Search results for: vibro-impact dynamics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2722

Search results for: vibro-impact dynamics

622 Modelling, Simulation, and Experimental Validation of the Influence of Golf-Ball-Inspired Dimpled Design in Drag Reduction and Improved Fuel Efficiency of Super-Mileage Vehicle

Authors: Bibin Sagaram, Ronith Stanly, S. S. Suneesh

Abstract:

Due to the dwindling supply of fuel reserves, engineers and designers now focus on fuel efficient designs for the solution of any problem; the transportation industry is not new to this kind of approach. Though the aerodynamic benefits of the dimples on a Golf-ball are known, it has never been scientifically tested on how such a design philosophy can improve the fuel efficiency of a real-life vehicle by imparting better aerodynamic performance. The main purpose of the paper is to establish the aerodynamic benefits of the Golf-ball-Inspired Dimpled Design in improving the fuel efficiency of a Super-mileage vehicle, constructed by Team Go Viridis for ‘Shell Eco Marathon Asia 2015’, and to predict the extent to which the results can be held valid for a road car. The body design was modeled in Autodesk Inventor and the Computational Fluid Dynamics (CFD) simulations were carried out using Ansys Fluent software. The aerodynamic parameters of designs (with and without the Golf-ball-Inspired Dimples) have been studied and the results are experimentally validated against those obtained from wind tunnel tests carried out on a 1:10 scaled-down 3D printed model. Test drives of the Super-mileage vehicle were carried out, under various conditions, to compare the variation in fuel efficiency with and without the Golf-ball-Inspired design. Primary investigations reveal an aerodynamic advantage of 25% for the vehicle with the Golf Ball Inspired Dimpled Design as opposed to the normal design. Initial tests conducted by ‘Mythbusters’ on Discovery Network using a modified road car has shown positive results which has motivated us to conduct such a research work using a custom-built experimental Super-Mileage vehicle. The content of the paper becomes relevant to the present Automotive and Energy industry where improving the fuel efficiency is of the top most priority.

Keywords: aerodynamics, CFD, fuel efficiency, golf ball

Procedia PDF Downloads 314
621 Glacier Dynamics and Mass Fluctuations in Western Himalayas: A Comparative Analysis of Pir-Panjal and Greater Himalayan Ranges in Jhelum Basin, India

Authors: Syed Towseef Ahmad, Fatima Amin, Pritha Acharya, Anil K. Gupta, Pervez Ahmad

Abstract:

Glaciers being the sentinels of climate change, are the most visible evidence of global warming. Given the unavailability of observed field-based data, this study has focussed on the use of geospatial techniques to obtain information about the glaciers of Pir-Panjal (PPJ) and the Great Himalayan Regions of Jhelum Basin (GHR). These glaciers need to be monitored in line with the variations in climatic conditions because they significantly contribute to various sectors in the region. The main aim of this study is to map the glaciers in the two adjacent regions (PPJ and GHR) in the north-western Himalayas with different topographies and compare the changes in various glacial attributes during two different time periods (1990-2020). During the last three decades, both PPJ as well as GHR regions have observed deglaciation of around 36 and 26 percent, respectively. The mean elevation of GHR glaciers has increased from 4312 to 4390 masl, while the same for PPJ glaciers has increased from 4085 to 4124 masl during the observation period. Using accumulation area ratio (AAR) method, mean mass balance of -34.52 and -37.6 cm.w.e was recorded for the glaciers of GHR and PPJ, respectively. The difference in areal and mass loss of glaciers in these regions may be due to (i) the smaller size of PPJ glaciers which are all smaller than 1 km² and are thus more responsive to climate change (ii) Higher mean elevation of GHR glaciers (iii) local variations in climatic variables in these glaciated regions. Time series analysis of climate variables indicates that both the mean maximum and minimum temperatures of Qazigund station (Tmax= 19.2, Tmin= 6.4) are comparatively higher than the Pahalgam station (Tmax= 18.8, Tmin= 3.2). Except for precipitation in Qazigund (Slope= - 0.3 mm a⁻¹), each climatic parameter has shown an increasing trend during these three decades, and with the slope of 0.04 and 0.03°c a⁻¹, the positive trend in Tmin (pahalgam) and Tmax (qazigund) are observed to be statistically significant (p≤0.05).

Keywords: glaciers, climate change, Pir-Panjal, greater Himalayas, mass balance

Procedia PDF Downloads 52
620 A New Cytoprotective Drug on the Basis of Cytisine: Phase I Clinical Trial Results

Authors: B. Yermekbayeva, A. Gulyayaev, T. Nurgozhin, C. Bektur

Abstract:

Cytisine aminophosphonate under the name "Cytafat" was approved for clinical trials in Republic of Kazakhstan as a putative liver protecting drug for the treatment of acute toxic hepatitis. A method of conducting the clinical trial is a double blind study. Total number of patients -71, aged from 16 to 56 years. Research on healthy volunteers determined the maximal tolerable doze of "Cytafat" as 200 mg/kg. Side effects when administered at high dozes (100-200 mg/kg) are tachycardia and increase of arterial blood pressure. The drug is tested in the treatment of 28 patients with a syndrome of hepatocellular failure (a poisoning with substitutes of alcohol, rat poison, or medical products). "Cytafat" was intravenously administered at a dose of 10 mg/kg in 200 ml of 5 % glucose solution once daily. The number of administrations: 1-3. In the comparison group, 23 patients were treated intravenously once a day with “Essenciale H” at a dose of 10 ml. 20 patients received a placebo (10 ml of glucose intravenously). In all cases of toxic hepatopathology the significant positive clinical effect of the testing drug distinguishable from placebo and surpassing the alternative was observed. Within a day after administration a sharp reduction of cytolitic syndrome parameters (ALT, AST, alkaline phosphatase, thymol turbidity test, GGT) was registered, a reduction of the severity of cholestatic syndrome (bilirubin decreased) was recorded, significantly decreased indices of lipid peroxidation. The following day, in all cases the positive dynamics was determined with ultrasound study (reduction of diffuse changes and events of reactive pancreatitis), hepatomegaly disappeared. Normalization of all parameters occurred in 2-3 times faster, than when using the drug "Essenciale H" and placebo. Average term of elimination of toxic hepatopathy when using the drug "Cytafat" -2,8 days, "Essenciale H" -7,2 days, and placebo -10,6 days. The new drug "Cytafat" has expressed cytoprotective properties.

