Search results for: kinetic modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4342

Search results for: kinetic modeling

4342 The Gasoil Hydrofining Kinetics Constants Identification

Authors: C. Patrascioiu, V. Matei, N. Nicolae

Abstract:

The paper describes the experiments and the kinetic parameters calculus of the gasoil hydrofining. They are presented experimental results of gasoil hidrofining using Mo and promoted with Ni on aluminum support catalyst. The authors have adapted a kinetic model gasoil hydrofining. Using this proposed kinetic model and the experimental data they have calculated the parameters of the model. The numerical calculus is based on minimizing the difference between the experimental sulf concentration and kinetic model estimation.

Keywords: hydrofining, kinetic, modeling, optimization

Procedia PDF Downloads 406
4341 Kinetic Modeling Study and Scale-Up of Niogas Generation Using Garden Grass and Cattle Dung as Feedstock

Authors: Tumisang Seodigeng, Hilary Rutto

Abstract:

In this study we investigate the use of a laboratory batch digester to derive kinetic parameters for anaerobic digestion of garden grass and cattle dung. Laboratory experimental data from a 5 liter batch digester operating at mesophilic temperature of 32 C is used to derive parameters for Michaelis-Menten kinetic model. These fitted kinetics are further used to predict the scale-up parameters of a batch digester using DynoChem modeling and scale-up software. The scale-up model results are compared with performance data from 20 liter, 50 liter, and 200 liter batch digesters. Michaelis-Menten kinetic model shows to be a very good and easy to use model for kinetic parameter fitting on DynoChem and can accurately predict scale-up performance of 20 liter and 50 liter batch reactor based on parameters fitted on a 5 liter batch reactor.

Keywords: Biogas, kinetics, DynoChem Scale-up, Michaelis-Menten

Procedia PDF Downloads 461
4340 Unified Gas-Kinetic Scheme for Gas-Particle Flow in Shock-Induced Fluidization of Particles Bed

Authors: Zhao Wang, Hong Yan

Abstract:

In this paper, a unified-gas kinetic scheme (UGKS) for the gas-particle flow is constructed. UGKS is a direct modeling method for both continuum and rarefied flow computations. The dynamics of particle and gas are described as rarefied and continuum flow, respectively. Therefore, we use the Bhatnagar-Gross-Krook (BGK) equation for the particle distribution function. For the gas phase, the gas kinetic scheme for Navier-Stokes equation is solved. The momentum transfer between gas and particle is achieved by the acceleration term added to the BGK equation. The new scheme is tested by a 2cm-in-thickness dense bed comprised of glass particles with 1.5mm in diameter, and reasonable agreement is achieved.

Keywords: gas-particle flow, unified gas-kinetic scheme, momentum transfer, shock-induced fluidization

Procedia PDF Downloads 232
4339 Establishment of Kinetic Zone Diagrams via Simulated Linear Sweep Voltammograms for Soluble-Insoluble Systems

Authors: Imene Atek, Abed M. Affoune, Hubert Girault, Pekka Peljo

Abstract:

Due to the need for a rigorous mathematical model that can help to estimate kinetic properties for soluble-insoluble systems, through voltammetric experiments, a Nicholson Semi Analytical Approach was used in this work for modeling and prediction of theoretical linear sweep voltammetry responses for reversible, quasi reversible or irreversible electron transfer reactions. The redox system of interest is a one-step metal electrodeposition process. A rigorous analysis of simulated linear scan voltammetric responses following variation of dimensionless factors, the rate constant and charge transfer coefficients in a broad range was studied and presented in the form of the so called kinetic zones diagrams. These kinetic diagrams were divided into three kinetics zones. Interpreting these zones leads to empirical mathematical models which can allow the experimenter to determine electrodeposition reactions kinetics whatever the degree of reversibility. The validity of the obtained results was tested and an excellent experiment–theory agreement has been showed.

