Search results for: Ashly Joseph
90 Demystifying Full-Stack Observability: Mastering Visibility, Insight, and Action in the Modern Digital Landscape
Authors: Ashly Joseph
Abstract:
In the era of digital transformation, full-stack observability has emerged as a crucial aspect of administering modern application stacks. This research paper presents the concept of full-stack observability, its significance in the context of contemporary application stacks, and the challenges posed by swiftly evolving digital environments. In addition, it describes how full-stack observability intends to provide complete visibility and actionable insights by correlating telemetry across multiple domains.
Keywords: Actionable insights, digital transformation, full-stack observability, performance metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23489 A Holistic Framework for Unifying Data Security and Management in Modern Enterprises
Authors: Ashly Joseph
Abstract:
Modern businesses struggle significantly to secure and manage their data properly as the volume and complexity of their data both expand exponentially. Through the use of a multi-layered defense strategy, a centralized management platform, and cutting-edge technologies like AI, this research paper presents a comprehensive framework to integrate data security and management. The constraints of current data protection and management strategies, technological advancements, and the evolving threat landscape are all examined in this article. It suggests best practices for putting into practice integrated data security and governance models, placing an emphasis on ongoing adaptation. The advantages mentioned include a strengthened security posture, simpler procedures, lower costs, and reduced complexity. Additionally, issues including skill shortages, antiquated systems, and cultural obstacles are examined. Security executives and Chief Information Security Officers are given practical advice on how to evaluate, plan, and put into place strong data-centric security and management capabilities. The goal of the paper is to provide a thorough study of the data security and management landscape and to arm contemporary businesses with the knowledge they need to be proactive in protecting their data assets.
Keywords: Data security, security management, cloud computing, cybersecurity, data governance, security architecture, data management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27588 Harnessing the Power of AI: Transforming DevSecOps for Enhanced Cloud Security
Authors: Ashly Joseph, Jithu Paulose
Abstract:
The increased usage of cloud computing has revolutionized the IT landscape, but it has also raised new security concerns. DevSecOps emerged as a way for tackling these difficulties by integrating security into the software development process. However, the rising complexity and sophistication of cyber threats need more advanced solutions. This paper looks into the usage of artificial intelligence (AI) techniques in the DevSecOps framework to increase cloud security. This study uses quantitative and qualitative techniques to assess the usefulness of AI approaches such as machine learning, natural language processing, and deep learning in reducing security issues. This paper thoroughly examines the symbiotic relationship between AI and DevSecOps, concentrating on how AI may be seamlessly integrated into the continuous integration and continuous delivery (CI/CD) pipeline, automated security testing, and real-time monitoring methods. The findings emphasize AI's huge potential to improve threat detection, risk assessment, and incident response skills. Furthermore, the paper examines the implications and challenges of using AI in DevSecOps workflows, considering factors like as scalability, interpretability, and adaptability. This paper adds to a better understanding of AI's revolutionary role in cloud security and provides valuable insights for practitioners and scholars in the field.
Keywords: Cloud Security, DevSecOps, Artificial Intelligence, AI, Machine Learning, Natural Language Processing, NLP, cybersecurity, AI-driven Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14187 AI-Driven Cloud Security: Proactive Defense Against Evolving Cyber Threats
Authors: Ashly Joseph
Abstract:
Cloud computing has become an essential component of enterprises and organizations globally in the current era of digital technology. The cloud has a multitude of advantages, including scalability, flexibility, and cost-effectiveness, rendering it an appealing choice for data storage and processing. The increasing storage of sensitive information in cloud environments has raised significant concerns over the security of such systems. The frequency of cyber threats and attacks specifically aimed at cloud infrastructure has been increasing, presenting substantial dangers to the data, reputation, and financial stability of enterprises. Conventional security methods can become inadequate when confronted with ever intricate and dynamic threats. Artificial Intelligence (AI) technologies possess the capacity to significantly transform cloud security through their ability to promptly identify and thwart assaults, adjust to emerging risks, and offer intelligent perspectives for proactive security actions. The objective of this research study is to investigate the utilization of AI technologies in augmenting the security measures within cloud computing systems. This paper aims to offer significant insights and recommendations for businesses seeking to protect their cloud-based assets by analyzing the present state of cloud security, the capabilities of AI, and the possible advantages and obstacles associated with using AI into cloud security policies.