Keywords: cytisine, cytoprotection, hepatopathy, hepatoprotection

Procedia PDF Downloads 340
619 Estimation of Service Quality and Its Impact on Market Share Using Business Analytics

Authors: Haritha Saranga

Abstract:

Service quality has become an important driver of competition in manufacturing industries of late, as many products are being sold in conjunction with service offerings. With increase in computational power and data capture capabilities, it has become possible to analyze and estimate various aspects of service quality at the granular level and determine their impact on business performance. In the current study context, dealer level, model-wise warranty data from one of the top two-wheeler manufacturers in India is used to estimate service quality of individual dealers and its impact on warranty related costs and sales performance. We collected primary data on warranty costs, number of complaints, monthly sales, type of quality upgrades, etc. from the two-wheeler automaker. In addition, we gathered secondary data on various regions in India, such as petrol and diesel prices, geographic and climatic conditions of various regions where the dealers are located, to control for customer usage patterns. We analyze this primary and secondary data with the help of a variety of analytics tools such as Auto-Regressive Integrated Moving Average (ARIMA), Seasonal ARIMA and ARIMAX. Study results, after controlling for a variety of factors, such as size, age, region of the dealership, and customer usage pattern, show that service quality does influence sales of the products in a significant manner. A more nuanced analysis reveals the dynamics between product quality and service quality, and how their interaction affects sales performance in the Indian two-wheeler industry context. We also provide various managerial insights using descriptive analytics and build a model that can provide sales projections using a variety of forecasting techniques.

Keywords: service quality, product quality, automobile industry, business analytics, auto-regressive integrated moving average

Procedia PDF Downloads 100
618 Exploring Gender-Based Violence in Indigenous Communities in Argentina and Costa Rica: A Review of the Current Literature

Authors: Jocelyn Jones

Abstract:

The objective of this literature review is to provide an assessment of the current literature concerning gender-based violence (GBV) within indigenous communities in Argentina and Costa Rica, and various public intervention strategies that have been implemented to counter the increasing rates of violence within these populations. The review will address some of the unique challenges and contextual factors influencing the prevalence and response to such violence, including the enduring impact of colonialism on familial structures, community dynamics, and the perpetuation of violence. Drawing on indigenous feminist perspectives, the paper critically assesses the intersectionality of gender, ethnicity, and socio-economic status in shaping the experiences of indigenous women, men, and gender-diverse individuals. In comparing the two nations, the literature review identifies commonalities and divergences in policy frameworks, legal responses, and grassroots initiatives aimed at addressing GBV. Regarding the assessment of the efficacy of existing interventions, the paper will consider the role of cultural revitalization, community engagement, and collaborative efforts between indigenous communities and external agencies in the development of future policies. Moreover, the review will highlight the importance of decolonizing methodologies in research and intervention strategies, and the need to emphasise culturally sensitive approaches that respect and integrate indigenous worldviews and traditional knowledge systems. Additionally, the paper will explore the potential impact of colonial legacies, resource extraction, and land dispossession on exacerbating vulnerabilities to GBV within indigenous communities. The aim of this paper is to contribute to a more in-depth understanding of GBV in indigenous contexts in order to promote cross-cultural learning and inform future research. Ultimately, this review will demonstrate the necessity of adopting a holistic and context-specific approach to address gender-based violence in indigenous communities.

Keywords: gender based violence, indigenous, colonialism, literature review

Procedia PDF Downloads 37
617 Revealing the Urban Heat Island: Investigating its Spatial and Temporal Changes and Relationship with Air Quality

Authors: Aneesh Mathew, Arunab K. S., Atul Kumar Sharma

Abstract:

The uncontrolled rise in population has led to unplanned, swift, and unsustainable urban expansion, causing detrimental environmental impacts on both local and global ecosystems. This research delves into a comprehensive examination of the Urban Heat Island (UHI) phenomenon in Bengaluru and Hyderabad, India. It centers on the spatial and temporal distribution of UHI and its correlation with air pollutants. Conducted across summer and winter seasons from 2001 to 2021 in Bangalore and Hyderabad, this study discovered that UHI intensity varies seasonally, peaking in summer and decreasing in winter. The annual maximum UHI intensities range between 4.65 °C to 6.69 °C in Bengaluru and 5.74 °C to 6.82 °C in Hyderabad. Bengaluru particularly experiences notable fluctuations in average UHI intensity. Introducing the Urban Thermal Field Variance Index (UTFVI), the study indicates a consistent strong UHI effect in both cities, significantly impacting living conditions. Moreover, hotspot analysis demonstrates a rising trend in UHI-affected areas over the years in Bengaluru and Hyderabad. This research underscores the connection between air pollutant concentrations and land surface temperature (LST), highlighting the necessity of comprehending UHI dynamics for urban environmental management and public health. It contributes to a deeper understanding of UHI patterns in swiftly urbanizing areas, providing insights into the intricate relationship between urbanization, climate, and air quality. These findings serve as crucial guidance for policymakers, urban planners, and researchers, facilitating the development of innovative, sustainable strategies to mitigate the adverse impacts of uncontrolled expansion while promoting the well-being of local communities and the global environment.

Keywords: urban heat island effect, land surface temperature, air pollution, urban thermal field variance index

Procedia PDF Downloads 38
616 Practice Educators' Perspective: Placement Challenges in Social Work Education in England

Authors: Yuet Wah Echo Yeung

Abstract:

Practice learning is an important component of social work education. Practice educators are charged with the responsibility to support and enable learning while students are on placement. They also play a key role in teaching students to integrate theory and practice, as well as assessing their performance. Current literature highlights the structural factors that make it difficult for practice educators to create a positive learning environment for students. Practice educators find it difficult to give sufficient attention to their students because of the lack of workload relief, the increasing emphasis on managerialism and bureaucratisation, and a range of competing organisational and professional demands. This paper reports the challenges practice educators face and how they manage these challenges in this context. Semi-structured face-to-face interviews were conducted with thirteen practice educators who support students in statutory and voluntary social care settings in the Northwest of England. Interviews were conducted between April and July 2017 and each interview lasted about 40 minutes. All interviews were recorded and transcribed. All practice educators are experienced social work practitioners with practice experience ranging from 6 to 42 years. On average they have acted as practice educators for 13 years and all together have supported 386 students. Our findings reveal that apart from the structural factors that impact how practice educators perform their roles, they also faced other challenges when supporting students on placement. They include difficulty in engaging resistant students, complexity in managing power dynamics in the context of practice learning, and managing the dilemmas of fostering a positive relationship with students whilst giving critical feedback. Suggestions to enhance the practice educators’ role include support from organisations and social work teams; effective communication with university tutors, and a forum for practice educators to share good practice and discuss placement issues.

