Search results for: Diammonium hydrogen phosphate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 353

Search results for: Diammonium hydrogen phosphate

353 Investigation of Dissolution in Diammonium Hydrogen Phosphate Solutions of Gypsum

Authors: Turan Çalban, Nursel Keskin, Sabri Çolak, Soner Kuşlu

Abstract:

Gypsum (CaSO4.2H2O) is a mineral that is found in large quantities in the Turkey and in the World. In this study, the dissolution of this mineral in the diammonium hydrogen phosphate solutions has been studied. The dissolution and dissolution kinetics of gypsum in diammonium hydrogen phosphate solutions will be useful for evaluating of solid wastes containing gypsum. Parameters such as diammonium hydrogen phosphate concentration, temperature and stirring speed affecting on the dissolution rate of the gypsum in diammonium hydrogen phosphate solutions were investigated. In experimental studies have researched effectiveness of the selected parameters. The dissolution of gypsum were examined in two parts at low and high temperatures. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solidfluid systems. The activation energy was found to be 34.58 kJ/mol and 44.45 kJ/mol for the low and the high temperatures. The dissolution of gypsum was controlled by chemical reaction both low temperatures and high temperatures.

Keywords: Diammonium hydrogen phosphate, Dissolution, Gypsum, Kinetics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
352 Dissolution Leaching Kinetics of Ulexite in Disodium Hydrogen Phosphate Solutions

Authors: Betül Özgenç Kaya, Soner Kuslu, Sabri Çolak, Turan Çalban

Abstract:

Ulexite (Na2O.2CaO.5B2O3.16H2O) is boron mineral that is found in large quantities in the Turkey and world. In this study, the dissolution of this mineral in the disodium hydrogen phosphate solutions has been studied. Temperature, concentration, stirring speed, solid liquid ratio and particle size were selected as parameters. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase the dissolution rate of ulexite. The activation energy was found to be 63.4 kJ/mol. The leaching of ulexite was controlled by chemical reaction.

Keywords: Disodium hydrogen phosphate, Leaching kinetics, Ulexite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
351 The Interaction between Hydrogen and Surface Stress in Stainless Steel

Authors: O. Takakuwa, Y. Mano, H. Soyama

Abstract:

This paper reveals the interaction between hydrogen and surface stress in austenitic stainless steel by X-ray diffraction stress measurement and thermal desorption analysis before and after being charged with hydrogen. The surface residual stress was varied by surface finishing using several disc polishing agents. The obtained results show that the residual stress near surface had a significant effect on hydrogen absorption behavior, that is, tensile residual stress promoted the hydrogen absorption and compressive one did opposite. Also, hydrogen induced equi-biaxial stress and this stress has a linear correlation with hydrogen content.

Keywords: Hydrogen embrittlement, Residual stress, Surface finishing, Stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3050
350 Hydrogen Integration in Petrochemical Complexes, Using Modified Automated Targeting Method

Authors: M. Shariati, N. Tahouni, A. Khoshgard, M.H. Panjeshahi

Abstract:

Owing to extensive use of hydrogen in refining or petrochemical units, it is essential to manage hydrogen network in order to make the most efficient utilization of hydrogen. On the other hand, hydrogen is an important byproduct not properly used through petrochemical complexes and mostly sent to the fuel system. A few works have been reported in literature to improve hydrogen network for petrochemical complexes. In this study a comprehensive analysis is carried out on petrochemical units using a modified automated targeting technique which is applied to determine the minimum hydrogen consumption. Having applied the modified targeting method in two petrochemical cases, the results showed a significant reduction in required fresh hydrogen.

Keywords: Automated targeting, Hydrogen network, Petrochemical, Process integration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
349 Carbon Nanotubes–A Successful Hydrogen Storage Medium

Authors: Vijaya Ilango, Avika Gupta

Abstract:

Hydrogen fuel is a zero-emission fuel which uses electrochemical cells or combustion in internal engines, to power vehicles and electric devices. Methods of   hydrogen storage for subsequent use span many approaches, including high pressures, cryogenics and chemical compounds that reversibly release H2 upon heating. Most research into hydrogen storage is focused on storing hydrogen as a lightweight, compact energy carrier for mobile applications. With the accelerating demand for cleaner and more efficient energy sources, hydrogen research has attracted more attention in the scientific community. Until now, full implementation of a hydrogen-based energy system has been hindered in part by the challenge of storing hydrogen gas, especially onboard an automobile. New techniques being researched may soon make hydrogen storage more compact, safe and efficient. In   this overview, few hydrogen storage methods and mechanism of hydrogen uptake in carbon nanotubes are summarized.