Keywords: Machine Learning, Natural Learning Processing, Denial-of-Service attacks, Sentiment Analysis, Cloud computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20086 Detecting Fake News: A Natural Language Processing, Reinforcement Learning, and Blockchain Approach
Authors: Ashly Joseph, Jithu Paulose
Abstract:
In an era where misleading information may quickly circulate on digital news channels, it is crucial to have efficient and trustworthy methods to detect and reduce the impact of misinformation. This research proposes an innovative framework that combines Natural Language Processing (NLP), Reinforcement Learning (RL), and Blockchain technologies to precisely detect and minimize the spread of false information in news articles on social media. The framework starts by gathering a variety of news items from different social media sites and performing preprocessing on the data to ensure its quality and uniformity. NLP methods are utilized to extract complete linguistic and semantic characteristics, effectively capturing the subtleties and contextual aspects of the language used. These features are utilized as input for a RL model. This model acquires the most effective tactics for detecting and mitigating the impact of false material by modeling the intricate dynamics of user engagements and incentives on social media platforms. The integration of blockchain technology establishes a decentralized and transparent method for storing and verifying the accuracy of information. The Blockchain component guarantees the unchangeability and safety of verified news records, while encouraging user engagement for detecting and fighting false information through an incentive system based on tokens. The suggested framework seeks to provide a thorough and resilient solution to the problems presented by misinformation in social media articles.
Keywords: Natural Language Processing, Reinforcement Learning, Blockchain, fake news mitigation, misinformation detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9385 Data Privacy and Safety with Large Language Models
Authors: Ashly Joseph, Jithu Paulose
Abstract:
Large language models (LLMs) have revolutionized natural language processing capabilities, enabling applications such as chatbots, dialogue agents, image, and video generators. Nevertheless, their trainings on extensive datasets comprising personal information poses notable privacy and safety hazards. This study examines methods for addressing these challenges, specifically focusing on approaches to enhance the security of LLM outputs, safeguard user privacy, and adhere to data protection rules. We explore several methods including post-processing detection algorithms, content filtering, reinforcement learning from human and AI inputs, and the difficulties in maintaining a balance between model safety and performance. The study also emphasizes the dangers of unintentional data leakage, privacy issues related to user prompts, and the possibility of data breaches. We highlight the significance of corporate data governance rules and optimal methods for engaging with chatbots. In addition, we analyze the development of data protection frameworks, evaluate the adherence of LLMs to General Data Protection Regulation (GDPR), and examine privacy legislation in academic and business policies. We demonstrate the difficulties and remedies involved in preserving data privacy and security in the age of sophisticated artificial intelligence by employing case studies and real-life instances. This article seeks to educate stakeholders on practical strategies for improving the security and privacy of LLMs, while also assuring their responsible and ethical implementation.
Keywords: Data privacy, large language models, artificial intelligence, machine learning, cybersecurity, general data protection regulation, data safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11984 Migrating Words and Voices in Joseph O’Neill’s Netherland and The Dog
Authors: Masami Usui
Abstract:
The 21th century has already witnessed the rapid globalization of catastrophes caused by layered political, social, religious, cultural, and environmental conflicts. The post 9/11 literature that reflects these characteristics retells the experiences of those who are, whether directly or indirectly, involved in the globalized catastrophes of enlarging and endangering their boundaries and consequences. With an Irish-Turkish origin, a Dutch and British educational background, and as an American green-card holder, Joseph O’Neill challenges this changing circumstances of the expanding crisis. In his controversial novel, Netherland (2008), O’Neill embodies the deeply-rooted compromises, the transplanted conflicts, and human internalized crisis in post 9/11 New York City. O’Neill presents to us the transition between Netherland to New York with a post-colonial perspective. This internalized conflicts are revised in The Dog (2014) in which a newly-constructing and expanding global city of gold, Dubai, represents the transitional location from New York City. Through these two novels, words and voices are migrating beyond cultural and political boundaries and discussing what a collective mind embodies in this globalized society.Keywords: American literature, global literature, cultural studies, political science.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162883 Solution of The KdV Equation with Asymptotic Degeneracy
Authors: Tapas Kumar Sinha, Joseph Mathew
Abstract:
Recently T. C. Au-Yeung, C.Au, and P. C. W. Fung [2] have given the solution of the KdV equation [1] to the boundary condition , where b is a constant. We have further extended the method of [2] to find the solution of the KdV equation with asymptotic degeneracy. Via simulations we find both bright and dark Solitons (i.e. Solitons with opposite phases).
