Search results for: wastewater effluents
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1051

Search results for: wastewater effluents

841 Treatment of Municipal Wastewater by Means of Uv-Assisted Irradiation Technologies: Fouling Studies and Optimization of Operational Parameters

Authors: Tooba Aslam, Efthalia Chatzisymeon

Abstract:

UV-assisted irradiation technologies are well-established for water and wastewater treatment. UVC treatments are widely used at large-scale, while UVA irradiation has more often been applied in combination with a catalyst (e.g. TiO₂ or FeSO₄) in smaller-scale systems. A technical issue of these systems is the formation of fouling on the quartz sleeves that houses the lamps. This fouling can prevent complete irradiation, therefore reducing the efficiency of the process. This paper investigates the effects of operational parameters, such as the type of wastewater, irradiation source, H₂O₂ addition, and water pH on fouling formation and, ultimately, the treatment of municipal wastewater. Batch experiments have been performed at lab-scale while monitoring water quality parameters including: COD, TS, TSS, TDS, temperature, pH, hardness, alkalinity, turbidity, TOC, UV transmission, UV₂₅₄ absorbance, and metal concentrations. The residence time of the wastewater in the reactor was 5 days in order to observe any fouling formation on the quartz surface. Over this period, it was observed that chemical oxygen demand (COD) decreased by 30% and 59% during photolysis (Ultraviolet A) and photo-catalysis (UVA/Fe/H₂O₂), respectively. Higher fouling formation was observed with iron-rich and phosphorous-rich wastewater. The highest rate of fouling was developed with phosphorous-rich wastewater, followed by the iron-rich wastewater. Photo-catalysis (UVA/Fe/H₂O₂) had better removal efficiency than photolysis (UVA). This was attributed to the Photo-Fenton reaction, which was initiated under these operational conditions. Scanning electron microscope (SEM) measurements of fouling formed on the quartz sleeves showed that particles vary in size, shape, and structure; some have more distinct structures and are generally larger and have less compact structure than the others. Energy-dispersive X-ray spectroscopy (EDX) results showed that the major metals present in the fouling cake were iron, phosphorous, and calcium. In conclusion, iron-rich wastewaters are more suitable for UV-assisted treatment since fouling formation on quartz sleeves can be minimized by the formation of oxidizing agents during treatment, such as hydroxyl radicals.

Keywords: advanced oxidation processes, photo-fenton treatment, photo-catalysis, wastewater treatment

Procedia PDF Downloads 46
840 NiO-CeO2 Nano-Catalyst for the Removal of Priority Organic Pollutants from Wastewater through Catalytic Wet Air Oxidation at Mild Conditions

Authors: Anushree, Chhaya Sharma, Satish Kumar

Abstract:

Catalytic wet air oxidation (CWAO) is normally carried out at elevated temperature and pressure. This work investigates the potential of NiO-CeO2 nano-catalyst in CWAO of paper industry wastewater under milder operating conditions of 90 °C and 1 atm. The NiO-CeO2 nano-catalysts were synthesized by a simple co-precipitation method and characterized by X-ray diffraction (XRD), before and after use, in order to study any crystallographic change during experiment. The extent of metal-leaching from the catalyst was determined using the inductively coupled plasma optical emission spectrometry (ICP-OES). The catalytic activity of nano-catalysts was studied in terms of total organic carbon (TOC), adsorbable organic halides (AOX) and chlorophenolics (CHPs) removal. Interestingly, mixed oxide catalysts exhibited higher activity than the corresponding single-metal oxides. The maximum removal efficiency was achieved with Ce40Ni60 catalyst. The results indicate that the CWAO process is efficient in removing the priority organic pollutants from wastewater, as it exhibited up to 59% TOC, 55% AOX, and 54 % CHPs removal.

Keywords: catalysis, nano-materials, NiO-CeO2, paper mill, wastewater, wet air oxidation

Procedia PDF Downloads 225
839 Extraction of Polystyrene from Styrofoam Waste: Synthesis of Novel Chelating Resin for the Enrichment and Speciation of Cr(III)/Cr(vi) Ions in Industrial Effluents

Authors: Ali N. Siyal, Saima Q. Memon, Latif Elçi, Aydan Elçi

Abstract:

Polystyrene (PS) was extracted from Styrofoam (expanded polystyrene foam) waste, so called white pollutant. The PS was functionalized with N, N- Bis(2-aminobenzylidene)benzene-1,2-diamine (ABA) ligand through an azo spacer. The resin was characterized by FT-IR spectroscopy and elemental analysis. The PS-N=N-ABA resin was used for the enrichment and speciation of Cr(III)/Cr(VI) ions and total Cr determination in aqueous samples by Flame Atomic Absorption Spectrometry (FAAS). The separation of Cr(III)/Cr(VI) ions was achieved at pH 2. The recovery of Cr(VI) ions was achieved ≥ 95.0% at optimum parameters: pH 2; resin amount 300 mg; flow rates 2.0 mL min-1 of solution and 2.0 mL min-1 of eluent (2.0 mol L-1 HNO3). Total Cr was determined by oxidation of Cr(III) to Cr(VI) ions using H2O2. The limit of detection (LOD) and quantification (LOQ) of Cr(VI) were found to be 0.40 and 1.20 μg L-1, respectively with preconcentration factor of 250. Total saturation and breakthrough capacitates of the resin for Cr(IV) ions were found to be 0.181 and 0.531 mmol g-1, respectively. The proposed method was successfully applied for the preconcentration/speciation of Cr(III)/Cr(VI) ions and determination of total Cr in industrial effluents.