Keywords: social work education, placement challenges, practice educator, practice learning

Procedia PDF Downloads 162
615 Development and Investigation of Efficient Substrate Feeding and Dissolved Oxygen Control Algorithms for Scale-Up of Recombinant E. coli Cultivation Process

Authors: Vytautas Galvanauskas, Rimvydas Simutis, Donatas Levisauskas, Vykantas Grincas, Renaldas Urniezius

Abstract:

The paper deals with model-based development and implementation of efficient control strategies for recombinant protein synthesis in fed-batch E.coli cultivation processes. Based on experimental data, a kinetic dynamic model for cultivation process was developed. This model was used to determine substrate feeding strategies during the cultivation. The proposed feeding strategy consists of two phases – biomass growth phase and recombinant protein production phase. In the first process phase, substrate-limited process is recommended when the specific growth rate of biomass is about 90-95% of its maximum value. This ensures reduction of glucose concentration in the medium, improves process repeatability, reduces the development of secondary metabolites and other unwanted by-products. The substrate limitation can be enhanced to satisfy restriction on maximum oxygen transfer rate in the bioreactor and to guarantee necessary dissolved carbon dioxide concentration in culture media. In the recombinant protein production phase, the level of substrate limitation and specific growth rate are selected within the range to enable optimal target protein synthesis rate. To account for complex process dynamics, to efficiently exploit the oxygen transfer capability of the bioreactor, and to maintain the required dissolved oxygen concentration, adaptive control algorithms for dissolved oxygen control have been proposed. The developed model-based control strategies are useful in scale-up of cultivation processes and accelerate implementation of innovative biotechnological processes for industrial applications.

Keywords: adaptive algorithms, model-based control, recombinant E. coli, scale-up of bioprocesses

Procedia PDF Downloads 228
614 VeriFy: A Solution to Implement Autonomy Safely and According to the Rules

Authors: Michael Naderhirn, Marco Pavone

Abstract:

Problem statement, motivation, and aim of work: So far, the development of control algorithms was done by control engineers in a way that the controller would fit a specification by testing. When it comes to the certification of an autonomous car in highly complex scenarios, the challenge is much higher since such a controller must mathematically guarantee to implement the rules of the road while on the other side guarantee aspects like safety and real time executability. What if it becomes reality to solve this demanding problem by combining Formal Verification and System Theory? The aim of this work is to present a workflow to solve the above mentioned problem. Summary of the presented results / main outcomes: We show the usage of an English like language to transform the rules of the road into system specification for an autonomous car. The language based specifications are used to define system functions and interfaces. Based on that a formal model is developed which formally correctly models the specifications. On the other side, a mathematical model describing the systems dynamics is used to calculate the systems reachability set which is further used to determine the system input boundaries. Then a motion planning algorithm is applied inside the system boundaries to find an optimized trajectory in combination with the formal specification model while satisfying the specifications. The result is a control strategy which can be applied in real time independent of the scenario with a mathematical guarantee to satisfy a predefined specification. We demonstrate the applicability of the method in simulation driving scenarios and a potential certification. Originality, significance, and benefit: To the authors’ best knowledge, it is the first time that it is possible to show an automated workflow which combines a specification in an English like language and a mathematical model in a mathematical formal verified way to synthesizes a controller for potential real time applications like autonomous driving.

Keywords: formal system verification, reachability, real time controller, hybrid system

Procedia PDF Downloads 218
613 Centrifuge Modelling Approach on Sysmic Loading Analysis of Clay: A Geotechnical Study

Authors: Anthony Quansah, Tresor Ntaryamira, Shula Mushota

Abstract:

Models for geotechnical centrifuge testing are usually made from re-formed soil, allowing for comparisons with naturally occurring soil deposits. However, there is a fundamental omission in this process because the natural soil is deposited in layers creating a unique structure. Nonlinear dynamics of clay material deposit is an essential part of changing the attributes of ground movements when subjected to solid seismic loading, particularly when diverse intensification conduct of speeding up and relocation are considered. The paper portrays a review of axis shaking table tests and numerical recreations to explore the offshore clay deposits subjected to seismic loadings. These perceptions are accurately reenacted by DEEPSOIL with appropriate soil models and parameters reviewed from noteworthy centrifuge modeling researches. At that point, precise 1-D site reaction investigations are performed on both time and recurrence spaces. The outcomes uncover that for profound delicate clay is subjected to expansive quakes, noteworthy increasing speed lessening may happen close to the highest point of store because of soil nonlinearity and even neighborhood shear disappointment; nonetheless, huge enhancement of removal at low frequencies are normal in any case the forces of base movements, which proposes that for dislodging touchy seaward establishments and structures, such intensified low-recurrence relocation reaction will assume an essential part in seismic outline. This research shows centrifuge as a tool for creating a layered sample important for modelling true soil behaviour (such as permeability) which is not identical in all directions. Currently, there are limited methods for creating layered soil samples.

Keywords: seismic analysis, layered modeling, terotechnology, finite element modeling

Procedia PDF Downloads 130
612 River Catchment’s Demography and the Dynamics of Access to Clean Water in the Rural South Africa

Authors: Yiseyon Sunday Hosu, Motebang Dominic Vincent Nakin, Elphina N. Cishe

Abstract:

Universal access to clean and safe drinking water and basic sanitation is one of the targets of the 6th Sustainable Development Goals (SDGs). This paper explores the evidence-based indicators of Water Rights Acts (2013) among households in the rural communities in the Mthatha River catchment of OR Tambo District Municipality of South Africa. Daily access to minimum 25 litres/person and the factors influencing clean water access were investigated in the catchment. A total number of 420 households were surveyed in the upper, peri-urban, lower and coastal regions of Mthatha Rivier catchment. Descriptive and logistic regression analyses were conducted on the data collected from the households to elicit vital information on domestic water security among rural community dwellers. The results show that approximately 68 percent of total households surveyed have access to the required minimum 25 litre/person/day, with 66.3 percent in upper region, 76 per cent in the peri-urban, 1.1 percent in the lower and 2.3 percent in the coastal regions. Only 30 percent among the total surveyed households had access to piped water either in the house or public taps. The logistic regression showed that access to clean water was influenced by lack of water infrastructure, proximity to urban regions, daily flow of pipe-borne water, household size and distance to public taps. This paper recommends that viable integrated rural community-based water infrastructure provision strategies between NGOs and local authority and the promotion of point of use (POU) technologies to enhance better access to clean water.