Keywords: KdV equation, Asymptotic Degeneracy, Solitons, Inverse Scattering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162282 Solitons in Nonlinear Optical Lattices
Authors: Tapas Kumar Sinha, Joseph Mathew
Abstract:
Based on the Lagrangian for the Gross –Pitaevskii equation as derived by H. Sakaguchi and B.A Malomed [5] we have derived a double well model for the nonlinear optical lattice. This model explains the various features of nonlinear optical lattices. Further, from this model we obtain and simulate the probability for tunneling from one well to another which agrees with experimental results [4].Keywords: Double well model, nonlinear optical lattice, Solitons, tunneling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152181 A Brief Review on Recent Trends in Alternative Sources of Energy
Authors: Divya S., Jibin Joseph
Abstract:
Alternative energy is any energy source that is an alternative to fossil fuel. These alternatives are intended to address concerns about such fossil fuels. Today, because of the variety of energy choices and differing goals of their advocates, defining some energy types as "alternative" is highly controversial. Most of the recent and existing alternative sources of energy are discussed below
Keywords: Athra Quinone Disulphonic Acid (AQDS), Renewable Methanol (RM), Solid Oxide Fuel Cell (SOFC), Maximum Power Point Tracking (MPPT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 255480 U.S. Supreme Court Justices and Partisanship: Support for the President and Solicitor General
Authors: James Meernik, Joseph Ignagni, Rebecca Deen
Abstract:
This paper analyzes the extent to which the justices of the U.S. Supreme Court cast votes that support the positions of the president, or more generally the Executive Branch. Can presidents count on such deference from those justices they nominate or those whom are nominated by other presidents of the same party? Or, do the justices demonstrate judicial independence and impartiality such that they are not so predisposed to vote in favor of arguments of their nominating president-s party? The results suggest that while in general the justices do not exhibit any marked tendency to partisan support of presidents, more recent and conservative Supreme Court justices are significantly more likely to support Republican presidents.Keywords: Separation of Powers, Solicitor General, U.S. President
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142079 Response Surface Methodology for Optimum Hardness of TiN on Steel Substrate
Authors: R. Joseph Raviselvan, K. Ramanathan, P. Perumal, M. R. Thansekhar
Abstract:
Hard coatings are widely used in cutting and forming tool industries. Titanium Nitride (TiN) possesses good hardness, strength, and corrosion resistance. The coating properties are influenced by many process parameters. The coatings were deposited on steel substrate by changing the process parameters such as substrate temperature, nitrogen flow rate and target power in a D.C planer magnetron sputtering. The structure of coatings were analysed using XRD. The hardness of coatings was found using Micro hardness tester. From the experimental data, a regression model was developed and the optimum response was determined using Response Surface Methodology (RSM).Keywords: Hardness, RSM, sputtering, TiN XRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158078 Optimizing Machine Vision System Setup Accuracy by Six-Sigma DMAIC Approach
Authors: Joseph C. Chen
Abstract:
Machine vision system provides automatic inspection to reduce manufacturing costs considerably. However, only a few principles have been found to optimize machine vision system and help it function more accurately in industrial practice. Mostly, there were complicated and impractical design techniques to improve the accuracy of machine vision system. This paper discusses implementing the Six Sigma Define, Measure, Analyze, Improve, and Control (DMAIC) approach to optimize the setup parameters of machine vision system when it is used as a direct measurement technique. This research follows a case study showing how Six Sigma DMAIC methodology has been put into use.
Keywords: DMAIC, machine vision system, process capability, Taguchi parameter design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125477 Concept of Automation in Management of Electric Power Systems
Authors: Richard Joseph, Nerey Mvungi
Abstract:
An electric power system includes a generating, a transmission, a distribution, and consumers subsystems. An electrical power network in Tanzania keeps growing larger by the day and become more complex so that, most utilities have long wished for real-time monitoring and remote control of electrical power system elements such as substations, intelligent devices, power lines, capacitor banks, feeder switches, fault analyzers and other physical facilities. In this paper, the concept of automation of management of power systems from generation level to end user levels was determined by using Power System Simulator for Engineering (PSS/E) version 30.3.2.