Keywords: electrodeposition, kinetics diagrams, modeling, voltammetry

Procedia PDF Downloads 110
4338 Estimation of Bio-Kinetic Coefficients for Treatment of Brewery Wastewater

Authors: Abimbola M. Enitan, J. Adeyemo

Abstract:

Anaerobic modeling is a useful tool to describe and simulate the condition and behaviour of anaerobic treatment units for better effluent quality and biogas generation. The present investigation deals with the anaerobic treatment of brewery wastewater with varying organic loads. The chemical oxygen demand (COD) and total suspended solids (TSS) of the influent and effluent of the bioreactor were determined at various retention times to generate data for kinetic coefficients. The bio-kinetic coefficients in the modified Stover–Kincannon kinetic and methane generation models were determined to study the performance of anaerobic digestion process. At steady-state, the determination of the kinetic coefficient (K), the endogenous decay coefficient (Kd), the maximum growth rate of microorganisms (µmax), the growth yield coefficient (Y), ultimate methane yield (Bo), maximum utilization rate constant Umax and the saturation constant (KB) in the model were calculated to be 0.046 g/g COD, 0.083 (dˉ¹), 0.117 (d-¹), 0.357 g/g, 0.516 (L CH4/gCODadded), 18.51 (g/L/day) and 13.64 (g/L/day) respectively. The outcome of this study will help in simulation of anaerobic model to predict usable methane and good effluent quality during the treatment of industrial wastewater. Thus, this will protect the environment, conserve natural resources, saves time and reduce cost incur by the industries for the discharge of untreated or partially treated wastewater. It will also contribute to a sustainable long-term clean development mechanism for the optimization of the methane produced from anaerobic degradation of waste in a close system.

Keywords: brewery wastewater, methane generation model, environment, anaerobic modeling

Procedia PDF Downloads 225
4337 The Experimental and Modeling Adsorption Properties of Sr2+ on Raw and Purified Bentonite

Authors: A. A. Khodadadi, S. C. Ravaj, B. D. Tavildari, M. B. Abdolahi

Abstract:

The adsorption properties of local bentonite (Semnan Iran) and purified prepared from this bentonite towards Sr2+ adsorption, were investigated by batch equilibration. The influence of equilibration time, adsorption isotherms, kinetic adsorption, solution pH, and presence of EDTA and NaCl on these properties was studied and discussed. Kinetic data were found to be well fitted with a pseudo-second order kinetic model. Sr2+ is preferably adsorbed by bentonite and purified bentonite. The D-R isotherm model has the best fit with experimental data than other adsorption isotherm models. The maximum adsorption of Sr2+ representing the highest negative charge density on the surface of the adsorbent was seen at pH 12. Presence of EDTA and NaCl decreased the amount of Sr2+ adsorption.

Keywords: bentonite, purified bentonite, Sr2+, equilibrium isotherm, kinetics

Procedia PDF Downloads 335
4336 Kinetic Monte Carlo Simulation of ZnSe Homoepitaxial Growth and Characterization

Authors: Hamid Khachab, Yamani Abdelkafi, Mouna Barhmi

Abstract:

The epitaxial growth has great important in the fabricate of the new semi-conductors devices and upgrading many factors, such as the quality of crystallization and efficiency with their deferent types and the most effective epitaxial technique is the molecular beam epitaxial. The MBE growth modeling allows to confirm the experiments results out by atomic beam and to analyze the microscopic phenomena. In of our work, we determined the growth processes specially the ZnSe epitaxial technique by Kinetic Monte Carlo method and we also give observations that are made in real time at the growth temperature using reflection high energy electron diffraction (RHEED) and photoemission current.

Keywords: molecular beam epitaxy, II-VI, morpholy, photoemission, RHEED, simulation, kinetic Monte Carlo, ZnSe

Procedia PDF Downloads 460
4335 A Biomimetic Approach for the Multi-Objective Optimization of Kinetic Façade Design

Authors: Do-Jin Jang, Sung-Ah Kim

Abstract:

A kinetic façade responds to user requirements and environmental conditions.  In designing a kinetic façade, kinetic patterns play a key role in determining its performance. This paper proposes a biomimetic method for the multi-objective optimization for kinetic façade design. The autonomous decentralized control system is combined with flocking algorithm. The flocking agents are autonomously reacting to sensor values and bring about kinetic patterns changing over time. A series of experiments were conducted to verify the potential and limitations of the flocking based decentralized control. As a result, it could show the highest performance balancing multiple objectives such as solar radiation and openness among the comparison group.

