Publications | Biomedical and Biological Engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 720

World Academy of Science, Engineering and Technology

[Biomedical and Biological Engineering]

Online ISSN : 1307-6892

300 A Systematic Approach for Design a Low-Cost Mobility Assistive Device for Elderly People

Authors: Omar Salah, Ahmed A. Ramadan, Salvatore Sessa, Ahmed A. Abo-Ismail

Abstract:

Walking and sit to stand are activities carried out by all the people many times during the day, but physical disabilities due to age and diseases create needs of assistive devices to help elderly people during their daily life. This study aims to study the different types and mechanisms of the assistive devices. We will analyze the limitations and the challenges faced by the researchers in this field. We will introduce the Assistive Device developed at the Egypt-Japan University of Science and Technology, named E-JUST Assistive Device (EJAD). EJAD will be a low cost intelligent assistive device to help elders in walking and sit-to-stand activities.

Keywords: Active walker, Assistive robotics, Standing Assistance, Walking Assistance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2839
299 Laser Welded Ni-Cr Dental Alloys Inspection

Authors: Porojan S., Sandu L., Topală F.

Abstract:

Minor problems arising from optimizations by welding of fixed prostheses frameworks can be identified by macroscopic and microscopic visual inspection. The purpose of this study was to highlight the visible discontinuities present in the laser welds of dental Ni-Cr alloys. Ni-Cr base metal alloys designated for fixed prostheses manufacture were selected for the experiments. Using cast plates, preliminary tests were conducted by laser welding. Macroscopic visual inspection was done carefully to assess the defects of the welding rib. Electron microscopy images allowed visualization of small discontinuities, which escapes visual inspection. Making comparison to Ni-Cr alloys taken in the experiment and laser welded, after visual analysis, the best welds appear for Heraenium NA alloy.

Keywords: macroscopic visual inspection, electron microscopyimages, Ni-Cr dental alloys, laser welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
298 Stresses in Cast Metal Inlays Restored Molars

Authors: Sandu L., Topală F., Porojan S.

Abstract:

Cast metal inlays can be used on molars requiring a class II restoration instead amalgam and offer a durable alternative. Because it is known that class II inlays may increase the susceptibility to fracture, it is important to ensure optimal performance in selection of the adequate preparation design to reduce stresses in teeth structures and also in the restorations. The aim of the study was to investigate the influence of preparation design on stress distribution in molars with different class II preparations and in cast metal inlays. The first step of the study was to achieve 3D models in order to analyze teeth and cast metal class II inlays. The geometry of the intact tooth was obtained by 3D scanning using a manufactured device. With a NURBS modeling program the preparations and the appropriately inlays were designed. 3D models of first upper molars of the same shape and size were created. Inlay cavities designs were created using literature data. The geometrical model was exported and the mesh structure of the solid 3D model was created for structural simulations. Stresses were located around the occlusal contact areas. For the studied cases, the stress values were not significant influenced by the taper of the preparation. it was demonstrated stresses are higher in the cast metal restorations and therefore the strength of the teeth is not affected.

Keywords: cast metal inlays, class II restoration, molars, 3D models, structural simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2382
297 Noninvasive Assessment of Low Power Laser Radiation Effect on Skin Wound Healing Using Infrared Thermography

Authors: M.A. Calin, S.V. Parasca, M.R. Calin, D. Savastru, D. Manea

Abstract:

The goal of this paper is to examine the effects of laser radiation on the skin wound healing using infrared thermography as non-invasive method for the monitoring of the skin temperature changes during laser treatment. Thirty Wistar rats were used in this study. A skin lesion was performed at the leg on all rats. The animals were exposed to laser radiation (λ = 670 nm, P = 15 mW, DP = 16.31 mW/cm2) for 600 s. Thermal images of wound were acquired before and after laser irradiation. The results have demonstrated that the tissue temperature decreases from 35.5±0.50°C in the first treatment day to 31.3±0.42°C after the third treatment day. This value is close to the normal value of the skin temperature and indicates the end of the skin repair process. In conclusion, the improvements in the wound healing following exposure to laser radiation have been revealed by infrared thermography.