Keywords: Automation, Distribution subsystem, Generating subsystem, PSS/E, TANESCO, Transmission subsystem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 360876 Determination of Alkaline Protease Production In Serratia Marcescens Sp7 Using Agro Wastes As Substrate Medium, Optimization Of Production Parameters And Purification Of The Enzyme
Authors: Baby Joseph, Sankarganesh Palaniyandi
Abstract:
The enzyme alkaline protease production was determined under solid state fermentation using the soil bacteria Serratia marcescens sp7. The maximum production was obtained from wheat bran medium than ground nut shell and chemically defined medium. The physiological fermentation factors such as pH of the medium (pH 8), Temperature (40oC) and incubation time (48 hrs) played a vital role in alkaline protease production in all the above. 100Mm NaCl has given better resolution during elution of the enzymes. The enzyme production was found to be associated with growth of the bacterial culture.Keywords: Alkaline protease, Wheat bran, Ground nut shell, Serratia marcescens
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 251775 Robust Variogram Fitting Using Non-Linear Rank-Based Estimators
Authors: Hazem M. Al-Mofleh, John E. Daniels, Joseph W. McKean
Abstract:
In this paper numerous robust fitting procedures are considered in estimating spatial variograms. In spatial statistics, the conventional variogram fitting procedure (non-linear weighted least squares) suffers from the same outlier problem that has plagued this method from its inception. Even a 3-parameter model, like the variogram, can be adversely affected by a single outlier. This paper uses the Hogg-Type adaptive procedures to select an optimal score function for a rank-based estimator for these non-linear models. Numeric examples and simulation studies will demonstrate the robustness, utility, efficiency, and validity of these estimates.
Keywords: Asymptotic relative efficiency, non-linear rank-based, robust, rank estimates, variogram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158574 Gas Pressure Evaluation through Radial Velocity Measurement of Fluid Flow Modeled by Drift Flux Model
Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes
Abstract:
In this paper, we consider a drift flux mixture model of the blood flow. The mixture consists of gas phase which is carbon dioxide and liquid phase which is an aqueous carbon dioxide solution. This model was used to determine the distributions of the mixture velocity, the mixture pressure, and the carbon dioxide pressure. These theoretical data are used to determine a measurement method of mean gas pressure through the determination of radial velocity distribution. This method can be applicable in experimental domain.
Keywords: Mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 124873 Automatic Generation Control of an Interconnected Power System with Capacitive Energy Storage
Authors: Rajesh Joseph Abraham, D. Das, Amit Patra
Abstract:
This paper is concerned with the application of small rating Capacitive Energy Storage units for the improvement of Automatic Generation Control of a multiunit multiarea power system. Generation Rate Constraints are also considered in the investigations. Integral Squared Error technique is used to obtain the optimal integral gain settings by minimizing a quadratic performance index. Simulation studies reveal that with CES units, the deviations in area frequencies and inter-area tie-power are considerably improved in terms of peak deviations and settling time as compared to that obtained without CES units.Keywords: Automatic Generation Control, Capacitive EnergyStorage, Integral Squared Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 279872 A Stochastic Approach to Extreme Wind Speeds Conditions on a Small Axial Wind Turbine
Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph
Abstract:
In this paper, to model a real life wind turbine, a probabilistic approach is proposed to model the dynamics of the blade elements of a small axial wind turbine under extreme stochastic wind speeds conditions. It was found that the power and the torque probability density functions even-dough decreases at these extreme wind speeds but are not infinite. Moreover, we also fund that it is possible to stabilize the power coefficient (stabilizing the output power)above rated wind speeds by turning some control parameters. This method helps to explain the effect of turbulence on the quality and quantity of the harness power and aerodynamic torque.Keywords: Probability, Stochastic, Probability density function, Turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174571 Differentiation of Heart Rate Time Series from Electroencephalogram and Noise
Authors: V. I. Thajudin Ahamed, P. Dhanasekaran, Paul Joseph K.
Abstract:
Analysis of heart rate variability (HRV) has become a popular non-invasive tool for assessing the activities of autonomic nervous system. Most of the methods were hired from techniques used for time series analysis. Currently used methods are time domain, frequency domain, geometrical and fractal methods. A new technique, which searches for pattern repeatability in a time series, is proposed for quantifying heart rate (HR) time series. These set of indices, which are termed as pattern repeatability measure and pattern repeatability ratio are able to distinguish HR data clearly from noise and electroencephalogram (EEG). The results of analysis using these measures give an insight into the fundamental difference between the composition of HR time series with respect to EEG and noise.Keywords: Approximate entropy, heart rate variability, noise, pattern repeatability, and sample entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173470 The Efficacy of Technology in Enhancing the Development and Learning of Children (0 – 5 Years)
Authors: Adesina, Olusola Joseph
Abstract:
The use of Technological tools in the classroom setting has drawn the interest of researchers all over the world in the recent time. Technology has been identified in the recent time as potentials tools to aid learning especially during early childhood stage. The main objective of this is to assist the upcoming younger generations to acquire necessary skills for cognitive development which later enhances effective teaching learning process. The integration of Technology in early childhood requires a careful selection of devices that will both assist the children and the teachers or care givers. This paper therefore, examines some selected literature evidences and highlighted the efficacy of various technologies tools in enhancing the development and learning of children (0 – 5 years). Conclusion and recommendations were also drawn in this paper.
