Search results for: verb grammatical structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4269

Search results for: verb grammatical structures

69 Mitigating Urban Flooding through Spatial Planning Interventions: A Case of Bhopal City

Authors: Rama Umesh Pandey, Jyoti Yadav

Abstract:

Flooding is one of the waterborne disasters that causes extensive destruction in urban areas. Developing countries are at a higher risk of such damage and more than half of the global flooding events take place in Asian countries including India. Urban flooding is more of a human-induced disaster rather than natural. This is highly influenced by the anthropogenic factors, besides metrological and hydrological causes. Unplanned urbanization and poor management of cities enhance the impact manifold and cause huge loss of life and property in urban areas. It is an irony that urban areas have been facing water scarcity in summers and flooding during monsoon. This paper is an attempt to highlight the factors responsible for flooding in a city especially from an urban planning perspective and to suggest mitigating measures through spatial planning interventions. Analysis has been done in two stages; first is to assess the impacts of previous flooding events and second to analyze the factors responsible for flooding at macro and micro level in cities. Bhopal, a city in Central India having nearly two million population, has been selected for the study. The city has been experiencing flooding during heavy rains in monsoon. The factors responsible for urban flooding were identified through literature review as well as various case studies from different cities across the world and India. The factors thus identified were analyzed for both macro and micro level influences. For macro level, the previous flooding events that have caused huge destructions were analyzed and the most affected areas in Bhopal city were identified. Since the identified area was falling within the catchment of a drain so the catchment area was delineated for the study. The factors analyzed were: rainfall pattern to calculate the return period using Weibull’s formula; imperviousness through mapping in ArcGIS; runoff discharge by using Rational method. The catchment was divided into micro watersheds and the micro watershed having maximum impervious surfaces was selected to analyze the coverage and effect of physical infrastructure such as: storm water management; sewerage system; solid waste management practices. The area was further analyzed to assess the extent of violation of ‘building byelaws’ and ‘development control regulations’ and encroachment over the natural water streams. Through analysis, the study has revealed that the main issues have been: lack of sewerage system; inadequate storm water drains; inefficient solid waste management in the study area; violation of building byelaws through extending building structures ether on to the drain or on the road; encroachments by slum dwellers along or on to the drain reducing the width and capacity of the drain. Other factors include faulty culvert’s design resulting in back water effect. Roads are at higher level than the plinth of houses which creates submersion of their ground floors. The study recommends spatial planning interventions for mitigating urban flooding and strategies for management of excess rain water during monsoon season. Recommendations have also been made for efficient land use management to mitigate water logging in areas vulnerable to flooding.

Keywords: mitigating strategies, spatial planning interventions, urban flooding, violation of development control regulations

Procedia PDF Downloads 298
68 Influence of Bacterial Biofilm on the Corrosive Processes in Electronic Equipment

Authors: Iryna P. Dzieciuch, Michael D. Putman

Abstract:

Humidity is known to degrade Navy ship electronic equipment, especially in hot moist environments. If left untreated, it can cause significant and permanent damage. Even rigorous inspection and frequent clean-up would not prevent further equipment contamination and degradation because of the constant presence of favorable growth conditions for many microorganisms. Generally, relative humidity levels of less than 60% will inhibit corrosion in electronic equipment, but because NAVY electronics often operate in hot and humid environments, prevention via dehumidification is not always possible. Currently, there is no defined research that fully describes key mechanisms which cause electronics and its coating degradation. The corrosive action of most bacteria is mainly developed through (i) mycelium adherence to the metal plates, (ii) facilitation the formation of pitting areas, (iii) production of organic acids such as citric, iso-citric, cis-aconitic, alpha-ketoglutaric, which are corrosive to electronic equipment and its components. Our approach studies corrosive action in electronic equipment: circuit-board, wires and connections that are exposed in the humid environment that gets worse during condensation. In our new approach the technical task is built on work with the bacterial communities in public areas, bacterial genetics, bioinformatics, biostatistics and Scanning Electron Microscopy (SEM) of corroded circuit boards. Based on these methods, we collect and examine environmental samples from biofilms of the corroded and non-corroded sites, where bacterial contamination of electronic equipment, such as machine racks and shore boats, is an ongoing concern. Sample collection and sample analysis is focused on addressing the key questions identified above through the following tasks: laboratory sample processing and evaluation under scanning electron microscopy, initial sequencing and data evaluation; bioinformatics and data analysis. Preliminary results from scanning electron microscopy (SEM) have revealed that metal particulates and alloys in corroded samples consists mostly of Tin ( < 40%), Silicon ( < 4%), Sulfur ( < 1%), Aluminum ( < 2%), Magnesium ( < 2%), Copper ( < 1%), Bromine ( < 2%), Barium ( <1%) and Iron ( < 2%) elements. We have also performed X 12000 magnification of the same sites and that proved existence of undisrupted biofilm organelles and crystal structures. Non-corrosion sites have revealed high presence of copper ( < 47%); other metals remain at the comparable level as on the samples with corrosion. We have performed X 1000 magnification on the non-corroded at the sites and have documented formation of copper crystals. The next step of this study, is to perform metagenomics sequencing at all sites and to compare bacterial composition present in the environment. While copper is nontoxic to the living organisms, the process of bacterial adhesion creates acidic environment by releasing citric, iso-citric, cis-aconitic, alpha-ketoglutaric acidics, which in turn release copper ions Cu++, which that are highly toxic to the bacteria and higher order living organisms. This phenomenon, might explain natural “antibiotic” properties that are lacking in elements such as tin. To prove or deny this hypothesis we will use next - generation sequencing (NGS) methods to investigate types and growth cycles of bacteria that from bacterial biofilm the on corrosive and non-corrosive samples.

Keywords: bacteria, biofilm, circuit board, copper, corrosion, electronic equipment, organic acids, tin

Procedia PDF Downloads 125
67 The Multiplier Effects of Intelligent Transport System to Nigerian Economy

Authors: Festus Okotie

Abstract:

Nigeria is the giant of Africa with great and diverse transport potentials yet to be fully tapped into and explored.it is the most populated nation in Africa with nearly 200 million people, the sixth largest oil producer overall and largest oil producer in Africa with proven oil and gas reserves of 37 billion barrels and 192 trillion cubic feet, over 300 square kilometers of arable land and significant deposits of largely untapped minerals. A world bank indicator which measures trading across border ranked Nigeria at 183 out of 185 countries in 2017 and although different governments in the past made efforts through different interventions such as 2007 ports reforms led by Ngozi Okonjo-Iweala, a former minister of Finance and world bank managing director also attempted to resolve some of the challenges such as infrastructure shortcomings, policy and regulatory inconsistencies, overlapping functions and duplicated roles among the different MDA’S. It is one of the fundamental structures smart nations and cities are using to improve the living conditions of its citizens and achieving sustainability. Examples of some of its benefits includes tracking high pedestrian areas, traffic patterns, railway stations, planning and scheduling bus times, it also enhances interoperability, creates alerts of transport situation and has swift capacity to share information among the different platforms and transport modes. It also offers a comprehensive approach to risk management, putting emergency procedures and response capabilities in place, identifying dangers, including vandalism or violence, fare evasion, and medical emergencies. The Nigerian transport system is urgently in need of modern infrastructures such as ITS. Smart city transport technology helps cities to function productively, while improving services for businesses and lives of is citizens. This technology has the ability to improve travel across traditional modes of transport, such as cars and buses, with immediate benefits for city dwellers and also helps in managing transport systems such as dangerous weather conditions, heavy traffic, and unsafe speeds which can result in accidents and loss of lives. Intelligent transportation systems help in traffic control such as permitting traffic lights to react to changing traffic patterns, instead of working on a fixed schedule in traffic. Intelligent transportation systems is very important in Nigeria’s transportation sector and so would require trained personnel to drive its efficiency to greater height because the purpose of introducing it is to add value and at the same time reduce motor vehicle miles and traffic congestion which is a major challenge around Tin can island and Apapa Port, a major transportation hub in Nigeria. The need for the federal government, state governments, houses of assembly to organise a national transportation workshop to begin the process of addressing the challenges in our nation’s transport sector is highly expedient and so bills that will facilitate the implementation of policies to promote intelligent transportation systems needs to be sponsored because of its potentials to create thousands of jobs for our citizens, provide farmers with better access to cities and a better living condition for Nigerians.