Keywords: domestic water, household technology, water security, rural community

Procedia PDF Downloads 329
611 Aerodynamic Design and Optimization of Vertical Take-Off and Landing Type Unmanned Aerial Vehicles

Authors: Enes Gunaltili, Burak Dam

Abstract:

The airplane history started with the Wright brothers' aircraft and improved day by day. With the help of this advancements, big aircrafts replace with small and unmanned air vehicles, so in this study we design this type of air vehicles. First of all, aircrafts mainly divided into two main parts in our day as a rotary and fixed wing aircrafts. The fixed wing aircraft generally use for transport, cargo, military and etc. The rotary wing aircrafts use for same area but there are some superiorities from each other. The rotary wing aircraft can take off vertically from the ground, and it can use restricted area. On the other hand, rotary wing aircrafts generally can fly lower range than fixed wing aircraft. There are one kind of aircraft consist of this two types specifications. It is named as VTOL (vertical take-off and landing) type aircraft. VTOLs are able to takeoff and land vertically and fly horizontally. The VTOL aircrafts generally can fly higher range from the rotary wings but can fly lower range from the fixed wing aircraft but it gives beneficial range between them. There are many other advantages of VTOL aircraft from the rotary and fixed wing aircraft. Because of that, VTOLs began to use for generally military, cargo, search, rescue and mapping areas. Within this framework, this study answers the question that how can we design VTOL as a small unmanned aircraft systems for search and rescue application for benefiting the advantages of fixed wing and rotary wing aircrafts by eliminating the disadvantages of them. To answer that question and design VTOL aircraft, multidisciplinary design optimizations (MDO), some theoretical terminologies, formulations, simulations and modelling systems based on CFD (Computational Fluid Dynamics) is used in same time as design methodology to determine design parameters and steps. As a conclusion, based on tests and simulations depend on design steps, suggestions on how the VTOL aircraft designed and advantages, disadvantages, and observations for design parameters are listed, then VTOL is designed and presented with the design parameters, advantages, and usage areas.

Keywords: airplane, rotary, fixed, VTOL, CFD

Procedia PDF Downloads 259
610 Single Ion Transport with a Single-Layer Graphene Nanopore

Authors: Vishal V. R. Nandigana, Mohammad Heiranian, Narayana R. Aluru

Abstract:

Graphene material has found tremendous applications in water desalination, DNA sequencing and energy storage. Multiple nanopores are etched to create opening for water desalination and energy storage applications. The nanopores created are of the order of 3-5 nm allowing multiple ions to transport through the pore. In this paper, we present for the first time, molecular dynamics study of single ion transport, where only one ion passes through the graphene nanopore. The diameter of the graphene nanopore is of the same order as the hydration layers formed around each ion. Analogous to single electron transport resulting from ionic transport is observed for the first time. The current-voltage characteristics of such a device are similar to single electron transport in quantum dots. The current is blocked until a critical voltage, as the ions are trapped inside a hydration shell. The trapped ions have a high energy barrier compared to the applied input electrical voltage, preventing the ion to break free from the hydration shell. This region is called “Coulomb blockade region”. In this region, we observe zero transport of ions inside the nanopore. However, when the electrical voltage is beyond the critical voltage, the ion has sufficient energy to break free from the energy barrier created by the hydration shell to enter into the pore. Thus, the input voltage can control the transport of the ion inside the nanopore. The device therefore acts as a binary storage unit, storing 0 when no ion passes through the pore and storing 1 when a single ion passes through the pore. We therefore postulate that the device can be used for fluidic computing applications in chemistry and biology, mimicking a computer. Furthermore, the trapped ion stores a finite charge in the Coulomb blockade region; hence the device also acts a super capacitor.

Keywords: graphene nanomembrane, single ion transport, Coulomb blockade, nanofluidics

Procedia PDF Downloads 299
609 Chinese on the Move: Residential Mobility and Evolution of People's Republic of China-Born Migrants in Australia

Authors: Siqin Wang, Jonathan Corcoran, Yan Liu, Thomas Sigler

Abstract:

Australia is a quintessentially immigrant nation with 28 percent of its residents being foreign-born. By 2011, People’s Republic of China (PRC) overtook the United Kingdom to become the largest source country in Australia. Significantly, the profile of PRC-born migrants has changed to mirror broader global shifts towards high-skilled labour, education-related, and investment-focussed migration, all of which reflect an increasing trend in the mobility of wealthy and/or educated cohorts. Together, these coalesce to form a more complex pattern of migrant settlement –both spatially and socio-economically. This paper focuses on the PRC-born migration, redresses these lacunae, with regard to the settlement outcomes of PRC migrants to Australia, with a particular focus on spatial evolution and residential mobility at both the metropolitan and national scales. By drawing on Census Data and migration Micro Datasets, the aim of this paper is to examine the shifting dynamics of PRC-born migrants in Australian capital cities to unveil their socioeconomic characteristics, residential patterns and change of spatial concentrations during their transition into the new host society. This paper finds out three general patterns in the residential evolution of PRC-born migrants depending on the size of capital cities where they settle down, as well as the association of socio-economic characters with the formation of enclaves. It also examines the residential mobility across states and cities from 2001 to 2011 indicating the rising status of median-size Australian capital cities for receiving PRC-born migrants. The paper concludes with a discussion of evidences for policy formation, facilitates the effective transition of PRC-born populations into the mainstream of host society and enhances social harmony to help Australia become a more successful multicultural nation.

Keywords: Australia, Chinese migrants, residential mobility, spatial evolution

Procedia PDF Downloads 213
608 Dynamic Modelling of Hepatitis B Patient Using Sihar Model

Authors: Alakija Temitope Olufunmilayo, Akinyemi, Yagba Joy

Abstract:

Hepatitis is the inflammation of the liver tissue that can cause whiteness of the eyes (Jaundice), lack of appetite, vomiting, tiredness, abdominal pain, diarrhea. Hepatitis is acute if it resolves within 6 months and chronic if it last longer than 6 months. Acute hepatitis can resolve on its own, lead to chronic hepatitis or rarely result in acute liver failure. Chronic hepatitis may lead to scarring of the liver (Cirrhosis), liver failure and liver cancer. Modelling Hepatitis B may become necessary in order to reduce its spread. So, dynamic SIR model can be used. This model consists of a system of three coupled non-linear ordinary differential equation which does not have an explicit formula solution. It is an epidemiological model used to predict the dynamics of infectious disease by categorizing the population into three possible compartments. In this study, a five-compartment dynamic model of Hepatitis B disease was proposed and developed by adding control measure of sensitizing the public called awareness. All the mathematical and statistical formulation of the model, especially the general equilibrium of the model, was derived, including the nonlinear least square estimators. The initial parameters of the model were derived using nonlinear least square embedded in R code. The result study shows that the proportion of Hepatitis B patient in the study population is 1.4 per 1,000,000 populations. The estimated Hepatitis B induced death rate is 0.0108, meaning that 1.08% of the infected individuals die of the disease. The reproduction number of Hepatitis B diseases in Nigeria is 6.0, meaning that one individual can infect more than 6.0 people. The effect of sensitizing the public on the basic reproduction number is significant as the reproduction number is reduced. The study therefore recommends that programme should be designed by government and non-governmental organization to sensitize the entire Nigeria population in order to reduce cases of Hepatitis B disease among the citizens.