Keywords: Development, Efficacy, Learning, Technological Device.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152569 Performance Assessment of GSO Satellite before and after Enhancing Pointing Effect
Authors: A. E. Emam, Joseph Victor, M. Abd Elghany
Abstract:
This paper presents the effect of the orbit inclination on the pointing error of the satellite antenna and consequently on its footprint on earth for a typical Ku- band payload system. The performance assessment is examined using both analytical simulations and practical measurements, taking into account all the additional sources of the pointing errors, such as East-West station keeping, orbit eccentricity, and actual attitude control performance. An implementation and computation of the sinusoidal biases in satellite roll and pitch used to compensate the pointing error of the satellite antenna coverage is studied and evaluated before and after the pointing corrections performed. A method for evaluation of the performance of the implemented biases has been introduced through measuring satellite received level from a mono-pulse tracking 11.1m transmitting antenna before and after the implementation of the pointing corrections.Keywords: Satellite, inclined orbit, pointing errors, coverage optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175868 Adoption and Diffusion of E-Government Services in India: The Impact of User Demographics and Service Quality
Authors: Sayantan Khanra, Rojers P. Joseph
Abstract:
This study attempts to analyze the impact of demography and service quality on the adoption and diffusion of e-Government services in the context of India. The objective of this paper is to study the users' perception about e-Government services and investigate the key variables that are most salient to the Indian populace. At the completion of this study, a research model that would help to understand the relationship involving the demographic variables and service quality dimensions, and the willingness to adopt e-Government services is expected to be developed. Dedicated authorities, particularly those in developing economies, may use that model or its augmented versions to design and update e-Government services and promote their use among citizens. After all, enhanced public participation is required to improve efficiency, engagement and transparency in the implementation of the aforementioned services.
Keywords: Adoption and diffusion of e-Government services, demographic variables, hierarchical regression analysis, service quality dimensions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177967 iSEA: A Mobile Based Learning Application for History and Culture Knowledge Enhancement for the ASEAN Region
Authors: Maria Visitacion N. Gumabay, Byron Joseph A. Hallar, Annjeannette Alain D. Galang
Abstract:
This study was intended to provide a more efficient and convenient way for mobile users to enhance their knowledge about ASEAN countries. The researchers evaluated the utility of the developed crossword puzzle application and assessed the general usability of its user interface for its intended purpose and audience of users. The descriptive qualitative research method for the research design and the Mobile-D methodology was employed for the development of the software application output. With a generally favorable reception from its users, the researchers concluded that the iSEA Mobile Based Learning Application can be considered ready for general deployment and use. It was also concluded that additional studies can also be done to make a more complete assessment of the knowledge gained by its users before and after using the application.
Keywords: Mobile learning, e-learning, crossword, ASEAN, iSEA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152166 Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients
Authors: Subha D. Puthankattil, Paul K. Joseph
Abstract:
Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy.