Keywords: intelligent, transport, system, Nigeria

Procedia PDF Downloads 84
66 India's Geothermal Energy Landscape and Role of Geophysical Methods in Unravelling Untapped Reserves

Authors: Satya Narayan

Abstract:

India, a rapidly growing economy with a burgeoning population, grapples with the dual challenge of meeting rising energy demands and reducing its carbon footprint. Geothermal energy, an often overlooked and underutilized renewable source, holds immense potential for addressing this challenge. Geothermal resources offer a valuable, consistent, and sustainable energy source, and may significantly contribute to India's energy. This paper discusses the importance of geothermal exploration in India, emphasizing its role in achieving sustainable energy production while mitigating environmental impacts. It also delves into the methodology employed to assess geothermal resource feasibility, including geophysical surveys and borehole drilling. The results and discussion sections highlight promising geothermal sites across India, illuminating the nation's vast geothermal potential. It detects potential geothermal reservoirs, characterizes subsurface structures, maps temperature gradients, monitors fluid flow, and estimates key reservoir parameters. Globally, geothermal energy falls into high and low enthalpy categories, with India mainly having low enthalpy resources, especially in hot springs. The northwestern Himalayan region boasts high-temperature geothermal resources due to geological factors. Promising sites, like Puga Valley, Chhumthang, and others, feature hot springs suitable for various applications. The Son-Narmada-Tapti lineament intersects regions rich in geological history, contributing to geothermal resources. Southern India, including the Godavari Valley, has thermal springs suitable for power generation. The Andaman-Nicobar region, linked to subduction and volcanic activity, holds high-temperature geothermal potential. Geophysical surveys, utilizing gravity, magnetic, seismic, magnetotelluric, and electrical resistivity techniques, offer vital information on subsurface conditions essential for detecting, evaluating, and exploiting geothermal resources. The gravity and magnetic methods map the depth of the mantle boundary (high-temperature) and later accurately determine the Curie depth. Electrical methods indicate the presence of subsurface fluids. Seismic surveys create detailed sub-surface images, revealing faults and fractures and establishing possible connections to aquifers. Borehole drilling is crucial for assessing geothermal parameters at different depths. Detailed geochemical analysis and geophysical surveys in Dholera, Gujarat, reveal untapped geothermal potential in India, aligning with renewable energy goals. In conclusion, geophysical surveys and borehole drilling play a pivotal role in economically viable geothermal site selection and feasibility assessments. With ongoing exploration and innovative technology, these surveys effectively minimize drilling risks, optimize borehole placement, aid in environmental impact evaluations, and facilitate remote resource exploration. Their cost-effectiveness informs decisions regarding geothermal resource location and extent, ultimately promoting sustainable energy and reducing India's reliance on conventional fossil fuels.

Keywords: geothermal resources, geophysical methods, exploration, exploitation

Procedia PDF Downloads 41
65 The Legal and Regulatory Gaps of Blockchain-Enabled Energy Prosumerism

Authors: Karisma Karisma, Pardis Moslemzadeh Tehrani

Abstract:

This study aims to conduct a high-level strategic dialogue on the lack of consensus, consistency, and legal certainty regarding blockchain-based energy prosumerism so that appropriate institutional and governance structures can be put in place to address the inadequacies and gaps in the legal and regulatory framework. The drive to achieve national and global decarbonization targets is a driving force behind climate goals and policies under the Paris Agreement. In recent years, efforts to ‘demonopolize’ and ‘decentralize’ energy generation and distribution have driven the energy transition toward decentralized systems, invoking concepts such as ownership, sovereignty, and autonomy of RE sources. The emergence of individual and collective forms of prosumerism and the rapid diffusion of blockchain is expected to play a critical role in the decarbonization and democratization of energy systems. However, there is a ‘regulatory void’ relating to individual and collective forms of prosumerism that could prevent the rapid deployment of blockchain systems and potentially stagnate the operationalization of blockchain-enabled energy sharing and trading activities. The application of broad and facile regulatory fixes may be insufficient to address the major regulatory gaps. First, to the authors’ best knowledge, the concepts and elements circumjacent to individual and collective forms of prosumerism have not been adequately described in the legal frameworks of many countries. Second, there is a lack of legal certainty regarding the creation and adaptation of business models in a highly regulated and centralized energy system, which inhibits the emergence of prosumer-driven niche markets. There are also current and prospective challenges relating to the legal status of blockchain-based platforms for facilitating energy transactions, anticipated with the diffusion of blockchain technology. With the rise of prosumerism in the energy sector, the areas of (a) network charges, (b) energy market access, (c) incentive schemes, (d) taxes and levies, and (e) licensing requirements are still uncharted territories in many countries. The uncertainties emanating from this area pose a significant hurdle to the widespread adoption of blockchain technology, a complementary technology that offers added value and competitive advantages for energy systems. The authors undertake a conceptual and theoretical investigation to elucidate the lack of consensus, consistency, and legal certainty in the study of blockchain-based prosumerism. In addition, the authors set an exploratory tone to the discussion by taking an analytically eclectic approach that builds on multiple sources and theories to delve deeper into this topic. As an interdisciplinary study, this research accounts for the convergence of regulation, technology, and the energy sector. The study primarily adopts desk research, which examines regulatory frameworks and conceptual models for crucial policies at the international level to foster an all-inclusive discussion. With their reflections and insights into the interaction of blockchain and prosumerism in the energy sector, the authors do not aim to develop definitive regulatory models or instrument designs, but to contribute to the theoretical dialogue to navigate seminal issues and explore different nuances and pathways. Given the emergence of blockchain-based energy prosumerism, identifying the challenges, gaps and fragmentation of governance regimes is key to facilitating global regulatory transitions.

Keywords: blockchain technology, energy sector, prosumer, legal and regulatory.

Procedia PDF Downloads 152
64 In-Process Integration of Resistance-Based, Fiber Sensors during the Braiding Process for Strain Monitoring of Carbon Fiber Reinforced Composite Materials

Authors: Oscar Bareiro, Johannes Sackmann, Thomas Gries

Abstract:

Carbon fiber reinforced polymer composites (CFRP) are used in a wide variety of applications due to its advantageous properties and design versatility. The braiding process enables the manufacture of components with good toughness and fatigue strength. However, failure mechanisms of CFRPs are complex and still present challenges associated with their maintenance and repair. Within the broad scope of structural health monitoring (SHM), strain monitoring can be applied to composite materials to improve reliability, reduce maintenance costs and safely exhaust service life. Traditional SHM systems employ e.g. fiber optics, piezoelectrics as sensors, which are often expensive, time consuming and complicated to implement. A cost-efficient alternative can be the exploitation of the conductive properties of fiber-based sensors such as carbon, copper, or constantan - a copper-nickel alloy – that can be utilized as sensors within composite structures to achieve strain monitoring. This allows the structure to provide feedback via electrical signals to a user which are essential for evaluating the structural condition of the structure. This work presents a strategy for the in-process integration of resistance-based sensors (Elektrisola Feindraht AG, CuNi23Mn, Ø = 0.05 mm) into textile preforms during its manufacture via the braiding process (Herzog RF-64/120) to achieve strain monitoring of braided composites. For this, flat samples of instrumented composite laminates of carbon fibers (Toho Tenax HTS40 F13 24K, 1600 tex) and epoxy resin (Epikote RIMR 426) were manufactured via vacuum-assisted resin infusion. These flat samples were later cut out into test specimens and the integrated sensors were wired to the measurement equipment (National Instruments, VB-8012) for data acquisition during the execution of mechanical tests. Quasi-static tests were performed (tensile, 3-point bending tests) following standard protocols (DIN EN ISO 527-1 & 4, DIN EN ISO 14132); additionally, dynamic tensile tests were executed. These tests were executed to assess the sensor response under different loading conditions and to evaluate the influence of the sensor presence on the mechanical properties of the material. Several orientations of the sensor with regards to the applied loading and sensor placements inside the laminate were tested. Strain measurements from the integrated sensors were made by programming a data acquisition code (LabView) written for the measurement equipment. Strain measurements from the integrated sensors were then correlated to the strain/stress state for the tested samples. From the assessment of the sensor integration approach it can be concluded that it allows for a seamless sensor integration into the textile preform. No damage to the sensor or negative effect on its electrical properties was detected during inspection after integration. From the assessment of the mechanical tests of instrumented samples it can be concluded that the presence of the sensors does not alter significantly the mechanical properties of the material. It was found that there is a good correlation between resistance measurements from the integrated sensors and the applied strain. It can be concluded that the correlation is of sufficient accuracy to determinate the strain state of a composite laminate based solely on the resistance measurements from the integrated sensors.