Keywords: biomimicry, flocking algorithm, autonomous decentralized control, multi-objective optimization

Procedia PDF Downloads 484
4334 Numerical Analysis on the Effect of Abrasive Parameters on Wall Shear Stress and Jet Exit Kinetic Energy

Authors: D. Deepak, N. Yagnesh Sharma

Abstract:

Abrasive Water Jet (AWJ) machining is a relatively new nontraditional machine tool used in machining of fiber reinforced composite. The quality of machined surface depends on jet exit kinetic energy which depends on various operating and material parameters. In the present work the effect abrasive parameters such as its size, concentration and type on jet kinetic energy is investigated using computational fluid dynamics (CFD). In addition, the effect of these parameters on wall shear stress developed inside the nozzle is also investigated. It is found that for the same operating parameters, increase in the abrasive volume fraction (concentration) results in significant decrease in the wall shear stress as well as the jet exit kinetic energy. Increase in the abrasive particle size results in marginal decrease in the jet exit kinetic energy. Numerical simulation also indicates that garnet abrasives produce better jet exit kinetic energy than aluminium oxide and silicon carbide.

Keywords: abrasive water jet machining, jet kinetic energy, operating pressure, wall shear stress, Garnet abrasive

Procedia PDF Downloads 345
4333 A Study on Kinetic of Nitrous Oxide Catalytic Decomposition over CuO/HZSM-5

Authors: Y. J. Song, Q. S. Xu, X. C. Wang, H. Wang, C. Q. Li

Abstract:

The catalyst of copper oxide loaded on HZSM-5 was developed for nitrous oxide (N₂O) direct decomposition. The kinetic of nitrous oxide decomposition was studied for CuO/HZSM-5 catalyst prepared by incipient wetness impregnation method. The external and internal diffusion of catalytic reaction were considered in the investigation. Experiment results indicated that the external diffusion was basically eliminated when the reaction gas mixture gas hourly space velocity (GHSV) was higher than 9000h⁻¹ and the influence of the internal diffusion was negligible when the particle size of the catalyst CuO/HZSM-5 was small than 40-60 mesh. The experiment results showed that the kinetic of catalytic decomposition of N₂O was a first-order reaction and the activation energy and the pre-factor of the kinetic equation were 115.15kJ/mol and of 1.6×109, respectively.

Keywords: catalytic decomposition, CuO/HZSM-5, kinetic, nitrous oxide

Procedia PDF Downloads 142
4332 Influence of the Low Frequency Ultrasound on the Cadmium (II) Biosorption by an Ecofriendly Biocomposite (Extraction Solid Waste of Ammi visnaga / Calcium Alginate): Kinetic Modeling

Authors: L. Nouri Taiba, Y. Bouhamidi, F. Kaouah, Z. Bendjama, M. Trari

Abstract:

In the present study, an ecofriendly biocomposite namely calcium alginate immobilized Ammi Visnaga (Khella) extraction waste (SWAV/CA) was prepared by electrostatic extrusion method and used on the cadmium biosorption from aqueous phase with and without the assistance of ultrasound in batch conditions. The influence of low frequency ultrasound (37 and 80 KHz) on the cadmium biosorption kinetics was studied. The obtained results show that the ultrasonic irradiation significantly enhances and improves the efficiency of the cadmium removal. The Pseudo first order, Pseudo-second-order, Intraparticle diffusion, and Elovich models were evaluated using the non-linear curve fitting analysis method. Modeling of kinetic results shows that biosorption process is best described by the pseudo-second order and Elovich, in both the absence and presence of ultrasound.