Keywords: hepatitis B, modelling, non-linear ordinary differential equation, sihar model, sensitization

Procedia PDF Downloads 54
607 The Effect of War on Spatial Differentiation of Real Estate Values and Urban Disorder in Damascus Metropolitan Area

Authors: Mounir Azzam, Valerie Graw, Andreas Rienow

Abstract:

The Syrian war, which commenced in 2011, has resulted in significant changes in the real estate market in the Damascus metropolitan area, with rising levels of insecurity and disputes over tenure rights. The quest for spatial justice is, therefore, imperative, and this study performs a spatiotemporal analysis to investigate the impact of the war on real estate differentiation. Using the hedonic price models including 2,411 housing transactions over the period 2010-2022, this study aims to understand the spatial dynamics of the real estate market in wartime. Our findings indicate that war variables have had a significant impact on the differentiation and depreciation of property prices. Notably, property attributes have a more substantial impact on real estate values than district location, with severely damaged buildings in Damascus city resulting in an 89% decline in prices, while prices in Rural Damascus districts have decreased by 50%. Additionally, this study examines the urban texture of Damascus using correlation and homogeneity statistics derived from the gray-level co-occurrence matrix obtained from Google Earth Engine. We monitored 250 samples from hedonic datasets within three different years of the Syrian war (2015, 2019, and 2022). Our findings show that correlation values were highly differentiated, particularly among Rural Damascus districts, with a total decline of 87.2%. While homogeneity values decreased overall between 2015 and 2019, they improved slightly after 2019. The findings have valuable implications, not only for investment prospects in setting up a successful reconstruction strategy but also for spatial justice of property rights in strongly encouraging sustainable real estate development.

Keywords: hedonic price, real estate differentiation, reconstruction strategy, spatial justice, urban texture analysis

Procedia PDF Downloads 52
606 Liquidity Risk of Banks in Light of a Dominant Share of Foreign Capital in the Polish Banking Sector

Authors: Karolina Patora

Abstract:

This article investigates liquidity risk management by banks, which has gained significant importance since the global financial crisis of 2008. The issue is of particular interest for countries like Poland, in which foreign capital plays a dominant role. Such an ownership structure poses certain risks to the local banking sector, which faces an increased probability of the withdrawal of funding or assets’ transfers abroad in case of a crisis. Both these factors can have a detrimental influence on the liquidity position of foreign-owned banks and hence negatively affect the financial stability of the whole banking sector. The aim of this study is to evaluate the impact of a dominating share of foreign investors in the Polish banking sector on the liquidity position of commercial banks. The study hypothesizes that the ownership structure of the Polish banking sector, in which there are banks predominantly controlled by foreign investors, does not pose a threat to the liquidity position of Polish banks. A supplementary research hypothesis is that the liquidity risk profile of foreign-owned banks differs from that of domestic banks. The sample consists of 14 foreign-owned banks and 5 domestic banks owned by local investors, which together constitute approximately 87% of the banking sector’s assets. The data covers the period of 2004–2014. The results of the regression models show no evidence of significant differences in terms of the dynamics of changes of the liquidity buffers between the foreign-owned and domestic banks, although the signs of the coefficients might suggest that the foreign-owned banks were decreasing the holdings of liquid assets at a slower pace over the examined period, compared to the domestic banks. However, no proof of the statistical significance of these findings has been found. The supplementary research hypothesis that the liquidity risk profile of foreign-controlled banks differs from that of domestic banks was rejected.

Keywords: foreign-owned banks, liquidity position, liquidity risk, financial stability

Procedia PDF Downloads 271
605 Balancing a Rotary Inverted Pendulum System Using Robust Generalized Dynamic Inverse: Design and Experiment

Authors: Ibrahim M. Mehedi, Uzair Ansari, Ubaid M. Al-Saggaf, Abdulrahman H. Bajodah

Abstract:

This paper presents a methodology for balancing a rotary inverted pendulum system using Robust Generalized Dynamic Inversion (RGDI) under influence of parametric variations and external disturbances. In GDI control, dynamic constraints are formulated in the form of asymptotically stable differential equation which encapsulates the control objectives. The constraint differential equations are based on the deviation function of the angular position and its rates from their reference values. The constraint dynamics are inverted using Moore-Penrose Generalized Inverse (MPGI) to realize the control expression. The GDI singularity problem is addressed by augmenting a dynamic scale factor in the interpretation of MPGI which guarantee asymptotically stable position tracking. An additional term based on Sliding Mode Control is appended within GDI control to make it robust against parametric variations, disturbances and tracking performance deterioration due to generalized inversion scaling. The stability of the closed loop system is ensured by using positive definite Lyapunov energy function that guarantees semi-global practically stable position tracking. Numerical simulations are conducted on the dynamic model of rotary inverted pendulum system to analyze the efficiency of proposed RGDI control law. The comparative study is also presented, in which the performance of RGDI control is compared with Linear Quadratic Regulator (LQR) and is verified through experiments. Numerical simulations and real-time experiments demonstrate better tracking performance abilities and robustness features of RGDI control in the presence of parametric uncertainties and disturbances.

Keywords: generalized dynamic inversion, lyapunov stability, rotary inverted pendulum system, sliding mode control

Procedia PDF Downloads 149
604 Measurement of Intermediate Slip Rate of Sabzpushan Fault Zone in Southwestern Iran, Using Optically Stimulated Luminescence (OSL) Dating

Authors: Iman Nezamzadeh, Ali Faghih, Behnam Oveisi

Abstract:

In order to reduce earthquake hazards in urban areas, it is necessary to perform comprehensive studies to understand the dynamics of the active faults and identify potentially high risk areas. The fault slip-rates in Late Quaternary sediment are critical indicators of seismic hazard and also provide valuable data to recognize young crustal deformations. To measure slip-rates accurately, is needed to displacement of geomorphic markers and ages of quaternary sediment samples of alluvial deposit that deformed by movements on fault. In this study we produced information about Intermediate term slip rate of Sabzpushan Fault Zone (SPF) within the central part of the Zagros Mountains of Iran using OSL dating technique to make better analysis of seismic hazard and seismic risk reduction for Shiraz city. For this purpose identifiable geomorphic fluvial surfaces help us to provide a reference frame to determine differential or absolute horizontal and vertical deformation. Optically stimulated luminescence (OSL) is an alternative and independent method of determining the burial age of mineral grains in Quaternary sediments. Field observation and satellite imagery show geomorphic markers that deformed horizontally along the Sabzpoushan Fault. Here, drag folds is forming because of evaporites material of Miocen Formation. We estimate 2.8±0.5 mm/yr (mm/y) horizontal slip rate along the Sabzpushan fault zone, where ongoing deformation is involve with drug folding. The Soltan synclinal structure, close to the Sabzpushan fault, shows slight uplift rate due to active core-extrousion.