Keywords: Carbon nanotubes, Chemisorption, Hydrogen storage, Physisorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3156
348 Numerical Simulation of High Pressure Hydrogen Emerges to Air

Authors: Mohamed H. Elhsnawi, Mesbah M. Salem, Saleh B. Mohamed

Abstract:

Numerical simulation performed to investigate the behavior of the high pressure hydrogen jetting of air. High pressure hydrogen (30–40 MPa) was injected to air at atmospheric pressure through 2mm orifice. Numerical simulations were performed with Kiva3V code with 2D axisymmetric geometry. Numerical simulations showed that auto ignition of high pressure hydrogen to air are possible due to molecular diffusion. Auto ignition was predicted at hydrogen-air contact surface due to mass and energy exchange between high temperature hydrogen and air heated by shock wave.

Keywords: Spontaneous Ignition, Diffusion Ignition, Hydrogen ignition, Hydrogen Jet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909
347 The Effect of Application of Biological Phosphate Fertilizer (Fertile 2) and Triple Super Phosphate Chemical Fertilizers on Some Morphological Traits of Corn (SC704)

Authors: M. Mojaddam, M. Araei, T. Saki Nejad, M. Soltani Howyzeh

Abstract:

In order to study the effect of different levels of triple super phosphate chemical fertilizer and biological phosphate fertilizer (fertile 2) on some morphological traits of corn this research was carried out in Ahvaz in 2002 as a factorial experiment in randomized complete block design with 4 replications). The experiment included two factors: first, biological phosphate fertilizer (fertile 2) at three levels of 0, 100, 200 g/ha; second, triple super phosphate chemical fertilizer at three levels of 0, 60, 90 kg/ha of pure phosphorus (P2O5). The obtained results indicated that fertilizer treatments had a significant effect on some morphological traits at 1% probability level. In this regard, P2B2 treatment (100 g/ha biological phosphate fertilizer (fertile 2) and 60 kg/ha triple super phosphate fertilizer) had the greatest plant height, stem diameter, number of leaves and ear length. It seems that in Ahvaz weather conditions, decrease of consumption of triple superphosphate chemical fertilizer to less than a half along with the consumption of biological phosphate fertilizer (fertile 2) is highly important in order to achieve optimal results. Therefore, it can be concluded that biological fertilizers can be used as a suitable substitute for some of the chemical fertilizers in sustainable agricultural systems.

Keywords: Biological phosphate fertilizer, corn (SC704), morphological, triple super phosphate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
346 A Highly Sensitive Dip Strip for Detection of Phosphate in Water

Authors: Hojat Heidari-Bafroui, Amer Charbaji, Constantine Anagnostopoulos, Mohammad Faghri

Abstract:

Phosphorus is an essential nutrient for plant life which is most frequently found as phosphate in water. Once phosphate is found in abundance in surface water, a series of adverse effects on an ecosystem can be initiated. Therefore, a portable and reliable method is needed to monitor the phosphate concentrations in the field. In this paper, an inexpensive dip strip device with the ascorbic acid/antimony reagent dried on blotting paper along with wet chemistry is developed for the detection of low concentrations of phosphate in water. Ammonium molybdate and sulfuric acid are separately stored in liquid form so as to improve significantly the lifetime of the device and enhance the reproducibility of the device’s performance. The limit of detection and quantification for the optimized device are 0.134 ppm and 0.472 ppm for phosphate in water, respectively. The device’s shelf life, storage conditions, and limit of detection are superior to what has been previously reported for the paper-based phosphate detection devices.