Keywords: EEG, Depression, Wavelet entropy, Approximate entropy, Relative Wavelet energy, Multiresolution decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 364165 Neuron Dynamics of Single-Compartment Traub Model for Hardware Implementations
Authors: J. C. Moctezuma, V. Breña-Medina, Jose Luis Nunez-Yanez, Joseph P. McGeehan
Abstract:
In this work we make a bifurcation analysis for a single compartment representation of Traub model, one of the most important conductance-based models. The analysis focus in two principal parameters: current and leakage conductance. Study of stable and unstable solutions are explored; also Hop-bifurcation and frequency interpretation when current varies is examined. This study allows having control of neuron dynamics and neuron response when these parameters change. Analysis like this is particularly important for several applications such as: tuning parameters in learning process, neuron excitability tests, measure bursting properties of the neuron, etc. Finally, a hardware implementation results were developed to corroborate these results.Keywords: Traub model, Pinsky-Rinzel model, Hopf bifurcation, single-compartment models, Bifurcation analysis, neuron modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120564 Boosting Method for Automated Feature Space Discovery in Supervised Quantum Machine Learning Models
Authors: Vladimir Rastunkov, Jae-Eun Park, Abhijit Mitra, Brian Quanz, Steve Wood, Christopher Codella, Heather Higgins, Joseph Broz
Abstract:
Quantum Support Vector Machines (QSVM) have become an important tool in research and applications of quantum kernel methods. In this work we propose a boosting approach for building ensembles of QSVM models and assess performance improvement across multiple datasets. This approach is derived from the best ensemble building practices that worked well in traditional machine learning and thus should push the limits of quantum model performance even further. We find that in some cases, a single QSVM model with tuned hyperparameters is sufficient to simulate the data, while in others - an ensemble of QSVMs that are forced to do exploration of the feature space via proposed method is beneficial.
Keywords: QSVM, Quantum Support Vector Machines, quantum kernel, boosting, ensemble.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43963 The Next Frontier for Mobile Based Augmented Reality: An Evaluation of AR Uptake in India
Authors: K. Krishna Milan Rao, Nelvin Joseph, Praveen Dwarakanath
Abstract:
Augmented and Virtual Realties is quickly becoming a hotbed of activity with millions of dollars being spent on R & D and companies such as Google and Microsoft rushing to stake their claim. Augmented reality (AR) is however marching ahead due to the spread of the ideal AR device – the smartphone. Despite its potential, there remains a deep digital divide between the Developed and Developing Countries. The Technological Acceptance Model (TAM) and Hofstede cultural dimensions also predict the behaviour intention to uptake AR in India will be large. This paper takes a quantified approach by collecting 340 survey responses to AR scenarios and analyzing them through statistics. The Survey responses show that the Intention to Use, Perceived Usefulness and Perceived Enjoyment dimensions are high among the urban population in India. This along with the exponential smartphone indicates that India is on the cusp of a boom in the AR sector.Keywords: Mobile augmented reality, technology acceptance model, Hofstede, cultural dimensions, India.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155662 Vermicomposting of Waste Corn Pulp Blended with Cow Dung Manure using Eisenia Fetida
Authors: Musaida M. M. Manyuchi, Anthony Phiri, Ngoni Chirinda, Perkins Muredzi, Joseph Govhaand, Thamary Sengudzwa
Abstract:
Waste corn pulp was investigated as a potential feedstock during vermicomposting using Eisenia fetida. Corn pulp is the major staple food in Southern Africa and constitutes about 25% of the total organic waste. Wastecooked corn pulp was blended with cow dung in the ratio 6:1 respectively to optimize the vermicomposting process. The feedstock was allowed to vermicompost for 30 days. The vermicomposting took place in a 3- tray plastic worm bin. Moisture content, temperature, pH, and electrical conductivity were monitoreddaily. The NPK content was determined at day 30. During vermicomposting, moisture content increased from 27.68% to 52.41%, temperature ranged between 19- 25◦C, pH increased from 5.5 to 7.7, and electrical conductivity decreased from 80000μS/cm to 60000μS/cm. The ash content increased from 11.40% to 28.15%; additionally the volatile matter increased from 1.45% to 10.02%. An odorless, dark brown vermicompost was obtained. The vermicompost NPK content was 4.19%, 1.15%, and 6.18% respectively.
Keywords: Corn pulp, Eisenia fetida, vermicomposting, waste management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 331861 Evaluation of Carbon Dioxide Pressure through Radial Velocity Difference in Arterial Blood Modeled by Drift Flux Model
Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes
Abstract:
In this paper, we are interested to determine the carbon dioxide pressure in the arterial blood through radial velocity difference. The blood was modeled as a two phase mixture (an aqueous carbon dioxide solution with carbon dioxide gas) by Drift flux model and the Young-Laplace equation. The distributions of mixture velocities determined from the considered model permitted the calculation of the radial velocity distributions with different values of mean mixture pressure and the calculation of the mean carbon dioxide pressure knowing the mean mixture pressure. The radial velocity distributions are used to deduce a calculation method of the mean mixture pressure through the radial velocity difference between two positions which is measured by ultrasound. The mean carbon dioxide pressure is then deduced from the mean mixture pressure.Keywords: Mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity difference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177