Keywords: skin, wound, laser, thermal image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
296 Shape Restoration of the Left Ventricle

Authors: May-Ling Tan, Yi Su, Chi-Wan Lim, Liang Zhong, Ru-San Tan

Abstract:

This paper describes an automatic algorithm to restore the shape of three-dimensional (3D) left ventricle (LV) models created from magnetic resonance imaging (MRI) data using a geometry-driven optimization approach. Our basic premise is to restore the LV shape such that the LV epicardial surface is smooth after the restoration. A geometrical measure known as the Minimum Principle Curvature (κ2) is used to assess the smoothness of the LV. This measure is used to construct the objective function of a two-step optimization process. The objective of the optimization is to achieve a smooth epicardial shape by iterative in-plane translation of the MRI slices. Quantitatively, this yields a minimum sum in terms of the magnitude of κ 2, when κ2 is negative. A limited memory quasi-Newton algorithm, L-BFGS-B, is used to solve the optimization problem. We tested our algorithm on an in vitro theoretical LV model and 10 in vivo patient-specific models which contain significant motion artifacts. The results show that our method is able to automatically restore the shape of LV models back to smoothness without altering the general shape of the model. The magnitudes of in-plane translations are also consistent with existing registration techniques and experimental findings.

Keywords: Magnetic Resonance Imaging, Left Ventricle, ShapeRestoration, Principle Curvature, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
295 A Preliminary X-Ray Study on Human-Hair Microstructures for a Health-State Indicator

Authors: Phannee Saengkaew, Weerasak Ussawawongaraya, Sasiphan Khaweerat, Supagorn Rugmai, Sirisart Ouajai, Jiraporn Luengviriya, Sakuntam Sanorpim, Manop Tirarattanasompot, Somboon Rhianphumikarakit

Abstract:

We present a preliminary x-ray study on human-hair microstructures for a health-state indicator, in particular a cancer case. As an uncomplicated and low-cost method of x-ray technique, the human-hair microstructure was analyzed by wide-angle x-ray diffractions (XRD) and small-angle x-ray scattering (SAXS). The XRD measurements exhibited the simply reflections at the d-spacing of 28 Å, 9.4 Å and 4.4 Å representing to the periodic distance of the protein matrix of the human-hair macrofibrous and the diameter and the repeated spacing of the polypeptide alpha helixes of the photofibrils of the human-hair microfibrous, respectively. When compared to the normal cases, the unhealthy cases including to the breast- and ovarian-cancer cases obtained higher normalized ratios of the x-ray diffracting peaks of 9.4 Å and 4.4 Å. This likely resulted from the varied distributions of microstructures by a molecular alteration. As an elemental analysis by x-ray fluorescence (XRF), the normalized quantitative ratios of zinc(Zn)/calcium(Ca) and iron(Fe)/calcium(Ca) were determined. Analogously, both Zn/Ca and Fe/Ca ratios of the unhealthy cases were obtained higher than both of the normal cases were. Combining the structural analysis by XRD measurements and the elemental analysis by XRF measurements exhibited that the modified fibrous microstructures of hair samples were in relation to their altered elemental compositions. Therefore, these microstructural and elemental analyses of hair samples will be benefit to associate with a diagnosis of cancer and genetic diseases. This functional method would lower a risk of such diseases by the early diagnosis. However, the high-intensity x-ray source, the highresolution x-ray detector, and more hair samples are necessarily desired to develop this x-ray technique and the efficiency would be enhanced by including the skin and fingernail samples with the human-hair analysis.

Keywords: Human-hair analysis, XRD, SAXS, breast cancer, health-state indicator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2522
294 Design of a Carbon Silicon Electrode for Iontophoresis Treatment towards Alopecia

Authors: Q. Wei, D. G. Hwang, Z. Mohy-Udin, D. H. Shin, J. H. Park, M. Y. Kang, J. H. Cho

Abstract:

This study presents design of a carbon silicon electrode for iontophorsis treatment towards alopecia. The alopecia is a medical description means loss of hair from the body. For solving this problem, the drug need to be delivered into the scalp, therefore, the iontophoresis was chosen to use in this treatment. However, almost common electrodes of iontophoresis device are made with metal material, the electrodes could give patients hurt when they using it, and it is hard to avoid the hair for attaching the hair. For this reason, an electrode is made with silicon material to decrease the hurt from the electrodes, and the carbon material is mixed in it for increasing conductance. The several cones with stainless material on the electrode make the electrode is able to void hair to attach the affected part. According to the results of a vivo-experiment, the carbon silicon electrode showed a good performance and in treatment comfortably.