Keywords: styrofoam waste, polymeric resin, preconcentration, speciation, Cr(III)/Cr(VI) ions, FAAS

Procedia PDF Downloads 260
838 Assessment of Advanced Oxidation Process Applicability for Household Appliances Wastewater Treatment

Authors: Pelin Yılmaz Çetiner, Metin Mert İlgün, Nazlı Çetindağ, Emine Birci, Gizemnur Yıldız Uysal, Özcan Hatipoğlu, Ehsan Tuzcuoğlu, Gökhan Sır

Abstract:

Water scarcity is an inevitable problem affecting more and more people day by day. It is a worldwide crisis and a consequence of rapid population growth, urbanization and overexploitation. Thus, the solutions providing the reclamation of the wastewater are the desired approach. Wastewater contains various substances such as organic, soaps and detergents, solvents, biological substances, and inorganic substances. The physical properties of the wastewater differs regarding to its origin such as commerical, domestic or hospital usage. Thus, the treatment strategy of this type of wastewater is should be comprehensively investigated and properly treated. The advanced oxidation process comes up as a hopeful method associated with the formation of reactive hydroxyl radicals that are highly reactive to oxidize of organic pollutants. This process has a priority on other methods such as coagulation, flocuation, sedimentation and filtration since it was not cause any undesirable by-products. In the present study, it was aimed to investigate the applicability of advanced oxidation process for the treatment of household appliances wastewater. For this purpose, the laboratory studies providing the effectively addressing of the formed radicals to organic pollutants were carried out. Then the effect of process parameters were comprehensively studied by using response surface methodology, Box-Benhken experimental desing. The final chemical oxygen demand (COD) was the main output to evaluate the optimum point providing the expected COD removal. The linear alkyl benzene sulfonate (LAS), total dissolved solids (TDS) and color were measured for the optimum point providing the expected COD removal. Finally, present study pointed out that advanced oxidation process might be efficiently preffered to treat of the household appliances wastewater and the optimum process parameters provided that expected removal of COD.

Keywords: advanced oxidation process, household appliances wastewater, modelling, water reuse

Procedia PDF Downloads 29
837 Adsorption and Kinetic Studies on Removal of NH3-N from Wastewater onto 2 Different Nanoparticles Loaded Coconut Coir

Authors: Khushboo Bhavsar, Nisha K. Shah, Neha Parekh

Abstract:

The status of wastewater treatment needs a novel and quick method for treating the wastewater containing ammoniacal nitrogen. Adsorption behavior of ammoniacal nitrogen from wastewater using the nanoparticles loaded coconut coir was investigated in the present work. Manganese Oxide (MnO2) and Zinc Oxide (ZnO) nanoparticles were prepared and used for the further adsorption study. Manganese nanoparticles loaded coconut coir (MNLCC) and Zinc nanoparticles loaded coconut coir (ZNLCC) were prepared via a simple method and was fully characterized. The properties of both MNLCC and ZNLCC were characterized by Scanning electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. Adsorption characteristics were studied using batch technique considering various parameters like pH, adsorbent dosage, time, temperature and agitation time. The NH3-N adsorption process for MNLCC and ZNLCC was thoroughly studied from both kinetic and equilibrium isotherm view-points. The results indicated that the adsorption efficiency of ZNLCC was better when compared to MNLCC. The adsorption kinetics at different experimental conditions showed that second order kinetic model best fits ensuring the monovalent binding sites existing in the present experimental system. The outcome of the entire study suggests that the ZNLCC can be a smart option for the treatment of the ammoniacal nitrogen containing wastewater.

Keywords: ammoniacal nitrogen, MnO2, Nanoparticles, ZnO

Procedia PDF Downloads 332
836 Use of Treated Municipal Wastewater on Artichoke Crop

Authors: G. Disciglio, G. Gatta, A. Libutti, A. Tarantino, L. Frabboni, E. Tarantino

Abstract:

Results of a field study carried out at Trinitapoli (Puglia region, southern Italy) on the irrigation of an artichoke crop with three types of water (secondary-treated wastewater, SW; tertiary-treated wastewater, TW; and freshwater, FW) are reported. Physical, chemical and microbiological analyses were performed on the irrigation water, and on soil and yield samples. The levels of most of the chemical parameters, such as electrical conductivity, total suspended solids, Na+, Ca2+, Mg+2, K+, sodium adsorption ratio, chemical oxygen demand, biological oxygen demand over 5 days, NO3 –N, total N, CO32, HCO3, phenols and chlorides of the applied irrigation water were significantly higher in SW compared to GW and TW. No differences were found for Mg2+, PO4-P, K+ only between SW and TW. Although the chemical parameters of the three irrigation water sources were different, few effects on the soil were observed. Even though monitoring of Escherichia coli showed high SW levels, which were above the limits allowed under Italian law (DM 152/2006), contamination of the soil and the marketable yield were never observed. Moreover, no Salmonella spp. were detected in these irrigation waters; consequently, they were absent in the plants. Finally, the data on the quantitative-qualitative parameters of the artichoke yield with the various treatments show no significant differences between the three irrigation water sources. Therefore, if adequately treated, municipal wastewater can be used for irrigation and represents a sound alternative to conventional water resources.

Keywords: artichoke, soil chemical characteristics, fecal indicators, treated municipal wastewater, water recycling

Procedia PDF Downloads 399
835 A Homogeneous Catalytic System for Decolorization of a Mixture of Orange G Acid and Naphthol Blue-Black Dye Based on Hydrogen Peroxide and a Recyclable DAWSON Type Heteropolyanion

Authors: Ouahiba Bechiri, Mostefa Abbessi

Abstract:

The color removal from industrial effluents is a major concern in wastewater treatment. The main objective of this work was to study the decolorization of a mixture of Orange G acid (OG) and naphthol blue black dye (NBB) in aqueous solution by hydrogen peroxide using [H1,5Fe1,5P2W12Mo6O61,23H2O] as catalyst. [H1,5Fe1,5P2 W12Mo6O61,23H2O] is a recyclable DAWSON type heteropolyanion. Effects of various experimental parameters of the oxidation reaction of the dye were investigated. The studied parameters were: the initial pH, H2O2 concentration, the catalyst mass and the temperature. The optimum conditions had been determined, and it was found that efficiency of degradation obtained after 15 minutes of reaction was about 100%. The optimal parameters were: initial pH = 3; [H2O2]0 = 0.08 mM; catalyst mass = 0.05g; for a concentration of dyes = 30mg/L.