Keywords: biocomposite, biosorption, cadmium, non-linear analysis, ultrasound

Procedia PDF Downloads 249
4331 Dynamic Modeling of Advanced Wastewater Treatment Plants Using BioWin

Authors: Komal Rathore, Aydin Sunol, Gita Iranipour, Luke Mulford

Abstract:

Advanced wastewater treatment plants have complex biological kinetics, time variant influent flow rates and long processing times. Due to these factors, the modeling and operational control of advanced wastewater treatment plants become complicated. However, development of a robust model for advanced wastewater treatment plants has become necessary in order to increase the efficiency of the plants, reduce energy costs and meet the discharge limits set by the government. A dynamic model was designed using the Envirosim (Canada) platform software called BioWin for several wastewater treatment plants in Hillsborough County, Florida. Proper control strategies for various parameters such as mixed liquor suspended solids, recycle activated sludge and waste activated sludge were developed for models to match the plant performance. The models were tuned using both the influent and effluent data from the plant and their laboratories. The plant SCADA was used to predict the influent wastewater rates and concentration profiles as a function of time. The kinetic parameters were tuned based on sensitivity analysis and trial and error methods. The dynamic models were validated by using experimental data for influent and effluent parameters. The dissolved oxygen measurements were taken to validate the model by coupling them with Computational Fluid Dynamics (CFD) models. The Biowin models were able to exactly mimic the plant performance and predict effluent behavior for extended periods. The models are useful for plant engineers and operators as they can take decisions beforehand by predicting the plant performance with the use of BioWin models. One of the important findings from the model was the effects of recycle and wastage ratios on the mixed liquor suspended solids. The model was also useful in determining the significant kinetic parameters for biological wastewater treatment systems.

Keywords: BioWin, kinetic modeling, flowsheet simulation, dynamic modeling

Procedia PDF Downloads 122
4330 The Effect of Raindrop Kinetic Energy on Soil Erodibility

Authors: A. Moussouni, L. Mouzai, M. Bouhadef

Abstract:

Soil erosion is a very complex phenomenon, resulting from detachment and transport of soil particles by erosion agents. The kinetic energy of raindrop is the energy available for detachment and transport by splashing rain. The soil erodibility is defined as the ability of soil to resist to erosion. For this purpose, an experimental study was conducted in the laboratory using rainfall simulator to study the effect of the kinetic energy of rain (Ec) on the soil erodibility (K). The soil used was a sandy agricultural soil of 62.08% coarse sand, 19.14% fine sand, 6.39% fine silt, 5.18% coarse silt and 7.21% clay. The obtained results show that the kinetic energy of raindrops evolves as a power law with soil erodibility.

Keywords: erosion, runoff, raindrop kinetic energy, soil erodibility, rainfall intensity, raindrop fall velocity

Procedia PDF Downloads 468
4329 The Modeling of City Bus Fuel Economy during the JE05 Emission Test Cycle

Authors: Miroslaw Wendeker, Piotr Kacejko, Marcin Szlachetka, Mariusz Duk

Abstract:

This paper discusses a model of fuel economy in a city bus driving in a dynamic urban environment. Rapid changes in speed result in a constantly changing kinetic energy accumulated in a bus mass and an increased fuel consumption due to hardly recuperated kinetic energy. The model is based on the bench test results achieved from chassis dynamometer, airport and city street researches. The verified model was applied to simulate the behavior of a bus during the Japanese JE05 Emission Test Cycle. The fuel consumption was calculated for three separate research stages, i.e. urban, downtown and motorway. The simulations were performed for several values of vehicle mass and electrical load applied to on-board devices. The research results show fuel consumption is impacted by driving dynamics.

Keywords: city bus, heavy duty vehicle, Japanese JE05 test cycle, kinetic energy

Procedia PDF Downloads 267
4328 Extraction of the Volatile Oils of Dictyopteris Membranacea by Focused Microwave Assisted Hydrodistillation and Supercritical Carbon Dioxide: Chemical Composition and Kinetic Data

Authors: Mohamed El Hattab

Abstract:

The Supercritical carbon dioxide (SFE) and the focused microwave-assisted hydrodistillation (FMAHD) were employed to isolate the volatile fraction of the brown alga Dictyopteris membranacea from the crude extract. The volatiles fractions obtained were analyzed by GC/MS. The major compounds in this case: dictyopterene A, 6-butylcyclohepta-1,4-diene, Undec-1-en-3-one, Undeca-1,4-dien-3-one, (3-oxoundec-4-enyl) sulphur, tetradecanoic acid, hexadecanoic acid, 3-hexyl-4,5-dithia-cycloheptanone and albicanol (this later is present only in the FMAHD oil) are identified by comparing their mass spectra with those reported on the commercial MS data base and also on our previously work. A kinetic study realized on both extraction processes and followed by an external standard quantification has allowed the study of the mass percent evolution of the major compounds in the two oils, an empirical mathematical modelling was used to describe their kinetic extraction.