Keywords: Phosphate detection, paper-based device, molybdenum blue method, colorimetric assay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 514
345 Estimation Method for the Construction of Hydrogen Society with Various Biomass Resources in Japan-Project of Cost Reductions in Biomass Transport and Feasibility for Hydrogen Station with Biomass-

Authors: Masaki Tajima, Kenji Imou, Shinya Yokoyama

Abstract:

It was determined that woody biomass and livestock excreta can be utilized as hydrogen resources and hydrogen produced from such sources can be used to fill fuel cell vehicles (FCVs) at hydrogen stations. It was shown that the biomass transport costs for hydrogen production may be reduced the costs for co-generation. In the Tokyo Metropolitan Area, there are only a few sites capable of producing hydrogen from woody biomass in amounts greater than 200 m3/h-the scale required for a hydrogen station to be operationally practical. However, in the case of livestock excreta, it was shown that 15% of the municipalities in this area are capable of securing sufficient biomass to be operationally practical for hydrogen production. The differences in feasibility of practical operation depend on the type of biomass.

Keywords: Biomass Resources, Hydrogen Production, Hydrogen Station, Transport Cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
344 Numerical Analysis of Hydrogen Transport using a Hydrogen-Enhanced Localized Plasticity Mechanism

Authors: Seul-Kee Kim, Chi-Seung Lee, Myung-Hyun Kim, Jae-Myung Lee

Abstract:

In this study, the hydrogen transport phenomenon was numerically evaluated by using hydrogen-enhanced localized plasticity (HELP) mechanisms. Two dominant governing equations, namely, the hydrogen transport model and the elasto-plastic model, were introduced. In addition, the implicitly formulated equations of the governing equations were implemented into ABAQUS UMAT user-defined subroutines. The simulation results were compared to published results to validate the proposed method.

Keywords: Hydrogen-enhanced localized plasticity (HELP), Hydrogen embrittlement, Hydrogen transport analysis, ABAQUS UMAT, Finite element method (FEM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428
343 Analysis of Phosphate in Wastewater Using an Autonomous Microfluidics-Based Analyser

Authors: John Cleary, Conor Slater, Dermot Diamond

Abstract:

A portable sensor for the analysis of phosphate in aqueous samples has been developed. The sensor incorporates microfluidic technology, colorimetric detection, and wireless communications into a compact and rugged portable device. The detection method used is the molybdenum yellow method, in which a phosphate-containing sample is mixed with a reagent containing ammonium metavanadate and ammonium molybdate in an acidic medium. A yellow-coloured compound is generated and the absorption of this compound is measured using a light emitting diode (LED) light source and a photodiode detector. The absorption is directly proportional to the phosphate concentration in the original sample. In this paper we describe the application of this phosphate sensor to the analysis of wastewater at a municipal wastewater treatment plant in Co. Kildare, Ireland.

Keywords: Microfluidic, phosphate, sensor, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2119
342 Effects of TiO2 and Nb2O5 on Hydrogen Desorption of Mg(BH4)2

Authors: Wipada Ploysuksai, Pramoch Rangsunvigit, Santi Kulprathipanja

Abstract:

In this work, effects of catalysts (TiO2, and Nb2O5) were investigated on the hydrogen desorption of Mg(BH4)2. LiBH4 and MgCl2 with 2:1 molar ratio were mixed by using ball milling to prepare Mg(BH4)2. The desorption behaviors were measured by thermo-volumetric apparatus. The hydrogen desorption capacity of the mixed sample milled for 2 h was 4.78 wt% with a 2-step released. The first step occurred at 214 °C and the second step appeared at 374 °C. The addition of 16 wt% Nb2O5 decreased the desorption temperature in the second step about 66 °C and increased the hydrogen desorption capacity to 4.86 wt% hydrogen. The addition of TiO2 also improved the desorption temperature in the second step and the hydrogen desorption capacity. It decreased the desorption temperature about 71°C and showed a high amount of hydrogen, 5.27 wt%, released from the mixed sample. The hydrogen absorption after desorption of Mg(BH4)2 was also studied under 9.5 MPa and 350 °C for 12 h.