Keywords: Dawson type heteropolyanion, naphthol blue-black, dye degradation, orange G acid, oxidation, hydrogen peroxide

Procedia PDF Downloads 330
834 Identification of Microbial Community in an Anaerobic Reactor Treating Brewery Wastewater

Authors: Abimbola M. Enitan, John O. Odiyo, Feroz M. Swalaha

Abstract:

The study of microbial ecology and their function in anaerobic digestion processes are essential to control the biological processes. This is to know the symbiotic relationship between the microorganisms that are involved in the conversion of complex organic matter in the industrial wastewater to simple molecules. In this study, diversity and quantity of bacterial community in the granular sludge taken from the different compartments of a full-scale upflow anaerobic sludge blanket (UASB) reactor treating brewery wastewater was investigated using polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR). The phylogenetic analysis showed three major eubacteria phyla that belong to Proteobacteria, Firmicutes and Chloroflexi in the full-scale UASB reactor, with different groups populating different compartment. The result of qPCR assay showed high amount of eubacteria with increase in concentration along the reactor’s compartment. This study extends our understanding on the diverse, topological distribution and shifts in concentration of microbial communities in the different compartments of a full-scale UASB reactor treating brewery wastewater. The colonization and the trophic interactions among these microbial populations in reducing and transforming complex organic matter within the UASB reactors were established.

Keywords: bacteria, brewery wastewater, real-time quantitative PCR, UASB reactor

Procedia PDF Downloads 230
833 Chemical Mechanical Polishing Wastewater Treatment through Membrane Distillation

Authors: Imtisal-e-Noor, Andrew Martin, Olli Dahl

Abstract:

Chemical Mechanical Polishing (CMP) has developed as a chosen planarization technique in nano-electronics industries for fabrication of the integrated circuits (ICs). These CMP processes release a huge amount of wastewater that contains oxides of nano-particles (silica, alumina, and ceria) and oxalic acid. Since, this wastewater has high solid content (TS), chemical oxygen demand (COD), and turbidity (NTU); therefore, in order to fulfill the environmental regulations, it needs to be treated up to the local and international standards. The present study proposed a unique CMP wastewater treatment method called Membrane Distillation (MD). MD is a non-isothermal membrane separation process, which allows only volatiles, i.e., water vapors to permeate through the membrane and provides 100% contaminants rejection. The performance of the MD technology is analyzed in terms of total organic carbon (TOC), turbidity, TS, COD, and residual oxide concentration in permeate/distilled water while considering different operating conditions (temperature, flow rate, and time). The results present that high-quality permeate has been recovered after removing 99% of the oxide particles and oxalic acid. The distilled water depicts turbidity < 1 NTU, TOC < 3 mg/L, TS < 50 mg/L, and COD < 100 mg/L. These findings clearly show that the MD treated water can be reused further in industrial processes or allowable to discharge in any water body under the stringent environmental regulations.

Keywords: chemical mechanical polishing, environmental regulations, membrane distillation, wastewater treatment

Procedia PDF Downloads 129
832 Assessment of Treatment Methods to Remove Hazardous Dyes from Synthetic Wastewater

Authors: Abhiram Siva Prasad Pamula

Abstract:

Access to clean drinking water becomes scarce due to the increase in extreme weather events because of the rise in the average global temperatures and climate change. By 2030, approximately 47% of the world’s population will face water shortages due to uncertainty in seasonal rainfall. Over 10000 varieties of synthetic dyes are commercially available in the market and used by textile and paper industries, negatively impacting human health when ingested. Besides humans, textile dyes have a negative impact on aquatic ecosystems by increasing biological oxygen demand and chemical oxygen demand. This study assesses different treatment methods that remove dyes from textile wastewater while focusing on energy, economic, and engineering aspects of the treatment processes.

Keywords: textile wastewater, dye removal, treatment methods, hazardous pollutants

Procedia PDF Downloads 60
831 Comparative Pre-treatment Analysis of RNA-Extraction Methods and Efficient Detection of SARS-COV-2 and PMMoV in Influents and 1ˢᵗ Sedimentation from a Wastewater Treatment Plan

Authors: Jesmin Akter, Chang Hyuk Ahn, Ilho Kim, Fumitake Nishimura, Jaiyeop Lee

Abstract:

This study aimed to compare two pre-treatment and two RNA extraction methods, namely PEG, and Nano bubble, Viral RNA Soil, and Mini Kit, in terms of their efficiency in detecting SARS-CoV-2 and PMMoV in influent and 1st sedimentation samples from a wastewater treatment plant. The extracted RNA samples were quantified and evaluated for purity, yield, and integrity. The results indicated that the nanobubble PEG method provided the highest yield of RNA, while the QIAamp Viral RNA Mini Kit produced the purest RNA samples. In terms of sensitivity and specificity, all these methods were able to detect SARS-CoV-2 and PMMoV in both influent and 1st sedimentation samples. However, the nanobubble PEG method showed slightly higher sensitivity compared to the other methods. These findings suggest that the choice of RNA extraction method should depend on the downstream application and the quality of the RNA required. The study also highlights the potential of wastewater-based epidemiology as an effective and non-invasive method for monitoring the spread of infectious diseases in a community.

Keywords: influent, PMMoV, SARS-CoV-2, wastewater based epidemiology

Procedia PDF Downloads 66
830 Chromium Reduction Using Bacteria: Bioremediation Technologies

Authors: Baljeet Singh Saharan

Abstract:

Bioremediation is the demand of the day. Tannery and textile effluents/waste waters have lots of pollution due to presence of hexavalent Chromium. Methodologies used in the present investigations include isolation, cultivation and purification of bacterial strain. Further characterization techniques and 16S rRNA sequencing were performed. Efficient bacterial strain capable of reducing hexavalent chromium was obtained. The strain can be used for bioremediation of industrial effluents containing hexavalent Cr. A gram negative, rod shaped and yellowish pigment producing bacterial strain from tannery effluent was isolated using nutrient agar. The 16S rRNA gene sequence similarity indicated that isolate SA13A is associated with genus Luteimonas (99%). This isolate has been found to reduce 100% of hexavalent chromium Cr (VI) (100 mg L-1) 100% in 16 h. Growth conditions were optimized for Cr (VI) reduction. Maximum reduction was observed at a temperature of 37 °C and pH 8.0. Additionally, Luteimonas aestuarii SA13A showed resistance against various heavy metals like Cr+6, Cr+3, Cu+2, Zn+2, Co+2, Ni+2 and Cd+2 . Hence, Luteimonas aestuarii SA13A could be used as potent Cr (VI) reducing strain as well as significant bioremediator in heavy metal contaminated sites.