Keywords: dictyopteris membranacea, extraction techniques, mathematical modeling, volatile oils

Procedia PDF Downloads 397
4327 Comparison of the Performance of a Brake Energy Regeneration System in Hybrid Vehicles

Authors: Miguel Arlenzo Duran Sarmiento, Luis Alfonso Del Portillo Valdés, Carlos Borras Pinilla

Abstract:

Brake energy regeneration systems have the capacity to transform part of the vehicle's kinetic energy during deceleration into useful energy. These systems can be implemented in hybrid vehicles, which can be electric or hydraulic in type, and contribute to reducing the energy required to propel the vehicle thanks to the accumulation of energy. This paper presents the modeling and simulation of a braking energy regeneration system applied in hydraulic hybrid vehicles configured in parallel, the modeling and simulation were performed in Simulink of Matlab, where a performance comparison of the regenerated torque as a function of vehicle load, the displacement of the hydraulic regeneration device and the vehicle speed profile. The speed profiles used in the simulation are standard profiles such as the NEDC and WLTP profiles. The vehicle loads range from 1500 kg to 12000 kg. The results show the comparison of the torque required by the vehicle, the torque regenerated by the system subjected to the different speed and load conditions.

Keywords: braking energy, energy regeneration, hybrid vehicles, kinetic energy, torque

Procedia PDF Downloads 87
4326 Mathematical Modeling of Bi-Substrate Enzymatic Reactions in the Presence of Different Types of Inhibitors

Authors: Rafayel Azizyan, Valeri Arakelyan, Aram Gevorgyan, Varduhi Balayan, Emil Gevorgyan

Abstract:

Currently, mathematical and computer modeling are widely used in different biological studies to predict or assess behavior of such complex systems as biological ones. This study deals with mathematical and computer modeling of bi-substrate enzymatic reactions, which play an important role in different biochemical pathways. The main objective of this study is to represent the results from in silico investigation of bi-substrate enzymatic reactions in the presence of uncompetitive inhibitors, as well as to describe in details the inhibition effects. Four models of uncompetitive inhibition were designed using different software packages. Particularly, uncompetitive inhibitor to the first [ES1] and the second ([ES1S2]; [FS2]) enzyme-substrate complexes have been studied. The simulation, using the same kinetic parameters for all models allowed investigating the behavior of reactions as well as determined some interesting aspects concerning influence of different cases of uncompetitive inhibition. Besides that shown, that uncompetitive inhibitors exhibit specific selectivity depending on mechanism of bi-substrate enzymatic reaction.

Keywords: mathematical modeling, bi-substrate enzymatic reactions, reversible inhibition

Procedia PDF Downloads 315
4325 A Novel Model for Saturation Velocity Region of Graphene Nanoribbon Transistor

Authors: Mohsen Khaledian, Razali Ismail, Mehdi Saeidmanesh, Mahdiar Hosseinghadiry

Abstract:

A semi-analytical model for impact ionization coefficient of graphene nanoribbon (GNR) is presented. The model is derived by calculating probability of electrons reaching ionization threshold energy Et and the distance traveled by electron gaining Et. In addition, ionization threshold energy is semi-analytically modeled for GNR. We justify our assumptions using analytic modeling and comparison with simulation results. Gaussian simulator together with analytical modeling is used in order to calculate ionization threshold energy and Kinetic Monte Carlo is employed to calculate ionization coefficient and verify the analytical results. Finally, the profile of ionization is presented using the proposed models and simulation and the results are compared with that of silicon.

