Search results for: Inverse Distance Weighting.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1276

Search results for: Inverse Distance Weighting.

1276 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis

Authors: Yakin Hajlaoui, Richard Labib, Jean-Franc¸ois Plante, Michel Gamache

Abstract:

This study presents the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs’ processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW’s ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. We employ gradient descent and backpropagation to train ML-IDW. The performance of the proposed model is compared against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. Our results highlight the efficacy of ML-IDW, particularly in handling complex spatial dataset, exhibiting lower mean square error in regression and higher F1 score in classification.

Keywords: Deep Learning, Multi-Layer Neural Networks, Gradient Descent, Spatial Interpolation, Inverse Distance Weighting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53
1275 Kernel Matching versus Inverse Probability Weighting: A Comparative Study

Authors: Andy Handouyahia, Tony Haddad, Frank Eaton

Abstract:

Recent quasi-experimental evaluation of the Canadian Active Labour Market Policies (ALMP) by Human Resources and Skills Development Canada (HRSDC) has provided an opportunity to examine alternative methods to estimating the incremental effects of Employment Benefits and Support Measures (EBSMs) on program participants. The focus of this paper is to assess the efficiency and robustness of inverse probability weighting (IPW) relative to kernel matching (KM) in the estimation of program effects. To accomplish this objective, the authors compare pairs of 1,080 estimates, along with their associated standard errors, to assess which type of estimate is generally more efficient and robust. In the interest of practicality, the authorsalso document the computationaltime it took to produce the IPW and KM estimates, respectively.

Keywords: Treatment effect, causal inference, observational studies, Propensity score based matching, Kernel Matching, Inverse Probability Weighting, Estimation methods for incremental effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6930
1274 Spatial Interpolation of Intermediate Soil Properties to Enhance Geotechnical Surveying for Foundation Design

Authors: Yelbek B. Utepov, Assel T. Mukhamejanova, Aliya K. Aldungarova, Aida G. Nazarova, Sabit A. Karaulov, Nurgul T. Alibekova, Aigul K. Kozhas, Dias Kazhimkanuly, Akmaral K. Tleubayeva

Abstract:

This research focuses on enhancing geotechnical surveying for foundation design through the spatial interpolation of intermediate soil properties. Traditional geotechnical practices rely on discrete data from borehole drilling, soil sampling, and laboratory analyses, often neglecting the continuous nature of soil properties and disregarding values in intermediate locations. This study challenges these omissions by emphasizing interpolation techniques such as kriging, inverse distance weighting, and spline interpolation to capture the nuanced spatial variations in soil properties. The methodology is applied to geotechnical survey data from two construction sites in Astana, Kazakhstan, revealing continuous representations of Young's modulus, cohesion, and friction angle. The spatial heatmaps generated through interpolation offered valuable insights into the subsurface environment, highlighting heterogeneity and aiding in more informed foundation design decisions for considered cites. Moreover, intriguing patterns of heterogeneity, as well as visual clusters and transitions between soil classes, were explored within seemingly uniform layers. The study bridges the gap between discrete borehole samples and the continuous subsurface, contributing to the evolution of geotechnical engineering practices. The proposed approach, utilizing open-source software geographic information systems, provides a practical tool for visualizing soil characteristics and may pave the way for future advancements in geotechnical surveying and foundation design.

Keywords: Soil mechanical properties, spatial interpolation, Inverse Distance Weighting, heatmaps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8
1273 Feature Weighting and Selection - A Novel Genetic Evolutionary Approach

Authors: Serkawt Khola

Abstract:

A feature weighting and selection method is proposed which uses the structure of a weightless neuron and exploits the principles that govern the operation of Genetic Algorithms and Evolution. Features are coded onto chromosomes in a novel way which allows weighting information regarding the features to be directly inferred from the gene values. The proposed method is significant in that it addresses several problems concerned with algorithms for feature selection and weighting as well as providing significant advantages such as speed, simplicity and suitability for real-time systems.