Keywords: bioremediation, chromium, eco-friendly, heavy metals

Procedia PDF Downloads 438
829 Economic Analysis of an Integrated Anaerobic Digestion and Ozonolysis System

Authors: Tshilenge Kabongo, John Kabuba

Abstract:

The distillery wastewater has become major issues in sanitation sectors. One of the solutions to overcome this sewage is to install the Wastewater Treatment Plant. Economic analysis is fundamentally required for its viability. Integrated anaerobic digestion and advanced oxidation (AD-AOP) in the treatment of distillery wastewater (DWW), anaerobic digestion achieved sufficient biochemical oxygen demand (BOD) and chemical oxygen demand (COD) removals of 95% and 75%, respectively, and methane production of 0.292 L/g COD removed at an organic loading rate of 15 kg COD/m3/d. However, a considerable amount of biorecalcitrant compounds still existed in the anaerobically treated effluent, contributing to a residual COD of 4.5 g/L and an intense dark brown color. To remove the biorecalcitrant color and COD, ozonation, which is an AOP, was introduced as a post-treatment method to AD. Ozonation is a highly competitive treatment technique that can be easily applied to remove the biorecalcitrant compounds, including color, and turbidity. In the ozonation process carried out for an hour, more than 80% of the color was removed at an ozone dose of 45 mg O3/L/min (corresponding to 1.8 g O3/g COD). Thus, integrating AD with the AOP can be effective for organic load and color reductions during the treatment of DWW. The deliverable established the best configuration of the AD-AOP system, where DWW is first subjected to AD followed by AOP post-treatment. However, for establishing the feasibility of the industrial application of the integrated system, it is necessary to carry out the economic analysis. This may help the starting point of the wastewater treatment plant construction and its operation and maintenance costs.

Keywords: distillery wastewater, economic analysis, integrated anaerobic digestion, ozonolysis, treatment

Procedia PDF Downloads 104
828 Characteristics of a Dye-Entrapped Polypyrrole Film Prepared in the Presence of a Different Dye

Authors: M. Mominul Haque, Danny KY. Wong

Abstract:

In this paper, we will demonstrate the feasibility of selectively removing the azo dye, Acid Red 1, in the presence of a second dye, Indigo Carmine, at conducting polypyrrole films. A long-term goal of this work is to develop an efficient and effective electrochemical treatment of textile effluents that does not yield any toxic by-products. Specifically, pyrrole was initially electrochemically oxidised in the presence of Acid Red 1 to prepare an Acid Red 1-entrapped polypyrrole film. Next, the Acid Red 1 entrapped film was electrochemically reduced to expel the dye from the film. The film was then ready for use in removing the dye in an Acid Red 1 solution. The entrapment efficiency of the film was then studied by spectroscopically determining the change in the absorbance of the dye solution. These experiments were repeated using Indigo Carmine or a mixture of Acid Red 1 and Indigo Carmine, in place of Acid Red 1. Therefore, this has given rise to an environmentally friendly treatment method for textile effluents. In our work, we have also studied the characteristics of Acid Red 1- and Indigo Carmine-entrapped polypyrrole films by scanning electron microscopy, X-ray diffraction and Fourier transfer infrared spectroscopy.

Keywords: azo dye, electrochemical treatment, polypyrrole, Acid Red 1

Procedia PDF Downloads 377
827 Pollutants Removal from Synthetic Wastewater by the Combined Electrochemical Sequencing Batch Reactor

Authors: Amin Mojiri, Akiyoshi Ohashi, Tomonori Kindaichi

Abstract:

Synthetic domestic wastewater was treated via combining treatment methods, including electrochemical oxidation, adsorption, and sequencing batch reactor (SBR). In the upper part of the reactor, an anode and a cathode (Ti/RuO2-IrO2) were organized in parallel for the electrochemical oxidation procedure. Sodium sulfate (Na2SO4) with a concentration of 2.5 g/L was applied as the electrolyte. The voltage and current were fixed on 7.50 V and 0.40 A, respectively. Then, 15% working value of the reactor was filled by activated sludge, and 85% working value of the reactor was added with synthetic wastewater. Powdered cockleshell, 1.5 g/L, was added in the reactor to do ion-exchange. Response surface methodology was employed for statistical analysis. Reaction time (h) and pH were considered as independent factors. A total of 97.0% biochemical oxygen demand, 99.9% phosphorous and 88.6% cadmium were eliminated at the optimum reaction time (80.0 min) and pH (6.4).

Keywords: adsorption, electrochemical oxidation, metals, SBR

Procedia PDF Downloads 177
826 Performance of Osmotic Microbial Fuel Cell in Wastewater Treatment and Electricity Generation: A Critical Review

Authors: Shubhangi R. Deshmukh, Anupam B. Soni

Abstract:

Clean water and electricity are vital services needed in all communities. Bio-degradation of wastewater contaminants and desalination technologies are the best possible alternatives for the global shortage of fresh water supply. Osmotic microbial fuel cell (OMFC) is a versatile technology that uses microorganism (used for biodegradation of organic waste) and membrane technology (used for water purification) for wastewater treatment and energy generation simultaneously. This technology is the combination of microbial fuel cell (MFC) and forward osmosis (FO) processes. OMFC can give more electricity and clean water than the MFC which has a regular proton exchange membrane. FO gives many improvements such as high contamination removal, lower operating energy, raising high proton flux than other pressure-driven membrane technology. Lower concentration polarization lowers the membrane fouling by giving osmotic water recovery without extra cost. In this review paper, we have discussed the principle, mechanism, limitation, and application of OMFC technology reported to date. Also, we have interpreted the experimental data from various literature on the water recovery and electricity generation assessed by a different component of OMFC. The area of producing electricity using OMFC has further scope for research and seems like a promising route to wastewater treatment.