Keywords: nanostructures, electronic transport, semiconductor modeling, systems engineering

Procedia PDF Downloads 446
4324 The Potential of Braking Energy Recuperation in a City Bus Diesel Engine in the Japanese JE05 Emission Test Cycle

Authors: Grzegorz Baranski, Piotr Kacejko, Konrad Pietrykowski, Mariusz Duk

Abstract:

This paper discusses a model of a bus-driving scheme. Rapid changes in speed result in a constantly changing kinetic energy accumulated in a bus mass and an increased fuel consumption due to hardly recuperated kinetic energy. The model is based on the results achieved from chassis dynamometer, airport and city street researches. The verified model was applied to simulate the mechanical energy recuperation during the Japanese JE05 Emission Test Cycle. The simulations were performed for several values of vehicle mass. The research results show that fuel economy is impacted by kinetic energy recuperation.

Keywords: heavy duty vehicle, city bus, Japanese JE05 test cycle, kinetic energy, simulations

Procedia PDF Downloads 180
4323 Modeling the Time-Dependent Rheological Behavior of Clays Used in Fabrication of Ceramic

Authors: Larbi Hammadi, N. Boudjenane, N. Benhallou, R. Houjedje, R. Reffis, M. Belhadri

Abstract:

Many of clays exhibited the thixotropic behavior in which, the apparent viscosity of material decreases with time of shearing at constant shear rate. The structural kinetic model (SKM) was used to characterize the thixotropic behavior of two different kinds of clays used in fabrication of ceramic. Clays selected for analysis represent the fluid and semisolid clays materials. The SKM postulates that the change in the rheological behavior is associated with shear-induced breakdown of the internal structure of the clays. This model for the structure decay with time at constant shear rate assumes nth order kinetics for the decay of the material structure with a rate constant.

Keywords: ceramic, clays, structural kinetic model, thixotropy, viscosity

Procedia PDF Downloads 381
4322 Electron Beam Effects on Kinetic Alfven Waves in the Cold Homogenous Plasma

Authors: Jaya Shrivastava

Abstract:

The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, growth/damping rate and associated currents in the presence of electron beam in homogenous plasma. Kinetic effects of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. The plasma parameters appropriate to plasma sheet boundary layer are used. It is found that downward electron beam affects the dispersion relation, growth/damping-rate and associated currents in cold electron limit.

Keywords: magnetospheric physics, plasma waves and instabilities, electron beam, space plasma physics, wave-particle interactions

Procedia PDF Downloads 362
4321 Encapsulation of Volatile Citronella Essential oil by Coacervation: Efficiency and Release Kinetic Study

Authors: Rafeqah Raslan, Mastura AbdManaf, Junaidah Jai, Istikamah Subuki, Ana Najwa Mustapa

Abstract:

The volatile citronella essential oil was encapsulated by simple coacervation and complex coacervation using gum Arabic and gelatin as wall material. Glutaraldehyde was used in the methodology as crosslinking agent. The citronella standard calibration graph was developed with R2 equal to 0.9523 for the accurate determination of encapsulation efficiency and release study. The release kinetic was analyzed based on Fick’s law of diffusion for polymeric system and linear graph of log fraction release over log time was constructed to determine the release rate constant, k and diffusion coefficient, n. Both coacervation methods in the present study produce encapsulation efficiency around 94%. The capsules morphology analysis supported the release kinetic mechanisms of produced capsules for both coacervation process.

Keywords: simple coacervation, complex coacervation, encapsulation efficiency, release kinetic study

Procedia PDF Downloads 288
4320 Equilibrium and Kinetic Studies of Lead Adsorption on Activated Carbon Derived from Mangrove Propagule Waste by Phosphoric Acid Activation

Authors: Widi Astuti, Rizki Agus Hermawan, Hariono Mukti, Nurul Retno Sugiyono

Abstract:

The removal of lead ion (Pb2+) from aqueous solution by activated carbon with phosphoric acid activation employing mangrove propagule as precursor was investigated in a batch adsorption system. Batch studies were carried out to address various experimental parameters including pH and contact time. The Langmuir and Freundlich models were able to describe the adsorption equilibrium, while the pseudo first order and pseudo second order models were used to describe kinetic process of Pb2+ adsorption. The results show that the adsorption data are seen in accordance with Langmuir isotherm model and pseudo-second order kinetic model.