Keywords: hydrogen storage, LiBH4, metal hydride, Mg(BH4)2

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
341 Preparation and Characterization of Calcium Phosphate Cement

Authors: W. Thepsuwan, N. Monmaturapoj

Abstract:

Calcium phosphate cement (CPC) is one of the most attractive bioceramics due to its moldable and shape ability to fill complicated bony cavities or small dental defect positions. In this study, CPC was produced by using mixture of tetracalcium phosphate (TTCP, Ca4O(PO4)2) and dicalcium phosphate anhydrous (DCPA, CaHPO4) in equimolar ratio (1/1) with aqueous solutions of acetic acid (C2H4O2) and disodium hydrogen phosphate dehydrate (Na2HPO4.2H2O) in combination with sodium alginate in order to improve theirs moldable characteristic. The concentration of the aqueous solutions and sodium alginate were varied to investigate the effect of different aqueous solutions and alginate on properties of the cements. The cement paste was prepared by mixing cement powder (P) with aqueous solution (L) in a P/L ratio of 1.0g/0.35ml. X-ray diffraction (XRD) was used to analyses phase formation of the cements. Setting time and compressive strength of the set CPCs were measured using the Gilmore apparatus and Universal testing machine, respectively. The results showed that CPCs could be produced by using both basic (Na2HPO4.2H2O) and acidic (C2H4O2) solutions. XRD results show the precipitation of hydroxyapatite in all cement samples. No change in phase formation among cements using difference concentrations of Na2HPO4.2H2O solutions. With increasing concentration of acidic solutions, samples obtained less hydroxyapatite with a high dicalcium phosphate dehydrate leaded to a shorter setting time. Samples with sodium alginate exhibited higher crystallization of hydroxyapatite than that of without alginate as a result of shorten setting time in a basic solution but a longer setting time in an acidic solution. The stronger cement was attained from samples using the acidic solution with sodium alginate; however the strength was lower than that of using the basic solution.

Keywords: Calcium phosphate cements, TTCP, DCPA, hydroxyapatite, properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2570
340 Simulation and Configuration of Hydrogen Assisted Renewable Energy Power System

Authors: V. Karri, W. K. Yap, J. Titchen

Abstract:

A renewable energy system discussed in this paper is a stand-alone wind-hydrogen system for a remote island in Australia. The analysis of an existing wind-diesel power system was performed. Simulation technique was used to model the power system currently employed on the island, and simulated different configurations of additional hydrogen energy system. This study aims to determine the suitable hydrogen integrated configuration to setting up the prototype system for the island, which helps to reduce the diesel consumption on the island. A set of configurations for the hydrogen system and associated parameters that consists of wind turbines, electrolysers, hydrogen internal combustion engines, and storage tanks has been purposed. The simulation analyses various configurations that perfectly balances the system to meet the demand on the island.

Keywords: Hydrogen power systems, hydrogen internal combustion engine, modeling and simulation of hydrogen power systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
339 Experimental Investigation of the Effect of Hydrogen Manifold Injection on the Performance of Compression Ignition Engines

Authors: Haroun A.K. Shahad, Nabeel Abdul-Hadi

Abstract:

Experiments were carried out to evaluate the influence of the addition of hydrogen to the inlet air on the performance of a single cylinder direct injection diesel engine. Hydrogen was injected in the inlet manifold. The addition of hydrogen was done on energy replacement basis. It was found that the addition of hydrogen improves the combustion process due to superior combustion characteristics of hydrogen in comparison to conventional diesel fuels. It was also found that 10% energy replacement improves the engine thermal efficiency by about 40% and reduces the sfc by about 35% however the volumetric efficiency was reduced by about 35%.