Keywords: Carbon silicon, drug delivery system, iontophoresis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
293 A 3D Approach for Extraction of the Coronaryartery and Quantification of the Stenosis

Authors: Mahdi Mazinani, S. D. Qanadli, Rahil Hosseini, Tim Ellis, Jamshid Dehmeshki

Abstract:

Segmentation and quantification of stenosis is an important task in assessing coronary artery disease. One of the main challenges is measuring the real diameter of curved vessels. Moreover, uncertainty in segmentation of different tissues in the narrow vessel is an important issue that affects accuracy. This paper proposes an algorithm to extract coronary arteries and measure the degree of stenosis. Markovian fuzzy clustering method is applied to model uncertainty arises from partial volume effect problem. The algorithm employs: segmentation, centreline extraction, estimation of orthogonal plane to centreline, measurement of the degree of stenosis. To evaluate the accuracy and reproducibility, the approach has been applied to a vascular phantom and the results are compared with real diameter. The results of 10 patient datasets have been visually judged by a qualified radiologist. The results reveal the superiority of the proposed method compared to the Conventional thresholding Method (CTM) on both datasets.

Keywords: 3D coronary artery tree extraction, segmentation, quantification, fuzzy clustering, and Markov random field

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
292 Hippocampus Segmentation using a Local Prior Model on its Boundary

Authors: Dimitrios Zarpalas, Anastasios Zafeiropoulos, Petros Daras, Nicos Maglaveras

Abstract:

Segmentation techniques based on Active Contour Models have been strongly benefited from the use of prior information during their evolution. Shape prior information is captured from a training set and is introduced in the optimization procedure to restrict the evolution into allowable shapes. In this way, the evolution converges onto regions even with weak boundaries. Although significant effort has been devoted on different ways of capturing and analyzing prior information, very little thought has been devoted on the way of combining image information with prior information. This paper focuses on a more natural way of incorporating the prior information in the level set framework. For proof of concept the method is applied on hippocampus segmentation in T1-MR images. Hippocampus segmentation is a very challenging task, due to the multivariate surrounding region and the missing boundary with the neighboring amygdala, whose intensities are identical. The proposed method, mimics the human segmentation way and thus shows enhancements in the segmentation accuracy.

Keywords: Medical imaging & processing, Brain MRI segmentation, hippocampus segmentation, hippocampus-amygdala missingboundary, weak boundary segmentation, region based segmentation, prior information, local weighting scheme in level sets, spatialdistribution of labels, gradient distribution on boundary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
291 Design of Medical Information Storage System – ECG Signal

Authors: A. Rubiano F, N. Olarte, D. Lara

Abstract:

This paper presents the design, implementation and results related to the storage system of medical information associated to the ECG (Electrocardiography) signal. The system includes the signal acquisition modules, the preprocessing and signal processing, followed by a module of transmission and reception of the signal, along with the storage and web display system of the medical platform. The tests were initially performed with this signal, with the purpose to include more biosignal under the same system in the future.

Keywords: Acquisition, ECG Signal, Storage, Web Platform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
290 Virtual Environment Design Guidelines for Elderly People in Early Detection of Dementia

Authors: Syadiah Nor Wan Shamsuddin, Valerie Lesk , Hassan Ugail

Abstract:

Early detection of dementia by testing the spatial memory can be applied using a virtual environment. This paper presents guidelines on how to design a virtual environment specifically for elderly in early detection of dementia. The specific design needs to be considered because the effectiveness of the technology relies on the ability of the end user to use it. The primary goal of these guidelines is to promote accessibility. Based on these guidelines, a virtual simulation was developed and evaluated. The results on usability of acceptance and satisfaction that are tested on young (control group) and elderly participants indicate that these guidelines are reliable and useful for use with elderly people.