Keywords: braiding process, in-process sensor integration, instrumented composite material, resistance-based sensor, strain monitoring

Procedia PDF Downloads 80
63 Comparative Study on the Influence of Different Drugs against Aluminium- Induced Nephrotoxicity and Hepatotoxicity in Rats

Authors: Azza A. Ali, Toqa M. Elnahhas, Abeer I. Abd El-Fattah, Mona M. Kamal, Karema Abu-Elfotuh

Abstract:

Background: Environmental pollution with the different aluminium (Al) containing compounds especially those in industrial waste water exposes people to higher than normal levels of Al that represents an environmental risk factor. Cosmetics, Al ware, and containers are also sources of Al besides some foods and food additives. In addition to its known neurotoxicity, Al affects other body structures like skeletal system, blood cells, liver and kidney. Accumulation of Al in kidney and liver induces nephrotoxicity and hepatotoxicity. Coenzyme Q10 (CoQ10) is a pseudo-vitamin substance primarily present in the mitochondria. It is a powerful antioxidant and acts as radical scavenger. Wheat grass is a natural product that contains carbohydrates, proteins, vitamins, minerals, enzymes and has antioxidant, anti-inflammatory, anticancer and cardiovascular protection activities. Cocoa is an excellent source of iron, potent antioxidants and can protect against many diseases. Vinpocetine is an antioxidant and anti inflammatory while zinc is an essential trace element involved in cell division and its deficiency is observed in many types of liver disease. Objective: To evaluate and compare the potency of different drugs (CoQ10, wheatgrass, cocoa, vinpocetine and zinc) against nephro- and hepato-toxicity induced by Al in rats. Methods: Rats were divided to seven groups and received daily for three weeks either saline for control group or AlCl3 (70 mg/kg, IP) for Al-toxicity model groups. Five groups of Al-toxicity model (treated groups) were orally received together with Al each of the following; CoQ10 (200mg/kg), wheat grass (100mg/kg), cocoa powder (24mg/kg), vinpocetine (20mg/kg) or zinc (32mg/kg). Biochemical changes in the serum level of Alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate deshydrogenase (LDH) as well as total bilirubin, lipids, cholesterol, triglycerides, glucose, proteins, creatinine and urea were measured. Liver and kidney specimens from all groups were also collected for the assessment of hepatic and nephrotic level of inflammatory mediators (TNF-α, IL-6β, nuclear factor kappa B (NF-κB), Caspase-3, oxidative parameters (MDA, SOD, TAC, NO) and DNA fragmentation. Histopathological changes in liver and kidney were also evaluated. Results: Three weeks of AlCl3 (70 mg/kg, IP) exposure induced nephro- and hepato-toxicity in rats. Treatment by the all used drugs showed protection against hazards of AlCl3. The protective effects were indicated by the significant decrease in ALT, AST, ALP, LDH as well as total bilirubin, lipids, cholesterol, triglycerides, glucose, creatinine and urea levels which were increased by Al. Liver and kidney of the treated groups showed decrease in MDA, NO, TNF-α, IL-6β, NF-κB, caspase-3 and DNA fragmentation which were increased by Al, together with significant increase in total proteins, SOD and TAC which were decreased by Al. The protection against both nephro- and hepato-toxicity was more pronounced especially with CoQ10 and wheat grass than the other used drugs. Histopathological examinations confirmed the biochemical results of toxicity and of protection. Conclusion: Protection from nephrotoxicity, hepatotoxicity and the consequent degenerations induced by Al can be achieved by using different drugs as CoQ10, wheatgrass, cocoa, vinpocetine and zinc, but CoQ10 as well as wheat grass possesses the most superior protection.