Keywords: Hydrogen, Blended fuel, Manifold injection , Performance , Combustion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145
338 Enhancing Protein Incorporation in Calcium Phosphate Coating on Titanium by Rapid Biomimetic Co-Precipitation Technique

Authors: J. Suwanprateeb, F. Thammarakcharoen

Abstract:

Calcium phosphate coating (CaP) has been employed for protein delivery, but the typical direct protein adsorption on the coating led to low incorporation content and fast release of the protein from the coating. By using bovine serum albumin (BSA) as a model protein, rapid biomimetic co-precipitation between calcium phosphate and BSA was employed to control the distribution of BSA within calcium phosphate coating during biomimetic formation on titanium surface for only 6 h at 50oC in an accelerated calcium phosphate solution. As a result, the amount of BSA incorporation and release duration could be increased by using a rapid biomimetic coprecipitation technique. Up to 43 fold increases in the BSA incorporation content and the increase from 6 h to more than 360 h in release duration compared to typical direct adsorption technique were observed depending on the initial BSA concentration used during coprecipitation (1, 10 and 100 μg.ml-1). From x-ray diffraction and Fourier transform infrared spectroscopy studies, the coating composition was not altered with the incorporation of BSA by this rapid biomimetic co-precipitation and mainly comprised octacalcium phosphate and hydroxyapatite. However, the microstructure of calcium phosphate crystals changed from straight, plate-like units to curved, plate-like units with increasing BSA content.

Keywords: Biomimetic, Calcium Phosphate Coating, Protein, Titanium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2378
337 Investigating the Effects of Hydrogen on Wet Cement for Underground Hydrogen Storage Applications in Oil and Gas Wells

Authors: Hamoud Al-Hadrami, Hossein Emadi, Athar Hussain

Abstract:

Green hydrogen is quickly emerging as a new source of the renewable energy for the world. Hydrogen production using water electrolysis is deemed as an environmentally friendly and safe source of energy for transportation and other industries. However, storing high volumes of hydrogen seems to be a significant challenge. Abandoned hydrocarbon reservoirs are considered as viable hydrogen storage options because of the availability of the required infrastructure such as wells and surface facilities. However, long-term wellbore integrity in these wells could be a serious challenge. The aim of this research is to investigate the effect of stored hydrogen on the wellbore integrity such as casing cement. The methodology is to experimentally expose hydrogen to wet and dry cement and measure the impact on cement rheological and mechanical properties. Hydrogen reduces the compressive strength of a set cement if it gets in contact with the cement slurry. Also, mixing hydrogen with cement slurry slightly increases its density and rheological properties which need to be considered to have a successful primary cementing operation.

Keywords: Green hydrogen, underground storage, wellbore integrity, cement, compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 651
336 Electrolysis Ship for Green Hydrogen Production and Possible Applications

Authors: Julian David Hunt, Andreas Nascimento

Abstract:

Green hydrogen is the most environmental, renewable alternative to produce hydrogen. However, an important challenge to make hydrogen a competitive energy carrier is a constant supply of renewable energy, such as solar, wind and hydropower. Given that the electricity generation potential of these sources vary seasonally and interannually, this paper proposes installing an electrolysis hydrogen production plant in a ship and move the ship to the locations where electricity is cheap, or where the seasonal potential for renewable generation is high. An example of electrolysis ship application is to produce green hydrogen with hydropower from the North region of Brazil and then sail to the Northeast region of Brazil and generate hydrogen using excess electricity from offshore wind power. The electrolysis ship concept is interesting because it has the flexibility to produce green hydrogen using the cheapest renewable electricity available in the market.

Keywords: Green hydrogen, electrolysis ship, renewable energies, seasonal variations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 741
335 Contaminated Soil Remediation with Hydrogen Peroxide Oxidation

Authors: A. Goi, M. Trapido, N. Kulik

Abstract:

The hydrogen peroxide treatment was able to remediate chlorophenols, polycyclic aromatic hydrocarbons, diesel and transformer oil contaminated soil. Chemical treatment of contaminants adsorbed in peat resulted in lower contaminants- removal and required higher addition of chemicals than the treatment of contaminants in sand. The hydrogen peroxide treatment was found to be feasible for soil remediation at natural soil pH. Contaminants in soil could degrade with the addition of hydrogen peroxide only indicating the ability of transition metals ions and minerals of these metals presented in soil to catalyse the reaction of hydrogen peroxide decomposition.