Keywords: slip rate, active tectonics, OSL, geomorphic markers, Sabzpushan Fault Zone, Zagros, Iran

Procedia PDF Downloads 327
603 Circle Work as a Relational Praxis to Facilitate Collaborative Learning within Higher Education: A Decolonial Pedagogical Framework for Teaching and Learning in the Virtual Classroom

Authors: Jennifer Nutton, Gayle Ployer, Ky Scott, Jenny Morgan

Abstract:

Working in a circle within higher education creates a decolonial space of mutual respect, responsibility, and reciprocity that facilitates collaborative learning and deep connections among learners and instructors. This approach is beyond simply facilitating a group in a circle but opens the door to creating a sacred space connecting each member to the land, to the Indigenous peoples who have taken care of the lands since time immemorial, to one another, and to one’s own positionality. These deep connections not only center human knowledges and relationships but also acknowledges responsibilities to land. Working in a circle as a relational pedagogical praxis also disrupts institutional power dynamics by creating a space of collaborative learning and deep connections in the classroom. Inherent within circle work is to facilitate connections not just academically but emotionally, physically, culturally, and spiritually. Recent literature supports the use of online talking circles, finding that it can offer a more relational and experiential learning environment, which is often absent in the virtual world and has been made more evident and necessary since the pandemic. These deeper experiences of learning and connection, rooted in both knowledge and the land, can then be shared with openness and vulnerability with one another, facilitating growth and change. This process of beginning with the land is critical to ensure we have the grounding to obstruct the ongoing realities of colonialism. The authors, who identify as both Indigenous and non-Indigenous, as both educators and learners, reflect on their teaching and learning experiences in circle. They share a relational pedagogical praxis framework that has been successful in educating future social workers, environmental activists, and leaders in social and human services, health, legal and political fields.

Keywords: circle work, relational pedagogies, decolonization, distance education

Procedia PDF Downloads 55
602 Case Study on Exploration of Pediatric Cardiopulmonary Resuscitation among Involved Team Members in Pediatric Intensive Care Unit Institut Jantung Negara

Authors: Farah Syazwani Hilmy Zaki

Abstract:

Background: Compared to adult cardiopulmonary resuscitation (CPR), high-quality research and evidence on pediatric CPR remain relatively scarce. This knowledge gap hinders the development of optimal guidelines and best practices for resuscitating children. Objectives: To explore pediatric intensive care unit (PICU) CPR current practices in PICU of Institut Jantung Negara (IJN) Malaysia. Method: The research employed a qualitative approach, utilising case study research design. The data collection process involved in-depth interviews and reviewing the Resuscitation Feedback Form. Purposive sampling was used to select two cases consisting of 14 participants. The study participants comprised a cardiologist, one anaesthetist, and twelve nurses. The data collected were transcribed and entered into NVivo software to facilitate theme development. Subsequently, thematic analysis was conducted to analyse the data. Findings: The study yielded key findings regarding the enhancement of PICU CPR practices. These findings are categorised into four themes, namely routine procedures, resuscitation techniques, team dynamics, and individual contributions. Establishment of cohesive team is crucial in facilitating the effectiveness of resuscitation. According to participants, lack of confidence, skills and knowledge presents significant obstacles to effective PICU CPR. Conclusion: The findings of this study indicate that the participants express satisfaction with the current practices of PICU CPR. However, the research also highlights the need for enhancements in various areas, including routine procedures, resuscitation techniques, as well as team and individual factors. Furthermore, it was suggested that additional training be conducted on the resuscitation process to enhance the preparedness of the medical team.

Keywords: cardiopulmonary resuscitation, feedback, nurses, pediatric intensive care unit

Procedia PDF Downloads 32
601 Exploring Attachment Mechanisms of Sulfate-Reducing Bacteria Biofilm to X52 Carbon Steel and Effective Mitigation Through Moringa Oleifera Extract

Authors: Hadjer Didouh, Mohammed Hadj Melliani, Izzeddine Sameut Bouhaik

Abstract:

Corrosion is a serious problem in industrial installations or metallic transport pipes. Corrosion is an interfacial process controlled by several parameters. The presence of microorganisms affects the kinetics of corrosion. This type of corrosion is often referred to as bio-corrosion or corrosion influenced by microorganisms (MIC). The action of a microorganism or a bacterium is carried out by the formation of biofilm following its attachment to the metal surface. The formation of biofilm isolates the metal surface from its environment and allows the bacteria to control the parameters of the metal/bacteria interface. Biofilm formation by sulfate-reducing bacteria (SRB) X52 steel poses substantial challenges in the oil and gas industry SONATRACH of Algeria. This research delves into the complex attachment mechanisms employed by SRB biofilm on X52 carbon steel and investigates innovative strategies for effective mitigation using biocides. The exploration commences by elucidating the underlying mechanisms facilitating SRB biofilm adhesion to X52 carbon steel, considering factors such as surface morphology, electrostatic interactions, and microbial extracellular substances. Advanced microscopy and spectroscopic techniques provide support to the attachment processes, laying the foundation for targeted mitigation strategies. The use of 100 ppm of Moringa Oleifera extract biocide as a promising approach to control and prevent SRB biofilm formation on X52 carbon steel surfaces. Green extracts undergo evaluation for their effectiveness in disrupting biofilm development while ensuring the integrity of the steel substrate. Systematic analysis is conducted on the biocide's impact on the biofilm's structural integrity, microbial viability, and overall attachment strength. This two-pronged investigation aims to deepen our comprehension of SRB biofilm dynamics and contribute to the development of effective strategies for mitigating its impact on X52 carbon steel.