Keywords: Virtual Environment, spatial memory, design, guidelines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
289 Estimating the Absorbed Dose to THYROID during Chest wall Radiotherapy

Authors: Seid Ali Asghar Terohid, Vahid Fayaz

Abstract:

Thyroid cancer-s overall contribution to the worldwide cancer burden is relatively small, but incidence rates have increased over the last three decades throughout the world. This trend has been hypothesised to reflect a combination of technological advances enabling increased detection, but also changes in environmental factors, including population exposure to ionising radiation from fallout, diagnostic tests and treatment for benign and malignant conditions. The Thyroid dose received apparently shielded by cerrobend blocks was about 8cGy in 100cGy Expose

Keywords: Absorbed Dose, Thyroid, Radiotherapy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
288 Spiral Cuff for Fiber-Diameter Selective VNS

Authors: P. Pečlin, J. Rozman

Abstract:

In this paper we present the modeling, design, and experimental testing of a nerve cuff multi-electrode system for diameter-selective vagus nerve stimulation. The multi-electrode system contained ninety-nine platinum electrodes embedded within a self-curling spiral silicone sheet. The electrodes were organized in a matrix having nine parallel groups, each containing eleven electrodes. Preliminary testing of the nerve cuff was performed in an isolated segment of a swinish left cervical vagus nerve. For selective vagus nerve stimulation, precisely defined current quasitrapezoidal, asymmetric and biphasic stimulating pulses were applied to preselected locations along the left vagus segment via appointed group of three electrodes within the cuff. Selective stimulation was obtained by anodal block. However, these pulses may not be safe for a long-term application because of a frequently used high imbalance between the cathodic and anodic part of the stimulating pulse. Preliminary results show that the cuff was capable of exciting A and B-fibres, and, that for a certain range of parameters used in stimulating pulses, the contribution of A-fibres to the CAP was slightly reduced and the contribution of B-fibres was slightly larger. Results also showed that measured CAPs are not greatly influenced by the imbalance between a charge Qc injected in cathodic and Qa in anodic phase of quasitrapezoidal, asymmetric and biphasic pulses.

Keywords: Vagus nerve stimulation, multi-electrode nerve cuff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
287 Differentiation of Cancerous Prostate tissue from Non-Cancerous Prostate tissue by using Elastic Light Single-Scattering Spectroscopy: A Feasibility Study

Authors: T. Denkçeken, M. Canpolat, Đ. Bassorgun, S. Yücel, M.A. Çiftçioğlu, M. Baykara Murat Canpolat , Tuba Denkçeken , Đbrahim Bassorgun , Selçuk Yücel , M. Akif Çiftçioğlu , Mehmet Baykara

Abstract:

Elastic light single-scattering spectroscopy system with a single optical fiber probe was employed to differentiate cancerous prostate tissue from non-cancerous prostate tissue ex-vivo just after radical prostatectomy. First, ELSSS spectra were acquired from cancerous prostate tissue to define its spectral features. Then, spectra were acquired from normal prostate tissue to define difference in spectral features between the cancerous and normal prostate tissues. Of the total 66 tissue samples were evaluated from nine patients by ELSSS system. Comparing of histopathology results and ELSSS measurements revealed that sign of the spectral slopes of cancerous prostate tissue is negative and non-cancerous tissue is positive in the wavelength range from 450 to 750 nm. Based on the correlation between histopathology results and sign of the spectral slopes, ELSSS system differentiates cancerous prostate tissue from non- cancerous with a sensitivity of 0.95 and a specificity of 0.94.

Keywords: Diagnosis, prostatic neoplasm, prostatectomy, spectrum analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
286 Real-Time Image Analysis of Capsule Endoscopy for Bleeding Discrimination in Embedded System Platform

Authors: Yong-Gyu Lee, Gilwon Yoon

Abstract:

Image processing for capsule endoscopy requires large memory and it takes hours for diagnosis since operation time is normally more than 8 hours. A real-time analysis algorithm of capsule images can be clinically very useful. It can differentiate abnormal tissue from health structure and provide with correlation information among the images. Bleeding is our interest in this regard and we propose a method of detecting frames with potential bleeding in real-time. Our detection algorithm is based on statistical analysis and the shapes of bleeding spots. We tested our algorithm with 30 cases of capsule endoscopy in the digestive track. Results were excellent where a sensitivity of 99% and a specificity of 97% were achieved in detecting the image frames with bleeding spots.