Keywords: aluminum, nephrotoxicity, hepatotoxicity, coenzyme Q10, wheatgrass, cocoa, vinpocetine, zinc

Procedia PDF Downloads 311
62 Comparing Practices of Swimming in the Netherlands against a Global Model for Integrated Development of Mass and High Performance Sport: Perceptions of Coaches

Authors: Melissa de Zeeuw, Peter Smolianov, Arnold Bohl

Abstract:

This study was designed to help and improve international performance as well increase swimming participation in the Netherlands. Over 200 sources of literature on sport delivery systems from 28 Australasian, North and South American, Western and Eastern European countries were analyzed to construct a globally applicable model of high performance swimming integrated with mass participation, comprising of the following seven elements and three levels: Micro level (operations, processes, and methodologies for development of individual athletes): 1. Talent search and development, 2. Advanced athlete support. Meso level (infrastructures, personnel, and services enabling sport programs): 3. Training centers, 4. Competition systems, 5. Intellectual services. Macro level (socio-economic, cultural, legislative, and organizational): 6. Partnerships with supporting agencies, 7. Balanced and integrated funding and structures of mass and elite sport. This model emerged from the integration of instruments that have been used to analyse and compare national sport systems. The model has received scholarly validation and showed to be a framework for program analysis that is not culturally bound. It has recently been accepted as a model for further understanding North American sport systems, including (in chronological order of publications) US rugby, tennis, soccer, swimming and volleyball. The above model was used to design a questionnaire of 42 statements reflecting desired practices. The statements were validated by 12 international experts, including executives from sport governing bodies, academics who published on high performance and sport development, and swimming coaches and administrators. In this study both a highly structured and open ended qualitative analysis tools were used. This included a survey of swim coaches where open responses accompanied structured questions. After collection of the surveys, semi-structured discussions with Federation coaches were conducted to add triangulation to the findings. Lastly, a content analysis of Dutch Swimming’s website and organizational documentation was conducted. A representative sample of 1,600 Dutch Swim coaches and administrators was collected via email addresses from Royal Dutch Swimming Federation' database. Fully completed questionnaires were returned by 122 coaches from all key country’s regions for a response rate of 7,63% - higher than the response rate of the previously mentioned US studies which used the same model and method. Results suggest possible enhancements at macro level (e.g., greater public and corporate support to prepare and hire more coaches and to address the lack of facilities, monies and publicity at mass participation level in order to make swimming affordable for all), at meso level (e.g., comprehensive education for all coaches and full spectrum of swimming pools particularly 50 meters long), and at micro level (e.g., better preparation of athletes for a future outside swimming and better use of swimmers to stimulate swimming development). Best Dutch swimming management practices (e.g., comprehensive support to most talented swimmers who win Olympic medals) as well as relevant international practices available for transfer to the Netherlands (e.g., high school competitions) are discussed.