Keywords: Feature weighting, genetic algorithm, pattern recognition, weightless neuron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
1272 Performance Evaluation of Refinement Method for Wideband Two-Beams Formation

Authors: C. Bunsanit

Abstract:

This paper presents the refinement method for two beams formation of wideband smart antenna. The refinement method for weighting coefficients is based on Fully Spatial Signal Processing by taking Inverse Discrete Fourier Transform (IDFT), and its simulation results are presented using MATLAB. The radiation pattern is created by multiplying the incoming signal with real weights and then summing them together. These real weighting coefficients are computed by IDFT method; however, the range of weight values is relatively wide. Therefore, for reducing this range, the refinement method is used. The radiation pattern concerns with five input parameters to control. These parameters are maximum weighting coefficient, wideband signal, direction of mainbeam, beamwidth, and maximum of minor lobe level. Comparison of the obtained simulation results between using refinement method and taking only IDFT shows that the refinement method works well for wideband two beams formation.

Keywords: Fully spatial signal processing, beam forming, refinement method, smart antenna, weighting coefficient, wideband.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085
1271 Inverse Dynamic Active Ground Motion Acceleration Inputs Estimation of the Retaining Structure

Authors: Ming-Hui Lee, Iau-Teh Wang

Abstract:

The innovative fuzzy estimator is used to estimate the ground motion acceleration of the retaining structure in this study. The Kalman filter without the input term and the fuzzy weighting recursive least square estimator are two main portions of this method. The innovation vector can be produced by the Kalman filter, and be applied to the fuzzy weighting recursive least square estimator to estimate the acceleration input over time. The excellent performance of this estimator is demonstrated by comparing it with the use of difference weighting function, the distinct levels of the measurement noise covariance and the initial process noise covariance. The availability and the precision of the proposed method proposed in this study can be verified by comparing the actual value and the one obtained by numerical simulation.

Keywords: Earthquake, Fuzzy Estimator, Kalman Filter, Recursive Least Square Estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
1270 1/Sigma Term Weighting Scheme for Sentiment Analysis

Authors: Hanan Alshaher, Jinsheng Xu

Abstract:

Large amounts of data on the web can provide valuable information. For example, product reviews help business owners measure customer satisfaction. Sentiment analysis classifies texts into two polarities: positive and negative. This paper examines movie reviews and tweets using a new term weighting scheme, called one-over-sigma (1/sigma), on benchmark datasets for sentiment classification. The proposed method aims to improve the performance of sentiment classification. The results show that 1/sigma is more accurate than the popular term weighting schemes. In order to verify if the entropy reflects the discriminating power of terms, we report a comparison of entropy values for different term weighting schemes.

Keywords: Sentiment analysis, term weighting scheme, 1/sigma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 538
1269 An Iterative Algorithm to Compute the Generalized Inverse A(2) T,S Under the Restricted Inner Product

Authors: Xingping Sheng

Abstract:

Let T and S be a subspace of Cn and Cm, respectively. Then for A ∈ Cm×n satisfied AT ⊕ S = Cm, the generalized inverse A(2) T,S is given by A(2) T,S = (PS⊥APT )†. In this paper, a finite formulae is presented to compute generalized inverse A(2) T,S under the concept of restricted inner product, which defined as < A,B >T,S=< PS⊥APT,B > for the A,B ∈ Cm×n. By this iterative method, when taken the initial matrix X0 = PTA∗PS⊥, the generalized inverse A(2) T,S can be obtained within at most mn iteration steps in absence of roundoff errors. Finally given numerical example is shown that the iterative formulae is quite efficient.

Keywords: Generalized inverse A(2) T, S, Restricted inner product, Iterative method, Orthogonal projection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1268
1268 Connectivity Estimation from the Inverse Coherence Matrix in a Complex Chaotic Oscillator Network

Authors: Won Sup Kim, Xue-Mei Cui, Seung Kee Han

Abstract:

We present on the method of inverse coherence matrix for the estimation of network connectivity from multivariate time series of a complex system. In a model system of coupled chaotic oscillators, it is shown that the inverse coherence matrix defined as the inverse of cross coherence matrix is proportional to the network connectivity. Therefore the inverse coherence matrix could be used for the distinction between the directly connected links from indirectly connected links in a complex network. We compare the result of network estimation using the method of the inverse coherence matrix with the results obtained from the coherence matrix and the partial coherence matrix.

