are discussed.Keywords: condensation, evaporation, non-linear oscillations, pressure induced, two-phase flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14941322 Numerical Simulation of a Pressure Regulated Valve to Find Out the Characteristics of Passive Control Circuit
Authors: Binod Kumar Saha
Abstract:
The objective of the present paper is a numerical analysis of the flow forces acting on spool surfaces of a pressure regulated valve. The transient, compressible and turbulent flow structures inside the valve are simulated using ANSYS FLUENT coupled with a special UDF. Here, valve inlet pressure is varied in a stepwise manner. For every value of inlet pressure, transient analysis leads to a quasi-static flow through the valve. Spool forces are calculated based on different pressures at inlet. From this information of spool forces, pressure characteristic of the passive control circuit has been derived.Keywords: Pressure Regulating Valve, Spool Opening, Spool Movement, Force Balance, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38641321 Control of Pressure Gradient in the Contraction of a Wind Tunnel
Authors: Dehghan Manshadi M., Mirzaei M., Soltani M. R., Ghorbanian K.
Abstract:
Subsonic wind tunnel experiments were conducted to study the effect of tripped boundary layer on the pressure distribution in the contraction region of the tunnel. Measurements were performed by installing trip strip at two different positions in the concave portion of the contraction. The results show that installation of the trip strips, have significant effects on both turbulence and pressure distribution. The reduction in the free stream turbulence and reduction of the wall static pressure distribution deferred signified with the location of the trip strip.Keywords: Contraction, pressure distribution, trip strip, turbulence intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30381320 Gas Pressure Evaluation through Radial Velocity Measurement of Fluid Flow Modeled by Drift Flux Model
Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes
Abstract:
In this paper, we consider a drift flux mixture model of the blood flow. The mixture consists of gas phase which is carbon dioxide and liquid phase which is an aqueous carbon dioxide solution. This model was used to determine the distributions of the mixture velocity, the mixture pressure, and the carbon dioxide pressure. These theoretical data are used to determine a measurement method of mean gas pressure through the determination of radial velocity distribution. This method can be applicable in experimental domain.
Keywords: Mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12481319 Optimum Design of Pressure Vessel Subjected to Autofrettage Process
Authors: Abu Rayhan Md. Ali, Nidul Ch. Ghosh, Tanvir-E-Alam
Abstract:
The effect of autofrettage process in strain hardened thick-walled pressure vessels has been investigated theoretically by finite element modeling. Equivalent von Mises stress is used as yield criterion to evaluate the optimum autofrettage pressure and the optimum radius of elastic-plastic junction. It has been observed that the optimum autofrettage pressure increases along with the working pressure. For two different working pressures, the effect of the ratio of outer to inner radius (b/a=k) value on the optimum autofrettage pressure is also noticed. The Optimum autofrettage pressure solely depends on K value rather than on the inner or outer radius. Furthermore, percentage reduction of von Mises stresses is compared for different working pressures and different k values. Maximum von Mises stress developed at different autofrettage pressure is equated for elastic perfectly plastic and elastic-plastic material with different slope of strain hardening segment. Cylinder material having higher slope of strain hardening segment provides better benedictions in the autofrettage process.Keywords: Autofrettage, elastic plastic junction, pressure vessel, von Mises stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3820