Keywords: bleeding, capsule endoscopy, image processing, real time analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
285 Optic Disc Detection by Earth Mover's Distance Template Matching

Authors: Fernando C. Monteiro, Vasco Cadavez

Abstract:

This paper presents a method for the detection of OD in the retina which takes advantage of the powerful preprocessing techniques such as the contrast enhancement, Gabor wavelet transform for vessel segmentation, mathematical morphology and Earth Mover-s distance (EMD) as the matching process. The OD detection algorithm is based on matching the expected directional pattern of the retinal blood vessels. Vessel segmentation method produces segmentations by classifying each image pixel as vessel or nonvessel, based on the pixel-s feature vector. Feature vectors are composed of the pixel-s intensity and 2D Gabor wavelet transform responses taken at multiple scales. A simple matched filter is proposed to roughly match the direction of the vessels at the OD vicinity using the EMD. The minimum distance provides an estimate of the OD center coordinates. The method-s performance is evaluated on publicly available DRIVE and STARE databases. On the DRIVE database the OD center was detected correctly in all of the 40 images (100%) and on the STARE database the OD was detected correctly in 76 out of the 81 images, even in rather difficult pathological situations.

Keywords: Diabetic retinopathy, Earth Mover's distance, Gabor wavelets, optic disc detection, retinal images

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
284 On the Verification of Power Nap Associated with Stage 2 Sleep and Its Application

Authors: Jetsada Arnin, Yodchanan Wongsawat

Abstract:

One of the most important causes of accidents is driver fatigue. To reduce the accidental rate, the driver needs a quick nap when feeling sleepy. Hence, searching for the minimum time period of nap is a very challenging problem. The purpose of this paper is twofold, i.e. to investigate the possible fastest time period for nap and its relationship with stage 2 sleep, and to develop an automatic stage 2 sleep detection and alarm device. The experiment for this investigation is designed with 21 subjects. It yields the result that waking up the subjects after getting into stage 2 sleep for 3-5 minutes can efficiently reduce the sleepiness. Furthermore, the automatic stage 2 sleep detection and alarm device yields the real-time detection accuracy of approximately 85% which is comparable with the commercial sleep lab system.

Keywords: Stage 2 sleep, nap, sleep detection, real-time, EEG

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
283 Assessment Methods for Surgical Skill

Authors: Siti Nor Zawani Ahmmad, Eileen Su Lee Ming, Yeong Che Fai, Fauzan Khairi bin Che Harun

Abstract:

The increasingly sophisticated technologies have now been able to provide assistance for surgeons to improve surgical performance through various training programs. Equally important to learning skills is the assessment method as it determines the learning and technical proficiency of a trainee. A consistent and rigorous assessment system will ensure that trainees acquire the specific level of competency prior to certification. This paper reviews the methods currently in use for assessment of surgical skill and some modern techniques using computer-based measurements and virtual reality systems for more quantitative measurements

Keywords: assessment, surgical skill, checklist, global rating, virtual reality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2381
282 Canonical PSO based Nanorobot Control for Blood Vessel Repair

Authors: Pinfa Boonrong, Boonserm Kaewkamnerdpong

Abstract:

As nanotechnology advances, the use of nanotechnology for medical purposes in the field of nanomedicine seems more promising; the rise of nanorobots for medical diagnostics and treatments could be arriving in the near future. This study proposes a swarm intelligence based control mechanism for swarm nanorobots that operate as artificial platelets to search for wounds. The canonical particle swarm optimization algorithm is employed in this study. A simulation in the circulatory system is constructed and used for demonstrating the movement of nanorobots with essential characteristics to examine the performance of proposed control mechanism. The effects of three nanorobot capabilities including their perception range, maximum velocity and respond time are investigated. The results show that canonical particle swarm optimization can be used to control the early version nanorobots with simple behaviors and actions.