Keywords: forward osmosis, microbial fuel cell, osmotic microbial fuel cell, wastewater treatment

Procedia PDF Downloads 157
825 Landfill Leachate and Settled Domestic Wastewater Co-Treatment Using Activated Carbon in Sequencing Batch Reactors

Authors: Amin Mojiri, Hamidi Abdul Aziz

Abstract:

Leachate is created while water penetrates through the waste in a landfill, carrying some forms of pollutants. In literature, for treatment of wastewater and leachate, different ways of biological treatment were used. Sequencing batch reactor (SBR) is a kind of biological treatment. This study investigated the co-treatment of landfill leachate and domestic waste water by SBR and powdered activated carbon augmented (PAC) SBR process. The response surface methodology (RSM) and central composite design (CCD) were employed. The independent variables were aeration rate (L/min), contact time (h), and the ratio of leachate to wastewater mixture (%; v/v)). To perform an adequate analysis of the aerobic process, three dependent parameters, i.e. COD, color, and ammonia-nitrogen (NH3-N or NH4-N) were measured as responses. The findings of the study indicated that the PAC-SBR showed a higher performance in elimination of certain pollutants, in comparison with SBR. With the optimal conditions of aeration rate (0.6 L/min), leachate to waste water ratio (20%), and contact time (10.8 h) for the PAC-SBR, the removal efficiencies for color, NH3-N, and COD were 72.8%, 98.5%, and 65.2%, respectively.

Keywords: co-treatment, landfill Leachate, wastewater, sequencing batch reactor, activate carbon

Procedia PDF Downloads 433
824 Comparison of Chemical Coagulation and Electrocoagulation for Boron Removal from Synthetic Wastewater Using Aluminium

Authors: Kartikaningsih Danis, Yao-Hui Huang

Abstract:

Various techniques including conventional and advanced have been employed for the boron treatment from water and wastewater. The electrocoagulation involves an electrolytic reactor for coagulation/flotation with aluminium as anode and cathode. There is aluminium as coagulant to be used for removal which may induce secondary pollution in chemical coagulation. The purpose of this study is to investigate and compare the performance between electrocoagulation and chemical coagulation on boron removal from synthetic wastewater. The effect of different parameters, such as pH reaction, coagulant dosage, and initial boron concentration were examined. The results show that the boron removal using chemical coagulation was lower. At the optimum condition (e.g. pH 8 and 0.8 mol coagulant dosage), boron removal efficiencies for chemical coagulation and electrocoagulation were 61% and 91%, respectively. In addition, the electrocoagulation needs no chemical reagents and makes the boron treatment easy for application.

Keywords: boron removal, chemical coagulation, aluminum, electro-coagulation

Procedia PDF Downloads 370
823 Membrane Bioreactor versus Activated Sludge Process for Aerobic Wastewater Treatment and Recycling

Authors: Sarra Kitanou

Abstract:

Membrane bioreactor (MBR) systems are one of the most widely used wastewater treatment processes for various municipal and industrial waste streams. It is based on complex interactions between biological processes, filtration process and rheological properties of the liquid to be treated. Its complexity makes understanding system operation and optimization more difficult, and traditional methods based on experimental analysis are costly and time consuming. The present study was based on an external membrane bioreactor pilot scale with ceramic membranes compared to conventional activated sludge process (ASP) plant. Both systems received their influent from a domestic wastewater. The membrane bioreactor (MBR) produced an effluent with much better quality than ASP in terms of total suspended solids (TSS), organic matter such as biological oxygen demand (BOD) and chemical oxygen demand (COD), total Phosphorus and total Nitrogen. Other effluent quality parameters also indicate substantial differences between ASP and MBR. This study leads to conclude that in the case domestic wastewater, MBR treatment has excellent effluent quality. Hence, the replacement of the ASP by the MBRs may be justified on the basis of their improved removal of solids, nutrients, and micropollutants. Furthermore, in terms of reuse the great quality of the treated water allows it to be reused for irrigation.

Keywords: aerobic wastewater treatment, conventional activated sludge process, membrane bioreactor, reuse for irrigation

Procedia PDF Downloads 45
822 Sublethal Effects of Industrial Effluents on Fish Fingerlings (Clarias gariepinus) from Ologe Lagoon Environs, Lagos, Nigeria

Authors: Akintade O. Adeboyejo, Edwin O. Clarke, Oluwatoyin Aderinola

Abstract:

The present study is on the sub-lethal toxicity of industrial effluents (IE) from the environment of Ologe Lagoon, Lagos, Nigeria on the African catfish fingerlings Clarias gariepinus. The fish were cultured in varying concentrations of industrial effluents: 0% (control), 5%, 15%, 25%, and 35%. Trials were carried out in triplicates for twelve (12) weeks. The culture system was a static renewable bioassay and was carried out in the fisheries laboratory of the Lagos State University, Ojo-Lagos. Weekly physico-chemical parameters: Temperature (0C), pH, Conductivity (ppm) and Dissolved Oxygen (DO in mg/l) were measured in each treatment tank. Length (cm) and weight (g) data were obtained weekly and used to calculate various growth parameters: mean weight gain (MWG), percentage weight gain (PWG), daily weight gain (DWG), specific growth rate (SGR) and survival. Haematological (Packed Cell Volume (PCV), Red blood cells (RBC), White Blood Cell (WBC), Neutrophil and Lymphocytes etc) and histological alterations were measured after 12 weeks. The physico-chemical parameters showed that the pH ranged from 7.82±0.25–8.07±0.02. DO range from 1.92±0.66-4.43±1.24 mg/l. The conductivity values increased with increase in concentration of I.E. While the temperature remained stable with mean value range between 26.08±2.14–26.38±2.28. The DO showed significant differences at P<0.05. There was progressive increase in length and weight of fish during the culture period. The fish placed in the control had highest increase in both weight and length while fish in 35% had the least. MWG ranged from 16.59–35.96, DWG is from 0.3–0.48, SGR varied from 1.0–1.86 and survival was 100%. Haematological results showed that C. gariepinus had PCV ranging from 13.0±1.7-27.7±0.6, RBC ranged from 4.7±0.6–9.1±0.1, and Neutrophil ranged from 26.7±4.6–61.0±1.0 amongst others. The highest values of these parameters were obtained in the control and lowest at 35%. While the reverse effects were observed for WBC and lymphocytes. This study has shown that effluents may affect the health status of the test organism and impair vital processes if exposure continues for a long period of time. The histological examination revealed several lesions as expressed by the gills and livers. The histopathology of the gills in the control tanks had normal tissues with no visible lesion, but at higher concentrations, there were: lifting of epithelium, swollen lamellae and gill arch infiltration, necrosis and gill arch destruction. While in the liver: control (0%) show normal liver cells, at higher toxic level, there were: vacoulation, destruction of the hepatic parenchyma, tissue becoming eosinophilic (i.e. tending towards Carcinogenicity) and severe disruption of the hepatic cord architecture. The study has shown that industrial effluents from the study area may affect fish health status and impair vital processes if exposure continues for a long period of time even at lower concentrations (Sublethal).

Keywords: sublethal toxicity, industrial effluents, clarias gariepinus, ologe lagoon

Procedia PDF Downloads 577
821 Organic Substance Removal from Pla-Som Family Industrial Wastewater through APCW System

Authors: W. Wararam, K. Angchanpen, T. Pattamapitoon, K. Chunkao, O. Phewnil, M. Srichomphu, T. Jinjaruk

Abstract:

The research focused on the efficiency for treating high organic wastewater from pla-som production process by anaerobic tanks, oxidation ponds and constructed wetland treatment systems (APCW). The combined system consisted of 50-mm plastic screen, five 5.8 m3 oil-grease trap tanks (2-day hydraulic retention time; HRT), four 4.3 m3 anaerobic tanks (1-day HRT), 16.7 m3 oxidation pond no.1 (7-day HRT), 12.0 m3 oxidation pond no.2 (3-day HRT), and 8.2 m3 constructed wetland plot (1-day HRT). After washing fresh raw fishes, they were sliced in small pieces and were converted into ground fish meat by blender machine. The fish meat was rinsed for 8 rounds: 1, 2, 3, 5, 6 and 7 by tap water and 4 and 8 by rice-wash-water, before mixing with salt, garlic, steamed rice and monosodium glutamate, followed by plastic wrapping for 72-hour of edibility. During pla-som production processing, the rinsed wastewater about 5 m3/day was fed to the treatment systems and fully stagnating storage in its components. The result found that, 1) percentage of treatment efficiency for BOD, COD, TDS and SS were 93, 95, 32 and 98 respectively, 2) the treatment was conducted with 500-kg raw fishes along with full equipment of high organic wastewater treatment systems, 3) the trend of the treatment efficiency and quantity in all indicators was similarly processed and 4) the small pieces of fish meat and fish blood were needed more than 3-day HRT in anaerobic digestion process.

Keywords: organic substance, Pla-Som family industry, wastewater, APCW system

Procedia PDF Downloads 324
820 Determination of Chemical and Adsorption Kinetics: An Investigation of a Petrochemical Wastewater Treatment Utilizing GAC

Authors: Leila Vafajoo, Feria Ghanaat, Alireza Mohmadi Kartalaei, Amin Ghalebi

Abstract:

Petrochemical industries are playing an important role in producing wastewaters. Nowadays different methods are employed to treat these materials. The goal of the present research was to reduce the COD of a petrochemical wastewater via adsorption technique using a commercial granular activated carbon (GAC) as adsorbent. In the current study, parameters of kinetic models as well as; adsorption isotherms were determined through utilizing the Langmuir and Freundlich isotherms. The key parameters of KL= 0.0009 and qm= 33.33 for the former and nf=0.5 and Kf= 0.000004 for the latter isotherms resulted. Moreover, a correlation coefficient of above 90% for both cases proved logical use of such isotherms. On the other hand, pseudo-first and -second order kinetics equations were implemented. These resulted in coefficients of k1=0.005 and qe=2018 as well as; K2=0.009 and qe=1250; respectively. In addition, obtaining the correlation coefficients of 0.94 and 0.68 for these 1st and 2nd order kinetics; respectively indicated advantageous use of the former model. Furthermore, a significant experimental reduction of the petrochemical wastewater COD revealed that, using GAC for the process undertaken was an efficient mean of treatment. Ultimately, the current investigation paved down the road for predicting the system’s behavior on industrial scale.

Keywords: petrochemical wastewater, adsorption, granular activated carbon, equilibrium isotherm, kinetic model

Procedia PDF Downloads 333
819 Application of Bacteriophage and Essential Oil to Enhance Photocatalytic Efficiency

Authors: Myriam Ben Said, Dhekra Trabelsi, Faouzi Achouri, Marwa Ben Saad, Latifa Bousselmi, Ahmed Ghrabi

Abstract:

This present study suggests the use of biological and natural bactericide, cheap, safe to handle, natural, environmentally benign agents to enhance the conventional wastewater treatment process. In the same sense, to highlight the enhancement of wastewater photocatalytic treatability, we were used virulent bacteriophage(s) and essential oils (EOs). The pre-phago-treatment of wastewater with lytic phage(s), leads to a decrease in bacterial density and, consequently, limits the establishment of intercellular communication (QS), thus preventing biofilm formation and inhibiting the expression of other virulence factors after photocatalysis. Moreover, to increase the photocatalytic efficiency, we were added to the secondary treated wastewater 1/1000 (w/v) of EO of thyme (T. vulgaris). This EO showed in vitro an anti-biofilm activity through the inhibition of plonctonic cell mobility and their attachment on an inert surface and also the deterioration of the sessile structure. The presence of photoactivatable molecules (photosensitizes) in this type of oil allows the optimization of photocatalytic efficiency without hazards relayed to dyes and chemicals reagent. The use of ‘biological and natural tools’ in combination with usual water treatment process can be considered as a safety procedure to reduce and/or to prevent the recontamination of treated water and also to prevent the re-expression of virulent factors by pathogenic bacteria such as biofilm formation with friendly processes.