Keywords: activated carbon, adsorption, equilibrium, kinetic, lead, mangrove propagule

Procedia PDF Downloads 134
4319 Kinetic Analysis of Wood Pellets by Isothermal Calorimetry for Evaluating its Self-heating Potential

Authors: Can Yao, Chang Dong Sheng

Abstract:

The heat released by wood pellets during storage will cause self-heating and even self-ignition. In this work, the heat release rates of pine, fir wood and mahogany pellets at 30–70℃ were measured by TAM air isothermal calorimeter, and the kinetic analysis was performed by iso-conversion ratio and non-steady-state methods to evaluate its self-heating potential. The results show that the reaction temperature can significantly affect the heat release rate. The higher the temperature, the greater the heat release rate. The heat release rates of different kinds of wood pellets are obviously different, and the order of the heat release rates for the three pellets at 70℃ is pine > fir wood > mahogany. The kinetic analysis of the iso-conversion ratio method indicates that the distribution of activation energy for pine, fir wood and mahogany pellets under the release of 0.1–1.0 J/g specific heat are 58–102 kJ/mol, 59–108 kJ/mol and 59–112 kJ/mol, respectively. Their activation energies obtained from the non-steady-state kinetic analysis are 13.43 kJ/mol, 19.19 kJ/mol and 21.09 kJ/mol, respectively. Both kinetic analyses show that the magnitude of self-heating risk for the three pellet fuels is pine pellets > fir wood pellets > mahogany pellets.

Keywords: isothermal calorimeter, kinetics, self-heating, wood pellets

Procedia PDF Downloads 127
4318 Thermophysical Properties and Kinetic Study of Dioscorea bulbifera

Authors: Emmanuel Chinagorom Nwadike, Joseph Tagbo Nwabanne, Matthew Ndubuisi Abonyi, Onyemazu Andrew Azaka

Abstract:

This research focused on the modeling of the convective drying of aerial yam using finite element methods. The thermo-gravimetric analyzer was used to determine the thermal stability of the sample. An aerial yam sample of size 30 x 20 x 4 mm was cut with a mold designed for the purpose and dried in a convective dryer set at 4m/s fan speed and temperatures of 68.58 and 60.56°C. The volume shrinkage of the resultant dried sample was determined by immersing the sample in a toluene solution. The finite element analysis was done with PDE tools in Matlab 2015. Seven kinetic models were employed to model the drying process. The result obtained revealed three regions in the thermogravimetric analysis (TGA) profile of aerial yam. The maximum thermal degradation rates of the sample occurred at 432.7°C. The effective thermal diffusivity of the sample increased as the temperature increased from 60.56°C to 68.58°C. The finite element prediction of moisture content of aerial yam at an air temperature of 68.58°C and 60.56°C shows R² of 0.9663 and 0.9155, respectively. There was a good agreement between the finite element predicted moisture content and the measured moisture content, which is indicative of a highly reliable finite element model developed. The result also shows that the best kinetic model for the aerial yam under the given drying conditions was the Logarithmic model with a correlation coefficient of 0.9991.

Keywords: aerial yam, finite element, convective, effective, diffusivity

Procedia PDF Downloads 100
4317 Reaction Kinetics of Biodiesel Production from Refined Cottonseed Oil Using Calcium Oxide

Authors: Ude N. Callistus, Amulu F. Ndidi, Onukwuli D. Okechukwu, Amulu E. Patrick

Abstract:

Power law approximation was used in this study to evaluate the reaction orders of calcium oxide, CaO catalyzed transesterification of refined cottonseed oil and methanol. The kinetics study was carried out at temperatures of 45, 55 and 65 oC. The kinetic parameters such as reaction order 2.02 and rate constant 2.8 hr-1g-1cat, obtained at the temperature of 65 oC best fitted the kinetic model. The activation energy, Ea obtained was 127.744 KJ/mol. The results indicate that the transesterification reaction of the refined cottonseed oil using calcium oxide catalyst is approximately second order reaction.