Keywords: Hydrogen peroxide, oxidation, soil treatment, decontamination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4394
334 Photovoltaic Array Sizing for PV-Electrolyzer

Authors: Panhathai Buasri

Abstract:

Hydrogen that used as fuel in fuel cell vehicles can be produced from renewable sources such as wind, solar, and hydro technologies. PV-electrolyzer is one of the promising methods to produce hydrogen with zero pollution emission. Hydrogen production from a PV-electrolyzer system depends on the efficiency of the electrolyzer and photovoltaic array, and sun irradiance at that site. In this study, the amount of hydrogen is obtained using mathematical equations for difference driving distance and sun peak hours. The results show that the minimum of 99 PV modules are used to generate 1.75 kgH2 per day for two vehicles.

Keywords: About four key words or phrases in alphabetical order, separated by commas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
333 Hydrogen Sensor Based on Surface Activated WO3 Films by Pd Nanoclusters

Authors: S.Fardindoost, A. Iraji Zad, S.M.Mahdavi

Abstract:

Tungsten trioxide has been prepared by using P-PTA as a precursor on alumina substrates by spin coating method. Palladium introduced on WO3 film via electrolysis deposition by using palladium chloride as catalytic precursor. The catalytic precursor was introduced on the series of films with different morphologies. X-ray diffractometry (XRD), Scanning electron microscopy (SEM) and XPS were applied to analyze structure and morphology of the fabricated thin films. Then we measured variation of samples- electrical conductivity of pure and Pd added films in air and diluted hydrogen. Addition of Pd resulted in a remarkable improvement of the hydrogen sensing properties of WO3 by detection of Hydrogen below 1% at room temperature. Also variation of the electrical conductivity in the presence of diluted hydrogen revealed that response of samples depends rather strongly on the palladium configuration on the surface.

Keywords: Electrolysis, Hydrogen sensing, Palladium, WO3

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192
332 Hydrogen Production from Alcohol Wastewater by Upflow Anaerobic Sludge Blanket Reactors under Mesophilic Temperature

Authors: Thipsalin Poontaweegeratigarn, Sumaeth Chavadej, Pramoch Rangsunvigit

Abstract:

In this work, biohydrogen production via dark fermentation from alcohol wastewater using upflow anaerobic sludge blanket reactors (UASB) with a working volume of 4 L was investigated to find the optimum conditions for a maximum hydrogen yield. The system was operated at different COD loading rates (23, 31, 46 and 62 kg/m3d) at mesophilic temperature (37 ºC) and pH 5.5. The seed sludge was pretreated before being fed to the UASB system by boiling at 95 ºC for 15 min. When the system was operated under the optimum COD loading rate of 46 kg/m3d, it provided the hydrogen content of 27%, hydrogen yield of 125.1 ml H2/g COD removed and 95.1 ml H2/g COD applied, hydrogen production rate of 18 l/d, specific hydrogen production rate of 1080 ml H2/g MLVSS d and 1430 ml H2/ L d, and COD removal of 24%.

Keywords: Hydrogen production, Upflow anaerobic sludge blanket reactor (UASB), Optimum condition, Alcohol wastewater

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
331 Combustion and Emission of a Compression Ignition Engine Fueled with Diesel and Hydrogen-Methane Mixture

Authors: J. H. Zhou, C. S. Cheung, C. W. Leung

Abstract:

The present study conducted experimental investigation on combustion and emission characteristics of compression ignition engine using diesel as pilot fuel and methane, hydrogen and methane/hydrogen mixture as gaseous fuels at 1800 rev min-1. The effect of gaseous fuel on peak cylinder pressure and heat release is modest at low to medium loads. At high load, the high combustion temperature and high quantity of pilot fuel contribute to better combustion efficiency for all kinds of gaseous fuels and increases the peak cylinder pressure. Enrichment of hydrogen in methane gradually increases the peak cylinder pressure. The brake thermal efficiency increases with higher hydrogen fraction at lower loads. Hydrogen addition in methane contributed to a proportional reduction of CO/CO2/HC emission without penalty of NOx. For particulate emission, methane and hydrogen, could both suppress the particle emission. 30% hydrogen fraction in methane is observed to be best in reducing the particulate emission.