Keywords: Artificial platelets, canonical particle swarm optimization, nanomedicine, nanorobot, swarm intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2632
281 Analytical Studies on Volume Determination of Leg Ulcer using Structured Light and Laser Triangulation Data Acquisition Techniques

Authors: M. Abdul-Rani, K. K. Chong, A. F. M. Hani, Y. B. Yap, A. Jamil

Abstract:

Imaging is defined as the process of obtaining geometric images either two dimensional or three dimensional by scanning or digitizing the existing objects or products. In this research, it applied to retrieve 3D information of the human skin surface in medical application. This research focuses on analyzing and determining volume of leg ulcers using imaging devices. Volume determination is one of the important criteria in clinical assessment of leg ulcer. The volume and size of the leg ulcer wound will give the indication on responding to treatment whether healing or worsening. Different imaging techniques are expected to give different result (and accuracies) in generating data and images. Midpoint projection algorithm was used to reconstruct the cavity to solid model and compute the volume. Misinterpretation of the results can affect the treatment efficacy. The objectives of this paper is to compare the accuracy between two 3D data acquisition method, which is laser triangulation and structured light methods, It was shown that using models with known volume, that structured-light-based 3D technique produces better accuracy compared with laser triangulation data acquisition method for leg ulcer volume determination.

Keywords: Imaging, Laser Triangulation, Structured Light, Volume Determination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
280 New Device for Enhancement of Liposomal Magnetofection Efficiency of Cancer Cells

Authors: M. Baryshev, D.Vainauska, S. Kozireva, A.Karpovs

Abstract:

Liposomal magnetofection is the most powerful nonviral method for the nucleic acid delivery into the cultured cancer cells and widely used for in vitro applications. Use of the static magnetic field condition may result in non-uniform distribution of aggregate complexes on the surface of cultured cells. To prevent this, we developed the new device which allows to concentrate aggregate complexes under dynamic magnetic field, assisting more contact of these complexes with cellular membrane and, possibly, stimulating endocytosis. Newly developed device for magnetofection under dynamic gradient magnetic field, “DynaFECTOR", was used to compare transfection efficiency of human liver hepatocellular carcinoma cell line HepG2 with that obtained by lipofection and magnetofection. The effect of two parameters on transfection efficiency, incubation time under dynamic magnetic field and rotation frequency of magnet, was estimated. Liposomal magnetofection under dynamic gradient magnetic field showed the highest transfection efficiency for HepG2 cells.

Keywords: Dynamic magnetic field, Lipofection, Magnetofection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
279 Development of an Immunoassay Platform for Diagnosis of Acute Kidney Injury

Authors: T. Bovornvirakit, K. Viravaidya

Abstract:

Acute kidney injury (AKI) is a new worldwide public health problem. A diagnosis of this disease using creatinine is still a problem in clinical practice. Therefore, a measurement of biomarkers responsible for AKI has received much attention in the past couple years. Cytokine interleukin-18 (IL-18) was reported as one of the early biomarkers for AKI. The most commonly used method to detect this biomarker is an immunoassay. This study used a planar platform to perform an immunoassay using fluorescence for detection. In this study, anti-IL-18 antibody was immobilized onto a microscope slide using a covalent binding method. Make-up samples were diluted at the concentration between 10 to 1000 pg/ml to create a calibration curve. The precision of the system was determined using a coefficient of variability (CV), which was found to be less than 10%. The performance of this immunoassay system was compared with the measurement from ELISA.