Keywords: refined cottonseed oil, transesterification, CaO, heterogeneous catalysts, kinetic model

Procedia PDF Downloads 506
4316 Urban Logistics Dynamics: A User-Centric Approach to Traffic Modelling and Kinetic Parameter Analysis

Authors: Emilienne Lardy, Mariam Lafkihi, Eric Ballot

Abstract:

Efficient city logistics requires a comprehensive understanding of traffic dynamics, particularly as it pertains to kinetic parameters influencing energy consumption and trip duration estimations. While real-time traffic information is increasingly accessible, current high-precision forecasting services embedded in route planning often function as opaque 'black boxes' for users. These services, typically relying on AI-processed counting data, fall short in accommodating open design parameters essential for management studies, notably within Supply Chain Management. This work revisits the modeling of traffic conditions in the context of city logistics, emphasizing its significance from the user’s point of view, with two focuses. Firstly, the focus is not on the vehicle flow but on the vehicles themselves and the impact of the traffic conditions on their driving behaviour. This means opening the range of studied indicators beyond vehicle speed to describe extensively the kinetic and dynamic aspects of driving behaviour. To achieve this, we leverage the Art. Kinema parameters are designed to characterize driving cycles. Secondly, this study examines how the driving context (i.e., exogenous factors to the traffic flow) determines the mentioned driving behaviour. Specifically, we explore it investigates how accurately the kinetic behaviour of a vehicle can be predicted based on a limited set of exogenous factors, such as time, day, road type, orientation, slope, and weather conditions. To answer this question, statistical analysis was conducted on real-world driving data, which includes high-frequency measurements of vehicle speed. A Generalized Linear Model has been established to link kinetic parameters with independent categorical contextual variables. The results include the analysis of the regression’s accuracy, as well as the utilization of the regression’s results in freight distribution scenario elaboration and analysis for Supply Chain Management purposes.

Keywords: driving context, generalized linear model, kinetic behaviour, real world driving data

Procedia PDF Downloads 25
4315 View Synthesis of Kinetic Depth Imagery for 3D Security X-Ray Imaging

Authors: O. Abusaeeda, J. P. O. Evans, D. Downes

Abstract:

We demonstrate the synthesis of intermediary views within a sequence of X-ray images that exhibit depth from motion or kinetic depth effect in a visual display. Each synthetic image replaces the requirement for a linear X-ray detector array during the image acquisition process. Scale invariant feature transform, SIFT, in combination with epipolar morphing is employed to produce synthetic imagery. Comparison between synthetic and ground truth images is reported to quantify the performance of the approach. Our work is a key aspect in the development of a 3D imaging modality for the screening of luggage at airport checkpoints. This programme of research is in collaboration with the UK Home Office and the US Dept. of Homeland Security.

Keywords: X-ray, kinetic depth, KDE, view synthesis

Procedia PDF Downloads 226
4314 Shape-Changing Structure: A Prototype for the Study of a Dynamic and Modular Structure

Authors: Annarita Zarrillo

Abstract:

This research is part of adaptive architecture, reflecting the evolution that the world of architectural design is going through. Today's architecture is no longer seen as a static system but, conversely, as a dynamic system that changes in response to the environment and the needs of users. One of the major forms of adaptivity is represented by kinetic structures. This study aims to underline the importance of experimentation on physical scale models for the study of dynamic structures and to present the case study of a modular kinetic structure designed through the use of parametric design software and created as a prototype in the laboratories of the Royal Danish Academy in Copenhagen.

Keywords: adaptive architecture, architectural application, kinetic structures, modular prototype

Procedia PDF Downloads 101
4313 Kinetic Study of 1-Butene Isomerization over Hydrotalcite Catalyst

Authors: Sirada Sripinun

Abstract:

This work studied the isomerization of 1-butene over hydrotalcite catalyst. The experiments were conducted at various gas hourly space velocity (GHSV), reaction temperature, and feed concentration. No catalyst deactivation was observed over the reaction time of 16 hours. Two major reaction products were trans-2-butene and cis-2-butene. The reaction temperature played an important role on the reaction selectivity. At high operating temperatures, the selectivity of trans-2-butene was higher than the selectivity of cis-2-butene while it was opposite at a lower reaction temperature. In the range of operating conditions, the maximum conversion of 1-butene was found at 74% when T = 673 K and GHSV = 4 m3/h/kg-cat with trans- and cis-2-butene selectivities of 54% and 46% respectively. Finally, the kinetic parameters of the reaction were determined.

Keywords: hydrotalcite, isomerization, kinetic, 1-butene

Procedia PDF Downloads 354