Keywords: Combustion characteristics, diesel engine, emissions, methane/hydrogen mixture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3695
330 High Temperature Hydrogen Sensors Based On Pd/Ta2O5/SiC MOS Capacitor

Authors: J. H. Choi, S. J. Kim, M. S. Jung, S. J. Kim, S. J. Joo, S. C. Kim

Abstract:

There are a many of needs for the development of SiC-based hydrogen sensor for harsh environment applications. We fabricated and investigated Pd/Ta2O5/SiC-based hydrogen sensors with MOS capacitor structure for high temperature process monitoring and leak detection applications in such automotive, chemical and petroleum industries as well as direct monitoring of combustion processes. In this work, we used silicon carbide (SiC) as a substrate to replace silicon which operating temperatures are limited to below 200°C. Tantalum oxide was investigated as dielectric layer which has high permeability for hydrogen gas and high dielectric permittivity, compared with silicon dioxide or silicon nitride. Then, electrical response properties, such as I-V curve and dependence of capacitance on hydrogen concentrations were analyzed in the temperature ranges of room temperature to 500°C for performance evaluation of the sensor.

Keywords: High temperature, hydrogen sensor, SiC, Ta2O5 dielectric layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
329 Hydrogen Embrittlement in a Coupled Mass Diffusion with Stress near a Blunting Crack Tip for AISI 4135 Pressure Vessel

Authors: H. Dehghan, E. Mahdavi, M. M. Heyhat

Abstract:

In pressure vessels contain hydrogen, the role of hydrogen will be important because of hydrogen cracking problem. It is difficult to predict what is happened in metallurgical field spite of a lot of studies have been searched. The main role in controlling the mass diffusion as driving force is related to stress. In this study, finite element analysis is implemented to estimate material-s behavior associated with hydrogen embrittlement. For this purpose, one model of a pressure vessel is introduced that it has definite boundary and initial conditions. In fact, finite element is employed to solve the sequentially coupled mass diffusion with stress near a crack front in a pressure vessel. Modeling simulation intergrarnular fracture of AISI 4135 steel due to hydrogen is investigated. So, distribution of hydrogen and stress are obtained and they indicate that their maximum amounts occur near the crack front. This phenomenon is happened exactly the region between elastic and plastic field. Therefore, hydrogen is highly mobile and can diffuse through crystal lattice so that this zone is potential to trap high volume of hydrogen. Consequently, crack growth and fast fracture will be happened.

Keywords: Stress Intensity Factor, Mass Diffusion, FEM, Pressure Vessel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3077
328 Hydrogen Production by Gasification of Biomass from Copoazu Waste

Authors: Emilio Delgado, William Aperador, Alis Pataquiva

Abstract:

Biomass is becoming a large renewable resource for power generation; it is involved in higher frequency in environmentally clean processes, and even it is used for biofuels preparation. On the other hand, hydrogen – other energy source – can be produced in a variety of methods including gasification of biomass. In this study, the production of hydrogen by gasification of biomass waste is examined. This work explores the production of a gaseous mixture with high power potential from Amazonas´ specie known as copoazu, using a counter-flow fixed-bed bioreactor.

Keywords: Copoazu, Gasification, Hydrogen production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
327 Atoms in Molecules, An Other Method For Analyzing Dibenzoylmethane

Authors: S. Heydarian

Abstract:

Proton transfer and hydrogen bonding are two aspects of the chemistry of hydrogen that respectively govern the behaviour and structure of many molecules, both simple and complex. All the theoretical enol and keto conformations of 1,3-diphenyl-1,3- propandion known as dibenzoylmethane (DBM), have been investigated by means of atoms in molecules (AIM) theory. It was found that the most stable conformers are those stabilized by hydrogen bridges.The aim of the present paper is a thorough conformational analysis of DBM (with special attention on chelated cis-enol conformers) in order to obtain detailed information on the geometrical parameters, relative stabilities and rotational motion of the phenyl groups. It is also important to estimate the barrier height for ptoton transfer and hydrogen bond strength, which are the main factors governing conformational stability.