Keywords: Acute kidney injury, Acute renal failure, Antibody immobilization, Interleukin-18

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
278 Nonlinear Dynamical Characterization of Heart Rate Variability Time Series of Meditation

Authors: B. S. Raghavendra, D. Narayana Dutt

Abstract:

Many recent electrophysiological studies have revealed the importance of investigating meditation state in order to achieve an increased understanding of autonomous control of cardiovascular functions. In this paper, we characterize heart rate variability (HRV) time series acquired during meditation using nonlinear dynamical parameters. We have computed minimum embedding dimension (MED), correlation dimension (CD), largest Lyapunov exponent (LLE), and nonlinearity scores (NLS) from HRV time series of eight Chi and four Kundalini meditation practitioners. The pre-meditation state has been used as a baseline (control) state to compare the estimated parameters. The chaotic nature of HRV during both pre-meditation and meditation is confirmed by MED. The meditation state showed a significant decrease in the value of CD and increase in the value of LLE of HRV, in comparison with premeditation state, indicating a less complex and less predictable nature of HRV. In addition, it was shown that the HRV of meditation state is having highest NLS than pre-meditation state. The study indicated highly nonlinear dynamic nature of cardiac states as revealed by HRV during meditation state, rather considering it as a quiescent state.

Keywords: Correlation dimension, Embedding dimension, Heartrate variability, Largest Lyapunov exponent, Meditation, Nonlinearity score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
277 An Interactive Web-based Simulation Tool for Surgical Thread

Authors: A. Ruimi, S. Goyal, B. M. Nour

Abstract:

Interactive web-based computer simulations are needed by the medical community to replicate the experience of surgical procedures as closely and realistically as possible without the need to practice on corpses, animals and/or plastic models. In this paper, we offer a review on current state of the research on simulations of surgical threads, identify future needs and present our proposed plans to meet them. Our goal is to create a physics-based simulator, which will predict the behavior of surgical thread when subjected to conditions commonly encountered during surgery. To that end, we will i) develop three dimensional finite element models based on the Cosserat theory of elasticity ii) test and feedback results with the medical community and iii) develop a web-based user interface to run/command our simulator and visualize the results. The impacts of our research are that i) it will contribute to the development of a new generation of training for medical school students and ii) the simulator will be useful to expert surgeons in developing new, better and less risky procedures.

Keywords: Cosserat rod-theory, FEM simulations, Modeling, Surgical thread.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
276 Performance Evaluation of Complex Electrical Bio-impedance from V/I Four-electrode Measurements

Authors: Towfeeq Fairooz, Salim Istyaq

Abstract:

The passive electrical properties of a tissue depends on the intrinsic constituents and its structure, therefore by measuring the complex electrical impedance of the tissue it might be possible to obtain indicators of the tissue state or physiological activity [1]. Complete bio-impedance information relative to physiology and pathology of a human body and functional states of the body tissue or organs can be extracted by using a technique containing a fourelectrode measurement setup. This work presents the estimation measurement setup based on the four-electrode technique. First, the complex impedance is estimated by three different estimation techniques: Fourier, Sine Correlation and Digital De-convolution and then estimation errors for the magnitude, phase, reactance and resistance are calculated and analyzed for different levels of disturbances in the observations. The absolute values of relative errors are plotted and the graphical performance of each technique is compared.

Keywords: Electrical Impedance, Fast Fourier Transform, Additive White Gaussian Noise, Total Least Square, Digital De-Convolution, Sine-Correlation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2693
275 Analysis of Heart Beat Dynamics through Singularity Spectrum

Authors: Harish Kumar, Hussein Yahia, Oriol Pont, Michel Haissaguerre, Nicolas Derval, Meleze Hocini

Abstract:

The analysis to detect arrhythmias and life-threatening conditions are highly essential in today world and this analysis can be accomplished by advanced non-linear processing methods for accurate analysis of the complex signals of heartbeat dynamics. In this perspective, recent developments in the field of multiscale information content have lead to the Microcanonical Multiscale Formalism (MMF). We show that such framework provides several signal analysis techniques that are especially adapted to the study of heartbeat dynamics. In this paper, we just show first hand results of whether the considered heartbeat dynamics signals have the multiscale properties by computing local preticability exponents (LPEs) and the Unpredictable Points Manifold (UPM), and thereby computing the singularity spectrum.