Keywords: biofilm, essential oil, optimization, phage, photocatalysis, wastewater

Procedia PDF Downloads 120
818 Evaluation of Microbial Accumulation of Household Wastewater Purified by Advanced Oxidation Process

Authors: Nazlı Çetindağ, Pelin Yılmaz Çetiner, Metin Mert İlgün, Emine Birci, Gizemnur Yıldız Uysal, Özcan Hatipoğlu, Ehsan Tuzcuoğlu, Gökhan Sır

Abstract:

Water scarcity is an unavoidable issue impacting an increasing number of individuals daily, representing a global crisis stemming from swift population growth, urbanization, and excessive resource exploitation. Consequently, solutions that involve the reclamation of wastewater are considered essential. In this context, household wastewater, categorized as greywater, plays a significant role in freshwater used for residential purposes and is attributed to washing. This type of wastewater comprises diverse elements, including organic substances, soaps, detergents, solvents, biological components, and inorganic elements such as certain metal ions and particles. The physical characteristics of wastewater vary depending on its source, whether commercial, domestic, or from a hospital setting. Consequently, the treatment strategy for this wastewater type necessitates comprehensive investigation and appropriate handling. The advanced oxidation process (AOP) emerges as a promising technique associated with the generation of reactive hydroxyl radicals highly effective in oxidizing organic pollutants. This method takes precedence over others like coagulation, flocculation, sedimentation, and filtration due to its avoidance of undesirable by-products. In the current study, the focus was on exploring the feasibility of the AOP for treating actual household wastewater. To achieve this, a laboratory-scale device was designed to effectively target the formed radicals toward organic pollutants, resulting in lower organic compounds in wastewater. Then, the number of microorganisms present in treated wastewater, in addition to the chemical content of the water, was analyzed to determine whether the lab-scale device eliminates microbial accumulation with AOP. This was also an important parameter since microbes can indirectly affect human health and machine hygiene. To do this, water samples were taken from treated and untreated conditions and then inoculated on general purpose agar to track down the total plate count. Analysis showed that AOP might be an option to treat household wastewater and lower microorganism growth.

Keywords: usage of household water, advanced oxidation process, water reuse, modelling

Procedia PDF Downloads 26
817 Dehydration of Residues from WTP for Application in Building Materials and Reuse of Water from the Waste Treatment: A Feasible Solution to Complete Treatment Systems

Authors: Marco Correa, Flavio Araujo, Paulo Scalize, Antonio Albuquerque

Abstract:

The increasing reduction of the volumes of surface water sources which supply most municipalities, as well as the continued rise of demand for treated water, combined with the disposal of effluents from washing of decanters and filters of the water treatment plants, generates a continuous search for correct environmentally solutions to these problems. The effluents generated by the water treatment industry need to be suitably processed for return to the environment or re-use. This article shows an alternative for the dehydration of sludge from the water treatment plants (WTP) and eventual disposal of sludge drained. Using the simple design methodology, we present a case study for a drainage in tanks geotextile, full-scale, which involve five sludge drainage tanks from WTP of the Rio Verde City. Aiming to the reutilization the water drained from the sludge and enabling its reuse both at the beginning of the treatment process at the WTP and in less noble services as for watering the gardens of the local town hall. The sludge will be used to production of building materials.

Keywords: re-use, residue, sustainable, water treatment plants, sludge

Procedia PDF Downloads 454
816 Bacteria Removal from Wastewater by Electrocoagulation Process

Authors: Boudjema Nouara, Mameri Nabil

Abstract:

Bacteria have played an important role in water contamination as a consequence of organic pollution. In this study, an electrocoagulation process was adopted to remove fecal contamination and pathogenic bacteria from waste water. The effect of anode/cathodes materials as well as operating conditions for bacteria removal from water, such as current intensity and initial pH and temperature. The results indicated that the complete removal was achevied when using aluminium anode as anode at current intensity of 3A, initial pH of 7-8 and electrolysis time of 30 minutes. This process showed a bactericidal effect of 95 to 99% for the total and fecal coliforms and 99% to 100% for Eschercichia coli and fecal Streptococci. A decrease of 72% was recorded for sulphite-reducing Clostridia. Thus, this process has the potential to be one the options for treatment where high amount of bacteria in wastewater river.

Keywords: bacteria, el Harrach river, electrocoagulation, wastewater, treatment

Procedia PDF Downloads 464
815 Adsorptive Removal of Methylene Blue Dye from Aqueous Solutions by Leaf and Stem Biochar Derived from Lantana camara: Adsorption Kinetics, Equilibrium, Thermodynamics and Possible Mechanism

Authors: Deepa Kundu, Prabhakar Sharma, Sayan Bhattacharya, Jianying Shang

Abstract:

The discharge of dye-containing effluents in the water bodies has raised concern due to the potential hazards related to their toxicity in the environment. There are various treatment technologies available for the removal of dyes from wastewaters. The use of biosorbent to remove dyes from wastewater is one of the effective and inexpensive techniques. In the study, the adsorption of phenothiazine dye methylene blue onto biosorbent prepared from Lantana camara L. has been studied in aqueous solutions. The batch adsorption experiments were conducted and the effects of various parameters such as pH (3-12), contact time, adsorbent dose (100-400 mg/L), initial dye concentration (5-20 mg/L), and temperature (303, 313 and 323 K) were investigated. The prepared leaf (BCL600) and shoot (BCS600) biochar of Lantana were characterized using FTIR, SEM, elemental analysis, and zeta potential (pH~7). A comparison between the adsorption potential of both the biosorbent was also evaluated. The results indicated that the amount of methylene blue dye (mg/g) adsorbed onto the surface of biochar was highly dependent on the pH of the dye solutions as it increased with an increase in pH from 3 to 12. It was observed that the dye treated with BCS600 and BCL600 attained an equilibrium within 60 and 100 minutes, respectively. The rate of the adsorption process was determined by performing the Lagergren pseudo-first-order and pseudo-second-order kinetics. It was found that dye treated with both BCS600 and BCL600 followed pseudo-second-order kinetics implying the multi-step nature of the adsorption process involving external adsorption and diffusion of dye molecules into the interior of the adsorbents. The data obtained from batch experiments were fitted well with Langmuir and Freundlich isotherms (R² > 0.98) to indicate the multilayer adsorption of dye over the biochar surfaces. The thermodynamic studies revealed that the adsorption process is favourable, spontaneous, and endothermic in nature. Based on the results, the inexpensive and easily available Lantana camara biomass can be used to remove methylene blue dye from wastewater. It can also help in managing the growth of the notorious weed in the environment.

Keywords: adsorption kinetics, biochar, Lantana camara, methylene blue dye, possible mechanism, thermodynamics

Procedia PDF Downloads 106
814 Quality Parameters of Offset Printing Wastewater

Authors: Kiurski S. Jelena, Kecić S. Vesna, Aksentijević M. Snežana

Abstract:

Samples of tap and wastewater were collected in three offset printing facilities in Novi Sad, Serbia. Ten physicochemical parameters were analyzed within all collected samples: pH, conductivity, m - alkalinity, p - alkalinity, acidity, carbonate concentration, hydrogen carbonate concentration, active oxygen content, chloride concentration and total alkali content. All measurements were conducted using the standard analytical and instrumental methods. Comparing the obtained results for tap water and wastewater, a clear quality difference was noticeable, since all physicochemical parameters were significantly higher within wastewater samples. The study also involves the application of simple linear regression analysis on the obtained dataset. By using software package ORIGIN 5 the pH value was mutually correlated with other physicochemical parameters. Based on the obtained values of Pearson coefficient of determination a strong positive correlation between chloride concentration and pH (r = -0.943), as well as between acidity and pH (r = -0.855) was determined. In addition, statistically significant difference was obtained only between acidity and chloride concentration with pH values, since the values of parameter F (247.634 and 182.536) were higher than Fcritical (5.59). In this way, results of statistical analysis highlighted the most influential parameter of water contamination in offset printing, in the form of acidity and chloride concentration. The results showed that variable dependence could be represented by the general regression model: y = a0 + a1x+ k, which further resulted with matching graphic regressions.

Keywords: pollution, printing industry, simple linear regression analysis, wastewater

Procedia PDF Downloads 210
813 Wastewater Treatment by Floating Macrophytes (Salvinia natans) under Algerian Semi-Arid Climate

Authors: Laabassi Ayache, Boudehane Asma

Abstract:

Macrophyte pond has developed strongly in the field of wastewater treatment for irrigation in rural areas and small communities. Their association allows, in some cases, to increase the hydraulic capacity while maintaining the highest level of quality. The present work is devoted to the treatment of domestic wastewater under climatic conditions of Algeria (semi-arid) through a system using two tanks planted with Salvinia natans. The performance study and treatment efficiency of the system overall shows that the latter provides a significant removal of nitrogen pollution: total Kjeldahl nitrogen NTK (85.2%), Ammonium NH₄⁺-N (79%), Nitrite NO₂⁻-N (40%) also, a major meaningful reduction of biochemical oxygen demand BOD₅ was observed at the output of the system (96.9 %). As BOD₅, the chemical oxygen demand (COD) removal was higher than 95% at the exit of the two tanks. A moderately low yield of phosphate-phosphorus (PO₄³-P) was achieved with values not exceeding 37%. In general, the quality of treated effluent meets the Algerian standard of discharge and which allows us to select a suitable species in constructed wetland treatment systems under semi-arid climate.

Keywords: nutrient removal, Salvinia natans, semi-arid climate, wastewater treatment

Procedia PDF Downloads 122
812 Thermophilic Anaerobic Granular Membrane Distillation Bioreactor for Wastewater Reuse

Authors: Duong Cong Chinh, Shiao-Shing Chen, Le Quang Huy

Abstract:

Membrane distillation (MD) is actually claimed to be a cost-effective separation process when waste heat, alternative energy sources, or wastewater are used. To the best of our knowledge, this is the first study that a thermophilic anaerobic granular bioreactor is integrated with membrane distillation (ThAnMDB) was investigated. In this study, the laboratory scale anaerobic bioreactor (1.2 litter) was set-up. The bioreactor was maintained at temperature 55 ± 2°C, hydraulic retention time = 0.5 days, organic loading rates of 7 and 10 kg chemical oxygen demand (COD) m³/day. Side-stream direct contact membrane distillation with the polytetrafluoroethylene membrane area was 150 cm². The temperature of the distillate was kept at 25°C. Results show that distillate flux was 19.6 LMH (Liters per square meter per hour) on the first day and gradually decreased to 6.9 LMH after 10 days, and the membrane was not wet. Notably, by directly using the heat from the thermophilic anaerobic for MD separation process, all distilled water from wastewater was reuse as fresh water (electrical conductivity < 120 µs/cm). The ThAnMDB system showed its high pollutant removal performance: chemical oxygen demand (COD) from 99.6 to 99.9%, NH₄⁺ from 60 to 95%, and PO₄³⁻ complete removal. In addition, methane yield was from 0.28 to 0.34 lit CH₄/gram COD removal (80 – 97% of the theoretical) demonstrated that the ThAnMDB system was quite stable. The achievement of the ThAnMDB is not only in removing pollutants and reusing wastewater but also in absolutely unnecessarily adding alkaline to the anaerobic bioreactor system.

Keywords: high rate anaerobic digestion, membrane distillation, thermophilic anaerobic, wastewater reuse

Procedia PDF Downloads 97