Keywords: Chaotic oscillator, complex network, inverse coherence matrix, network estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
1267 Uncontrollable Inaccuracy in Inverse Problems

Authors: Yu. Menshikov

Abstract:

In this paper the influence of errors of function derivatives in initial time which have been obtained by experiment (uncontrollable inaccuracy) to the results of inverse problem solution was investigated. It was shown that these errors distort the inverse problem solution as a rule near the beginning of interval where the solutions are analyzed. Several methods for removing the influence of uncontrollable inaccuracy have been suggested. 

Keywords: Inverse problems, uncontrollable inaccuracy, filtration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1173
1266 Inverse Matrix in the Theory of Dynamic Systems

Authors: R. Masarova, M. Juhas, B. Juhasova, Z. Sutova

Abstract:

In dynamic system theory a mathematical model is often used to describe their properties. In order to find a transfer matrix of a dynamic system we need to calculate an inverse matrix. The paper contains the fusion of the classical theory and the procedures used in the theory of automated control for calculating the inverse matrix. The final part of the paper models the given problem by the Matlab.

Keywords: Dynamic system, transfer matrix, inverse matrix, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2423
1265 Base Change for Fisher Metrics: Case of the q−Gaussian Inverse Distribution

Authors: Gabriel I. Loaiza O., Carlos A. Cadavid M., Juan C. Arango P.

Abstract:

It is known that the Riemannian manifold determined by the family of inverse Gaussian distributions endowed with the Fisher metric has negative constant curvature κ = −1/2 , as does the family of usual Gaussian distributions. In the present paper, firstly we arrive at this result by following a different path, much simpler than the previous ones. We first put the family in exponential form, thus endowing the family with a new set of parameters, or coordinates, θ1, θ2; then we determine the matrix of the Fisher metric in terms of these parameters; and finally we compute this matrix in the original parameters. Secondly, we define the Inverse q−Gaussian distribution family (q < 3), as the family obtained by replacing the usual exponential function by the Tsallis q−exponential function in the expression for the Inverse Gaussian distribution, and observe that it supports two possible geometries, the Fisher and the q−Fisher geometry. And finally, we apply our strategy to obtain results about the Fisher and q−Fisher geometry of the Inverse q−Gaussian distribution family, similar to the ones obtained in the case of the Inverse Gaussian distribution family.

Keywords: Base of Changes, Information Geometry, Inverse Gaussian distribution, Inverse q-Gaussian distribution, Statistical Manifolds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 403
1264 Numerical Inverse Laplace Transform Using Chebyshev Polynomial

Authors: Vinod Mishra, Dimple Rani

Abstract:

In this paper, numerical approximate Laplace transform inversion algorithm based on Chebyshev polynomial of second kind is developed using odd cosine series. The technique has been tested for three different functions to work efficiently. The illustrations show that the new developed numerical inverse Laplace transform is very much close to the classical analytic inverse Laplace transform.

Keywords: Chebyshev polynomial, Numerical inverse Laplace transform, Odd cosine series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
1263 Approximate Method of Calculation of Inviscid Hypersonic Flow

Authors: F. Sokhanvar, A. B. Khoshnevis

Abstract:

In the present work steady inviscid hypersonic flows are calculated by approximate Method. Maslens' inverse method is the chosen approximate method. For the inverse problem, parabolic shock shape is chosen for the two-dimensional flow, and the body shape and flow field are calculated using Maslen's method. For the axisymmetric inverse problem paraboloidal shock is chosen and the surface distribution of pressure is obtained.

Keywords: Hypersonic flow, Inverse problem method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3070
1262 Aircraft Selection Problem Using Decision Uncertainty Distance in Fuzzy Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

Aircraft have different capabilities and specifications according to the required strategic goals and objectives in operations. With various types on the market with different aircraft characteristics, it becomes difficult to select a suitable aircraft for certain operations and requirements. The entropy weighting method (EWM) is a useful, highly consistent, and reliable method for obtaining the weights of the criteria and is worth integrating with the decision uncertainty distance (DUD) method, which is more applicable and requires less computation than other methods. An illustrative example is presented to demonstrate the validity and usability of the proposed methodology. Comparing the ranking results matches the distance-based approach, which is the technique for order preference by similarity to ideal solution (TOPSIS) method, which shows the robustness of the entropy DUD hybrid method. Validity analysis shows that the proposed hybrid multiple criteria decision-making analysis (MCDMA) methodology is quantitatively stable and reliable.