Keywords: Acetylacetone, Atoms in molecules, Dibenzoylmethane, Intramolecular hydrogen bond, Resonanceconjugation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
326 Enhanced Photocatalytic Hydrogen Production on TiO2 by Using Carbon Materials

Authors: Bashir Ahmmad, Kensaku Kanomata, Fumihiko Hirose

Abstract:

The effect of carbon materials on TiO2 for the photocatalytic hydrogen gas production from water / alcohol mixtures was investigated. Single walled carbon nanotubes (SWNTs), multi walled carbon nanotubes (MWNTs), carbon nanofiber (CNF), fullerene (FLN), graphite (GP), and graphite silica (GS) were used as co-catalysts by directly mixing with TiO2. Drastic synergy effects were found with increase in the amount of hydrogen gas by a factor of ca. 150 and 100 for SWNTs and GS with TiO2, respectively. Moreover, the increment factor of hydrogen production reached to 180, when the mixture of SWNTs and TiO2 were smashed in an agate mortar before photocatalytic reactions. The order of H2 gas production for these carbon materials was SWNTs > GS >> MWNTs > FLN > CNF > GP. To maximize the hydrogen production from SWNTs/TiO2, various parameters of experimental condition were changed. Also, a comparison between Pt/TiO2, SWNTs/TiO2 and GS/TiO2 was made for the amount of H2 gas production. Finally, the recyclability of SWNTs/TiO2or GS/TiO2 was tested.

Keywords: Photocatalysis, carbon materials, alcohol reforming, hydrogen production, titanium oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3989
325 The Relationship between Fugacity and Stress Intensity Factor for Corrosive Environment in Presence of Hydrogen Embrittlement

Authors: A. R. Shahani, E. Mahdavi, M. Amidpour

Abstract:

Hydrogen diffusion is the main problem for corrosion fatigue in corrosive environment. In order to analyze the phenomenon, it is needed to understand their behaviors specially the hydrogen behavior during the diffusion. So, Hydrogen embrittlement and prediction its behavior as a main corrosive part of the fractions, needed to solve combinations of different equations mathematically. The main point to obtain the equation, having knowledge about the source of causing diffusion and running the atoms into materials, called driving force. This is produced by either gradient of electrical or chemical potential. In this work, we consider the gradient of chemical potential to obtain the property equation. In diffusion of atoms, some of them may be trapped but, it could be ignorable in some conditions. According to the phenomenon of hydrogen embrittlement, the thermodynamic and chemical properties of hydrogen are considered to justify and relate them to fracture mechanics. It is very important to get a stress intensity factor by using fugacity as a property of hydrogen or other gases. Although, the diffusive behavior and embrittlement event are common and the same for other gases but, for making it more clear, we describe it for hydrogen. This considering on the definite gas and describing it helps us to understand better the importance of this relation.

Keywords: Hydrogen embrittlement, Fracture mechanics, Thermodynamic, Stress intensity factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961
324 Biosynthesis of Silver-Phosphate Nanoparticles Using the Extracellular Polymeric Substance of Sporosarcina pasteurii

Authors: Mohammadhosein Rahimi, Mohammad Raouf Hosseini, Mehran Bakhshi, Alireza Baghbanan

Abstract:

Silver ions (Ag+) and their compounds are consequentially toxic to microorganisms, showing biocidal effects on many species of bacteria. Silver-phosphate (or silver orthophosphate) is one of these compounds, which is famous for its antimicrobial effect and catalysis application. In the present study, a green method was presented to synthesis silver-phosphate nanoparticles using Sporosarcina pasteurii. The composition of the biosynthesized nanoparticles was identified as Ag3PO4 using X-ray Diffraction (XRD) and Energy Dispersive Spectroscopy (EDS). Also, Fourier Transform Infrared (FTIR) spectroscopy showed that Ag3PO4 nanoparticles was synthesized in the presence of biosurfactants, enzymes, and proteins. In addition, UV-Vis adsorption of the produced colloidal suspension approved the results of XRD and FTIR analyses. Finally, Transmission Electron Microscope (TEM) images indicated that the size of the nanoparticles was about 20 nm.

Keywords: Bacteria, biosynthesis, silver-phosphate, Sporosarcina pasteurii, nanoparticle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277