Keywords: attachment, bio-corrosion, biofilm, metal/bacteria interface

Procedia PDF Downloads 42
600 Numerical Investigation of Gas Leakage in RCSW-Soil Combinations

Authors: Mahmoud Y. M. Ahmed, Ahmed Konsowa, Mostafa Sami, Ayman Mosallam

Abstract:

Fukushima nuclear accident (Japan 2011) has drawn attention to the issue of gas leakage from hazardous facilities through building boundaries. The rapidly increasing investments in nuclear stations have made the ability to predict, and prevent, gas leakage a rather crucial issue both environmentally and economically. Leakage monitoring for underground facilities is rather complicated due to the combination of Reinforced Concrete Shear Wall (RCSW) and soil. In the framework of a recent research conducted by the authors, the gas insulation capabilities of RCSW-soil combination have been investigated via a lab-scale experimental work. Despite their accuracy, experimental investigations are expensive, time-consuming, hazardous, and lack for flexibility. Numerically simulating the gas leakage as a fluid flow problem based on Computational Fluid Dynamics (CFD) modeling approach can provide a potential alternative. This novel implementation of CFD approach is the topic of the present paper. The paper discusses the aspects of modeling the gas flow through porous media that resemble the RCSW both isolated and combined with the normal soil. A commercial CFD package is utilized in simulating this fluid flow problem. A fixed RCSW layer thickness is proposed, air is taken as the leaking gas, whereas the soil layer is represented as clean sand with variable properties. The variable sand properties include sand layer thickness, fine fraction ratio, and moisture content. The CFD simulation results almost demonstrate what has been found experimentally. A soil layer attached next to a cracked reinforced concrete section plays a significant role in reducing the gas leakage from that cracked section. This role is found to be strongly dependent on the soil specifications.

Keywords: RCSW, gas leakage, Pressure Decay Method, hazardous underground facilities, CFD

Procedia PDF Downloads 391
599 Understanding Team Member Autonomy and Team Collaboration: A Qualitative Study

Authors: Ayşen Bakioğlu, Gökçen Seyra Çakır

Abstract:

This study aims to explore how research assistants who work in project teams experience team member autonomy and how they reconcile team member autonomy with team collaboration. The study utilizes snowball sampling. 20 research assistants who work the faculties of education in Marmara University and Yıldız Technical University have been interviewed. The analysis of data involves a content analysis MAXQDAPlus 11 which is a qualitative data analysis software is used as the data analysis tool. According to the findings of this study, emerging themes include team norm formation, team coordination management, the role of individual tasks in team collaboration, leadership distribution. According to the findings, interviewees experience team norm formation process in terms of processes, which pertain to task fulfillment, and processes, which pertain to the regulation of team dynamics. Team norm formation process instills a sense of responsibility amongst individual team members. Apart from that, the interviewees’ responses indicate that the realization of the obligation to work in a team contributes to the team norm formation process. The participants indicate that individual expectations are taken into consideration during the coordination of the team. The supervisor of the project team also has a crucial role in maintaining team collaboration. Coordination problems arise when an individual team member does not relate his/her academic field with the research topic of the project team. The findings indicate that the leadership distribution in the project teams involves two leadership processes: leadership distribution which is based on the processes that focus on individual team members and leadership distribution which is based on the processes that focus on team interaction. Apart from that, individual tasks serve as a facilitator of collaboration amongst team members. Interviewees also indicate that individual tasks also facilitate the expression of individuality.

Keywords: project teams in higher education, research assistant teams, team collaboration, team member autonomy

Procedia PDF Downloads 335
598 Generation of Ultra-Broadband Supercontinuum Ultrashort Laser Pulses with High Energy

Authors: Walid Tawfik

Abstract:

The interaction of intense short nano- and picosecond laser pulses with plasma leads to reach variety of important applications, including time-resolved laser induced breakdown spectroscopy (LIBS), soft x-ray lasers, and laser-driven accelerators. The progress in generating of femtosecond down to sub-10 fs optical pulses has opened a door for scientists with an essential tool in many ultrafast phenomena, such as femto-chemistry, high field physics, and high harmonic generation (HHG). The advent of high-energy laser pulses with durations of few optical cycles provided scientists with very high electric fields, and produce coherent intense UV to NIR radiation with high energy which allows for the investigation of ultrafast molecular dynamics with femtosecond resolution. In this work, we could experimentally achieve the generation of a two-octave-wide supercontinuum ultrafast pulses extending from ultraviolet at 3.5 eV to the near-infrared at 1.3 eV in neon-filled capillary fiber. These pulses are created due to nonlinear self-phase modulation (SPM) in neon as a nonlinear medium. The measurements of the generated pulses were performed using spectral phase interferometry for direct electric-field reconstruction. A full characterization of the output pulses was studied. The output pulse characterization includes the pulse width, the beam profile, and the spectral bandwidth. Under optimization conditions, the reconstructed pulse intensity autocorrelation function was exposed for the shorts possible pulse duration to achieve transform-limited pulses with energies up to 600µJ. Furthermore, the effect of variation of neon pressure on the pulse-width was studied. The nonlinear SPM found to be increased with the neon pressure. The obtained results may give an opportunity to monitor and control ultrafast transit interaction in femtosecond chemistry.

Keywords: femtosecond laser, ultrafast, supercontinuum, ultra-broadband

Procedia PDF Downloads 187
597 Exploring Forest Biomass Changes in Romania in the Last Three Decades

Authors: Remus Pravalie, Georgeta Bandoc

Abstract:

Forests are crucial for humanity and biodiversity, through the various ecosystem services and functions they provide all over the world. Forest ecosystems are vital in Romania as well, through their various benefits, known as provisioning (food, wood, or fresh water), regulating (water purification, soil protection, carbon sequestration or control of climate change, floods, and other hazards), cultural (aesthetic, spiritual, inspirational, recreational or educational benefits) and supporting (primary production, nutrient cycling, and soil formation processes, with direct or indirect importance for human well-being) ecosystem services. These ecological benefits are of great importance in Romania, especially given the fact that forests cover extensive areas countrywide, i.e. ~6.5 million ha or ~27.5% of the national territory. However, the diversity and functionality of these ecosystem services fundamentally depend on certain key attributes of forests, such as biomass, which has so far not been studied nationally in terms of potential changes due to climate change and other driving forces. This study investigates, for the first time, changes in forest biomass in Romania in recent decades, based on a high volume of satellite data (Landsat images at high spatial resolutions), downloaded from the Google Earth Engine platform and processed (using specialized software and methods) across Romanian forestland boundaries from 1987 to 2018. A complex climate database was also investigated across Romanian forests over the same 32-year period, in order to detect potential similarities and statistical relationships between the dynamics of biomass and climate data. The results obtained indicated considerable changes in forest biomass in Romania in recent decades, largely triggered by the climate change that affected the country after 1987. Findings on the complex pattern of recent forest changes in Romania, which will be presented in detail in this study, can be useful to national policymakers in the fields of forestry, climate, and sustainable development.