Keywords: aircraft selection, decision uncertainty distance (DUD), multiple criteria decision making analysis, MCDMA, TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 546
1261 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting

Authors: Kemal Polat

Abstract:

In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.

Keywords: Fuzzy C-means clustering, Fuzzy C-means clustering based attribute weighting, Pima Indians diabetes dataset, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
1260 Inverse Heat Transfer Analysis of a Melting Furnace Using Levenberg-Marquardt Method

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study presents a simple inverse heat transfer procedure for predicting the wall erosion and the time-varying thickness of the protective bank that covers the inside surface of the refractory brick wall of a melting furnace. The direct problem is solved by using the Finite-Volume model. The melting/solidification process is modeled using the enthalpy method. The inverse procedure rests on the Levenberg-Marquardt method combined with the Broyden method. The effect of the location of the temperature sensors and of the measurement noise on the inverse predictions is investigated. Recommendations are made concerning the location of the temperature sensor.

Keywords: Melting furnace, inverse heat transfer, enthalpy method, Levenberg–Marquardt Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1322
1259 Nullity of t-Tupple Graphs

Authors: Khidir R. Sharaf, Didar A. Ali

Abstract:

The nullity η(G) of a graph is the occurrence of zero as an eigenvalue in its spectra. A zero-sum weighting of a graph G is real valued function, say f from vertices of G to the set of real numbers, provided that for each vertex of G the summation of the weights f(w) over all neighborhood w of v is zero for each v in G.A high zero-sum weighting of G is one that uses maximum number of non-zero independent variables. If G is graph with an end vertex, and if H is an induced subgraph of G obtained by deleting this vertex together with the vertex adjacent to it, then, η(G)= η(H). In this paper, a high zero-sum weighting technique and the endvertex procedure are applied to evaluate the nullity of t-tupple and generalized t-tupple graphs are derived  and determined for some special types of graphs,

 Also, we introduce and prove some important results about the t-tupple coalescence, Cartesian and Kronecker products of nut graphs.

Keywords: Graph theory, Graph spectra, Nullity of graphs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
1258 An Extension of the Kratzel Function and Associated Inverse Gaussian Probability Distribution Occurring in Reliability Theory

Authors: R. K. Saxena, Ravi Saxena

Abstract:

In view of their importance and usefulness in reliability theory and probability distributions, several generalizations of the inverse Gaussian distribution and the Krtzel function are investigated in recent years. This has motivated the authors to introduce and study a new generalization of the inverse Gaussian distribution and the Krtzel function associated with a product of a Bessel function of the third kind )(zKQ and a Z - Fox-Wright generalized hyper geometric function introduced in this paper. The introduced function turns out to be a unified gamma-type function. Its incomplete forms are also discussed. Several properties of this gamma-type function are obtained. By means of this generalized function, we introduce a generalization of inverse Gaussian distribution, which is useful in reliability analysis, diffusion processes, and radio techniques etc. The inverse Gaussian distribution thus introduced also provides a generalization of the Krtzel function. Some basic statistical functions associated with this probability density function, such as moments, the Mellin transform, the moment generating function, the hazard rate function, and the mean residue life function are also obtained.KeywordsFox-Wright function, Inverse Gaussian distribution, Krtzel function & Bessel function of the third kind.

Keywords: Fox-Wright function, Inverse Gaussian distribution, Krtzel function & Bessel function of the third kind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
1257 Retrospective Synthetic Focusing with Correlation Weighting for Very High Frame Rate Ultrasound

Authors: Chang-Lin Hu, Yao-You Cheng, Meng-Lin Li

Abstract:

The need of high frame-rate imaging has been triggered by the new applications of ultrasound imaging to transient elastography and real-time 3D ultrasound. Using plane wave excitation (PWE) is one of the methods to achieve very high frame-rate imaging since an image can be formed with a single insonification. However, due to the lack of transmit focusing, the image quality with PWE is lower compared with those using conventional focused transmission. To solve this problem, we propose a filter-retrieved transmit focusing (FRF) technique combined with cross-correlation weighting (FRF+CC weighting) for high frame-rate imaging with PWE. A restrospective focusing filter is designed to simultaneously minimize the predefined sidelobe energy associated with single PWE and the filter energy related to the signal-to-noise-ratio (SNR). This filter attempts to maintain the mainlobe signals and to reduce the sidelobe ones, which gives similar mainlobe signals and different sidelobes between the original PWE and the FRF baseband data. Normalized cross-correlation coefficient at zero lag is calculated to quantify the degree of similarity at each imaging point and used as a weighting matrix to the FRF baseband data to further suppress sidelobes, thus improving the filter-retrieved focusing quality.