Keywords: Microcanonical Multiscale Formalism (MMF), UnpredictablePoints Manifold (UPM), Heartbeat Dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
274 Error Estimates for Calculated Glomerular Filtration Rates

Authors: Simon Brown

Abstract:

Glomerular filtration rate (GFR) is a measure of kidney function. It is usually estimated from serum concentrations of cystatin C or creatinine although there has been considerable debate in the literature about (i) the best equation to use and (ii) the variability in the correlation between the concentrations of creatinine and cystatin C. The equations for GFR can be written in a general form and from these I calculate the error of the GFR estimates associated with analyte measurement error. These show that the error of the GFR estimates is such that it is not possible to distinguish between the equations over much of the concentration range of either analyte. The general forms of the equations are also used to derive an expression for the concentration of cystatin C as a function of the concentration of creatinine. This equation shows that these analyte concentrations are not linearly related. Clinical reports of cystatin C and creatinine concentration are consistent with the expression derived.

Keywords: creatinine, cystatin C, error analysis, glomerularfiltration rate, measurement error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
273 A New Method in Short-Term Heart Rate Variability — Five-Class Density Histogram

Authors: Liping Li, Ke Li, Changchun Liu, Chengyu Liu, Yuanyang Li

Abstract:

A five-class density histogram with an index named cumulative density was proposed to analyze the short-term HRV. 150 subjects participated in the test, falling into three groups with equal numbers -- the healthy young group (Young), the healthy old group (Old), and the group of patients with congestive heart failure (CHF). Results of multiple comparisons showed a significant differences of the cumulative density in the three groups, with values 0.0238 for Young, 0.0406 for Old and 0.0732 for CHF (p<0.001). After 7 days and 14 days, 46 subjects from the Young and Old groups were retested twice following the same test protocol. Results showed good-to-excellent interclass correlations (ICC=0.783, 95% confidence interval 0.676-0.864). The Bland-Altman plots were used to reexamine the test-retest reliability. In conclusion, the method proposed could be a valid and reliable method to the short-term HRV assessment.

Keywords: Autonomic nervous system, congestive heart failure, heart rate variability, histogram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
272 Comparison of Detrending Methods in Spectral Analysis of Heart Rate Variability

Authors: Liping Li, Changchun Liu, Ke Li, Chengyu Liu

Abstract:

Non-stationary trend in R-R interval series is considered as a main factor that could highly influence the evaluation of spectral analysis. It is suggested to remove trends in order to obtain reliable results. In this study, three detrending methods, the smoothness prior approach, the wavelet and the empirical mode decomposition, were compared on artificial R-R interval series with four types of simulated trends. The Lomb-Scargle periodogram was used for spectral analysis of R-R interval series. Results indicated that the wavelet method showed a better overall performance than the other two methods, and more time-saving, too. Therefore it was selected for spectral analysis of real R-R interval series of thirty-seven healthy subjects. Significant decreases (19.94±5.87% in the low frequency band and 18.97±5.78% in the ratio (p<0.001)) were found. Thus the wavelet method is recommended as an optimal choice for use.

Keywords: empirical mode decomposition, heart rate variability, signal detrending, smoothness priors, wavelet

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
271 Wavelet Enhanced CCA for Minimization of Ocular and Muscle Artifacts in EEG

Authors: B. S. Raghavendra, D. Narayana Dutt

Abstract:

Electroencephalogram (EEG) recordings are often contaminated with ocular and muscle artifacts. In this paper, the canonical correlation analysis (CCA) is used as blind source separation (BSS) technique (BSS-CCA) to decompose the artifact contaminated EEG into component signals. We combine the BSSCCA technique with wavelet filtering approach for minimizing both ocular and muscle artifacts simultaneously, and refer the proposed method as wavelet enhanced BSS-CCA. In this approach, after careful visual inspection, the muscle artifact components are discarded and ocular artifact components are subjected to wavelet filtering to retain high frequency cerebral information, and then clean EEG is reconstructed. The performance of the proposed wavelet enhanced BSS-CCA method is tested on real EEG recordings contaminated with ocular and muscle artifacts, for which power spectral density is used as a quantitative measure. Our results suggest that the proposed hybrid approach minimizes ocular and muscle artifacts effectively, minimally affecting underlying cerebral activity in EEG recordings.

Keywords: Blind source separation, Canonical correlationanalysis, Electroencephalogram, Muscle artifact, Ocular artifact, Power spectrum, Wavelet threshold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288