Keywords: forests, biomass, climate change, trends, romania

Procedia PDF Downloads 129
596 Design, Analysis and Obstacle Avoidance Control of an Electric Wheelchair with Sit-Sleep-Seat Elevation Functions

Authors: Waleed Ahmed, Huang Xiaohua, Wilayat Ali

Abstract:

The wheelchair users are generally exposed to physical and psychological health problems, e.g., pressure sores and pain in the hip joint, associated with seating posture or being inactive in a wheelchair for a long time. Reclining Wheelchair with back, thigh, and leg adjustment helps in daily life activities and health preservation. The seat elevating function of an electric wheelchair allows the user (lower limb amputation) to reach different heights. An electric wheelchair is expected to ease the lives of the elderly and disable people by giving them mobility support and decreasing the percentage of accidents caused by users’ narrow sight or joystick operation errors. Thus, this paper proposed the design, analysis and obstacle avoidance control of an electric wheelchair with sit-sleep-seat elevation functions. A 3D model of a wheelchair is designed in SolidWorks that was later used for multi-body dynamic (MBD) analysis and to verify driving control system. The control system uses the fuzzy algorithm to avoid the obstacle by getting information in the form of distance from the ultrasonic sensor and user-specified direction from the joystick’s operation. The proposed fuzzy driving control system focuses on the direction and velocity of the wheelchair. The wheelchair model has been examined and proven in MSC Adams (Automated Dynamic Analysis of Mechanical Systems). The designed fuzzy control algorithm is implemented on Gazebo robotic 3D simulator using Robotic Operating System (ROS) middleware. The proposed wheelchair design enhanced mobility and quality of life by improving the user’s functional capabilities. Simulation results verify the non-accidental behavior of the electric wheelchair.

Keywords: fuzzy logic control, joystick, multi body dynamics, obstacle avoidance, scissor mechanism, sensor

Procedia PDF Downloads 110
595 Sustainable Cities: Viability of a Hybrid Aeroponic/Nutrient Film Technique System for Cultivation of Tomatoes

Authors: D. Dannehl, Z. Taylor, J. Suhl, L. Miranda, R., Ulrichs, C., Salazar, E. Fitz-Rodriguez, I. Lopez-Cruz, A. Rojano-Aguilar, G. Navas-Gomez, U. Schmidt

Abstract:

Growing environmental and sustainability concerns have driven continual modernization of horticultural practices, especially for urban farming. Controlled environment and soilless production methods are increasing in popularity because of their efficient resource use and intensive cropping capabilities. However, some popular substrates used for hydroponic cultivation, particularly rock wool, represent a large environmental burden in regard to their manufacture and disposal. Substrate-less hydroponic systems are effective in producing short cropping cycle plants such as lettuce or herbs, but less information is available for the production of plants with larger root-systems and longer cropping times. Here, we investigated the viability of a hybrid aeroponic/nutrient film technique (AP/NFT) system for the cultivation of greenhouse tomatoes (Solanum lycopersicum ‘Panovy’). The plants grown in the AP/NFT system had a more compact phenotype, accumulated more Na+ and less P and S than the rock wool grown counterparts. Due to forced irrigation interruptions, we propose that the differences observed were cofounded by the differing severity of water-stress for plants with and without substrate. They may also be caused by a higher root zone temperature predominant in plants exposed to AP/NFT. However, leaf area, stem diameter, and number of trusses did not differ significantly. The same was found for leaf pigments and plant photosynthetic efficiency. Overall, the AP/NFT system appears to be viable for the production of greenhouse tomato, enabling the environment to be relieved by way of lessening rock wool usage.

Keywords: closed aeroponic systems, fruit quality, nutrient dynamics, substrate waste reduction, urban farming systems, water savings

Procedia PDF Downloads 250
594 Deep Learning Prediction of Residential Radon Health Risk in Canada and Sweden to Prevent Lung Cancer Among Non-Smokers

Authors: Selim M. Khan, Aaron A. Goodarzi, Joshua M. Taron, Tryggve Rönnqvist

Abstract:

Indoor air quality, a prime determinant of health, is strongly influenced by the presence of hazardous radon gas within the built environment. As a health issue, dangerously high indoor radon arose within the 20th century to become the 2nd leading cause of lung cancer. While the 21st century building metrics and human behaviors have captured, contained, and concentrated radon to yet higher and more hazardous levels, the issue is rapidly worsening in Canada. It is established that Canadians in the Prairies are the 2nd highest radon-exposed population in the world, with 1 in 6 residences experiencing 0.2-6.5 millisieverts (mSv) radiation per week, whereas the Canadian Nuclear Safety Commission sets maximum 5-year occupational limits for atomic workplace exposure at only 20 mSv. This situation is also deteriorating over time within newer housing stocks containing higher levels of radon. Deep machine learning (LSTM) algorithms were applied to analyze multiple quantitative and qualitative features, determine the most important contributory factors, and predicted radon levels in the known past (1990-2020) and projected future (2021-2050). The findings showed gradual downwards patterns in Sweden, whereas it would continue to go from high to higher levels in Canada over time. The contributory factors found to be the basement porosity, roof insulation depthness, R-factor, and air dynamics of the indoor environment related to human window opening behaviour. Building codes must consider including these factors to ensure adequate indoor ventilation and healthy living that can prevent lung cancer in non-smokers.

Keywords: radon, building metrics, deep learning, LSTM prediction model, lung cancer, canada, sweden

Procedia PDF Downloads 89
593 Dynamic Modeling of Advanced Wastewater Treatment Plants Using BioWin

Authors: Komal Rathore, Aydin Sunol, Gita Iranipour, Luke Mulford

Abstract:

Advanced wastewater treatment plants have complex biological kinetics, time variant influent flow rates and long processing times. Due to these factors, the modeling and operational control of advanced wastewater treatment plants become complicated. However, development of a robust model for advanced wastewater treatment plants has become necessary in order to increase the efficiency of the plants, reduce energy costs and meet the discharge limits set by the government. A dynamic model was designed using the Envirosim (Canada) platform software called BioWin for several wastewater treatment plants in Hillsborough County, Florida. Proper control strategies for various parameters such as mixed liquor suspended solids, recycle activated sludge and waste activated sludge were developed for models to match the plant performance. The models were tuned using both the influent and effluent data from the plant and their laboratories. The plant SCADA was used to predict the influent wastewater rates and concentration profiles as a function of time. The kinetic parameters were tuned based on sensitivity analysis and trial and error methods. The dynamic models were validated by using experimental data for influent and effluent parameters. The dissolved oxygen measurements were taken to validate the model by coupling them with Computational Fluid Dynamics (CFD) models. The Biowin models were able to exactly mimic the plant performance and predict effluent behavior for extended periods. The models are useful for plant engineers and operators as they can take decisions beforehand by predicting the plant performance with the use of BioWin models. One of the important findings from the model was the effects of recycle and wastage ratios on the mixed liquor suspended solids. The model was also useful in determining the significant kinetic parameters for biological wastewater treatment systems.

Keywords: BioWin, kinetic modeling, flowsheet simulation, dynamic modeling

Procedia PDF Downloads 128