Keywords: retrospective synthetic focusing, high frame rate, correlation weighting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
1256 Confidence Interval for the Inverse of a Normal Mean with a Known Coefficient of Variation

Authors: Arunee Wongkha, Suparat Niwitpong, Sa-aat Niwitpong

Abstract:

In this paper, we propose two new confidence intervals for the inverse of a normal mean with a known coefficient of variation. One of new confidence intervals for the inverse of a normal mean with a known coefficient of variation is constructed based on the pivotal statistic Z where Z is a standard normal distribution and another confidence interval is constructed based on the generalized confidence interval, presented by Weerahandi. We examine the performance of these confidence intervals in terms of coverage probabilities and average lengths via Monte Carlo simulation.

Keywords: The inverse of a normal mean, confidence interval, generalized confidence intervals, known coefficient of variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2588
1255 On a Class of Inverse Problems for Degenerate Differential Equations

Authors: Fadi Awawdeh, H.M. Jaradat

Abstract:

In this paper, we establish existence and uniqueness of solutions for a class of inverse problems of degenerate differential equations. The main tool is the perturbation theory for linear operators.

Keywords: Inverse Problem, Degenerate Differential Equations, Perturbation Theory for Linear Operators

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
1254 A Distance Function for Data with Missing Values and Its Application

Authors: Loai AbdAllah, Ilan Shimshoni

Abstract:

Missing values in data are common in real world applications. Since the performance of many data mining algorithms depend critically on it being given a good metric over the input space, we decided in this paper to define a distance function for unlabeled datasets with missing values. We use the Bhattacharyya distance, which measures the similarity of two probability distributions, to define our new distance function. According to this distance, the distance between two points without missing attributes values is simply the Mahalanobis distance. When on the other hand there is a missing value of one of the coordinates, the distance is computed according to the distribution of the missing coordinate. Our distance is general and can be used as part of any algorithm that computes the distance between data points. Because its performance depends strongly on the chosen distance measure, we opted for the k nearest neighbor classifier to evaluate its ability to accurately reflect object similarity. We experimented on standard numerical datasets from the UCI repository from different fields. On these datasets we simulated missing values and compared the performance of the kNN classifier using our distance to other three basic methods. Our  experiments show that kNN using our distance function outperforms the kNN using other methods. Moreover, the runtime performance of our method is only slightly higher than the other methods.

Keywords: Missing values, Distance metric, Bhattacharyya distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2755
1253 An Iterative Algorithm for Inverse Kinematics of 5-DOF Manipulator with Offset Wrist

Authors: Juyi Park, Jung-Min Kim, Hee-Hwan Park, Jin-Wook Kim, Gye-Hyung Kang, Soo-Ho Kim

Abstract:

This paper presents an iterative algorithm to find a inverse kinematic solution of 5-DOF robot. The algorithm is to minimize the iteration number. Since the 5-DOF robot cannot give full orientation of tool. Only z-direction of tool is satisfied while rotation of tool is determined by kinematic constraint. This work therefore described how to specify the tool direction and let the tool rotation free. The simulation results show that this algorithm effectively worked. Using the proposed iteration algorithm, error due to inverse kinematics converged to zero rapidly in 5 iterations. This algorithm was applied in real welding robot and verified through various practical works.

Keywords: 5-DOF manipulator, Inverse kinematics, Iterative algorithm, Wrist offset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4152
1252 Further Thoughtson a Sequential Life Testing Approach Using an Inverse Weibull Model

Authors: D. I. De Souza, G. P. Azevedo, D. R. Fonseca

Abstract:

In this paper we will develop further the sequential life test approach presented in a previous article by [1] using an underlying two parameter Inverse Weibull sampling distribution. The location parameter or minimum life will be considered equal to zero. Once again we will provide rules for making one of the three possible decisions as each observation becomes available; that is: accept the null hypothesis H0; reject the null hypothesis H0; or obtain additional information by making another observation. The product being analyzed is a new electronic component. There is little information available about the possible values the parameters of the corresponding Inverse Weibull underlying sampling distribution could have.To estimate the shape and the scale parameters of the underlying Inverse Weibull model we will use a maximum likelihood approach for censored failure data. A new example will further develop the proposed sequential life testing approach.

Keywords: Sequential Life Testing, Inverse Weibull Model, Maximum Likelihood Approach, Hypothesis Testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
1251 Recovering the Boundary Data in the Two Dimensional Inverse Heat Conduction Problem Using the Ritz-Galerkin Method

Authors: Saeed Sarabadan, Kamal Rashedi

Abstract:

This article presents a numerical method to find the heat flux in an inhomogeneous inverse heat conduction problem with linear boundary conditions and an extra specification at the terminal. The method is based upon applying the satisfier function along with the Ritz-Galerkin technique to reduce the approximate solution of the inverse problem to the solution of a system of algebraic equations. The instability of the problem is resolved by taking advantage of the Landweber’s iterations as an admissible regularization strategy. In computations, we find the stable and low-cost results which demonstrate the efficiency of the technique.

Keywords: Inverse problem, parabolic equations, heat equation, Ritz-Galerkin method, Landweber iterations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1197
1250 Optimization of Inverse Kinematics of a 3R Robotic Manipulator using Genetic Algorithms

Authors: J. Ramírez A., A. Rubiano F.

Abstract:

In this paper the direct kinematic model of a multiple applications three degrees of freedom industrial manipulator, was developed using the homogeneous transformation matrices and the Denavit - Hartenberg parameters, likewise the inverse kinematic model was developed using the same method, verifying that in the workload border the inverse kinematic presents considerable errors, therefore a genetic algorithm was implemented to optimize the model improving greatly the efficiency of the model.

Keywords: Direct Kinematic, Genetic Algorithm, InverseKinematic, Optimization, Robot Manipulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3334
1249 Neural Adaptive Switching Control of Robotic Systems

Authors: A. Denker, U. Akıncıoğlu

Abstract:

In this paper a neural adaptive control method has been developed and applied to robot control. Simulation results are presented to verify the effectiveness of the controller. These results show that the performance by using this controller is better than those which just use either direct inverse control or predictive control. In addition, they show that the resulting is a useful method which combines the advantages of both direct inverse control and predictive control.

Keywords: Neural networks, robotics, direct inverse control, predictive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186
1248 Vendor Selection and Supply Quotas Determination by using Revised Weighting Method and Multi-Objective Programming Methods

Authors: Tunjo Perić, Marin Fatović

Abstract:

In this paper a new methodology for vendor selection and supply quotas determination (VSSQD) is proposed. The problem of VSSQD is solved by the model that combines revised weighting method for determining the objective function coefficients, and a multiple objective linear programming (MOLP) method based on the cooperative game theory for VSSQD. The criteria used for VSSQD are: (1) purchase costs and (2) product quality supplied by individual vendors. The proposed methodology has been tested on the example of flour purchase for a bakery with two decision makers.

Keywords: Cooperative game theory, multiple objective linear programming, revised weighting method, vendor selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
1247 An Inverse Heat Transfer Algorithm for Predicting the Thermal Properties of Tumors during Cryosurgery

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study aimed at developing an inverse heat transfer approach for predicting the time-varying freezing front and the temperature distribution of tumors during cryosurgery. Using a temperature probe pressed against the layer of tumor, the inverse approach is able to predict simultaneously the metabolic heat generation and the blood perfusion rate of the tumor. Once these parameters are predicted, the temperature-field and time-varying freezing fronts are determined with the direct model. The direct model rests on one-dimensional Pennes bioheat equation. The phase change problem is handled with the enthalpy method. The Levenberg-Marquardt Method (LMM) combined to the Broyden Method (BM) is used to solve the inverse model. The effect (a) of the thermal properties of the diseased tissues; (b) of the initial guesses for the unknown thermal properties; (c) of the data capture frequency; and (d) of the noise on the recorded temperatures is examined. It is shown that the proposed inverse approach remains accurate for all the cases investigated.

Keywords: Cryosurgery, inverse heat transfer, Levenberg-Marquardt method, thermal properties, Pennes model, enthalpy method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504