Keywords: sport development, high performance, mass participation, swimming

Procedia PDF Downloads 181
61 Representational Issues in Learning Solution Chemistry at Secondary School

Authors: Lam Pham, Peter Hubber, Russell Tytler

Abstract:

Students’ conceptual understandings of chemistry concepts/phenomena involve capability to coordinate across the three levels of Johnston’s triangle model. This triplet model is based on reasoning about chemical phenomena across macro, sub-micro and symbolic levels. In chemistry education, there is a need for further examining inquiry-based approaches that enhance students’ conceptual learning and problem solving skills. This research adopted a directed inquiry pedagogy based on students constructing and coordinating representations, to investigate senior school students’ capabilities to flexibly move across Johnston’ levels when learning dilution and molar concentration concepts. The participants comprise 50 grade 11 and 20 grade 10 students and 4 chemistry teachers who were selected from 4 secondary schools located in metropolitan Melbourne, Victoria. This research into classroom practices used ethnographic methodology, involved teachers working collaboratively with the research team to develop representational activities and lesson sequences in the instruction of a unit on solution chemistry. The representational activities included challenges (Representational Challenges-RCs) that used ‘representational tools’ to assist students to move across Johnson’s three levels for dilution phenomena. In this report, the ‘representational tool’ called ‘cross and portion’ model was developed and used in teaching and learning the molar concentration concept. Students’ conceptual understanding and problem solving skills when learning with this model are analysed through group case studies of year 10 and 11 chemistry students. In learning dilution concepts, students in both group case studies actively conducted a practical experiment, used their own language and visualisation skills to represent dilution phenomena at macroscopic level (RC1). At the sub-microscopic level, students generated and negotiated representations of the chemical interactions between solute and solvent underpinning the dilution process. At the symbolic level, students demonstrated their understandings about dilution concepts by drawing chemical structures and performing mathematical calculations. When learning molar concentration with a ‘cross and portion’ model (RC2), students coordinated across visual and symbolic representational forms and Johnson’s levels to construct representations. The analysis showed that in RC1, Year 10 students needed more ‘scaffolding’ in inducing to representations to explicit the form and function of sub-microscopic representations. In RC2, Year 11 students showed clarity in using visual representations (drawings) to link to mathematics to solve representational challenges about molar concentration. In contrast, year 10 students struggled to get match up the two systems, symbolic system of mole per litre (‘cross and portion’) and visual representation (drawing). These conceptual problems do not lie in the students’ mathematical calculation capability but rather in students’ capability to align visual representations with the symbolic mathematical formulations. This research also found that students in both group case studies were able to coordinate representations when probed about the use of ‘cross and portion’ model (in RC2) to demonstrate molar concentration of diluted solutions (in RC1). Students mostly succeeded in constructing ‘cross and portion’ models to represent the reduction of molar concentration of the concentration gradients. In conclusion, this research demonstrated how the strategic introduction and coordination of chemical representations across modes and across the macro, sub-micro and symbolic levels, supported student reasoning and problem solving in chemistry.

Keywords: cross and portion, dilution, Johnston's triangle, molar concentration, representations

Procedia PDF Downloads 104
60 Deep-Learning Coupled with Pragmatic Categorization Method to Classify the Urban Environment of the Developing World

Authors: Qianwei Cheng, A. K. M. Mahbubur Rahman, Anis Sarker, Abu Bakar Siddik Nayem, Ovi Paul, Amin Ahsan Ali, M. Ashraful Amin, Ryosuke Shibasaki, Moinul Zaber

Abstract:

Thomas Friedman, in his famous book, argued that the world in this 21st century is flat and will continue to be flatter. This is attributed to rapid globalization and the interdependence of humanity that engendered tremendous in-flow of human migration towards the urban spaces. In order to keep the urban environment sustainable, policy makers need to plan based on extensive analysis of the urban environment. With the advent of high definition satellite images, high resolution data, computational methods such as deep neural network analysis, and hardware capable of high-speed analysis; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. However, the first step of understanding urban space lies in useful categorization of the space that is usable for data collection, analysis, and visualization. In this paper, we propose a pragmatic categorization method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. Categorization to plan sustainable urban spaces should encompass the buildings and their surroundings. However, the state-of-the-art is mostly dominated by classification of building structures, building types, etc. and largely represents the developed world. Hence, these methods and models are not sufficient for developing countries such as Bangladesh, where the surrounding environment is crucial for the categorization. Moreover, these categorizations propose small-scale classifications, which give limited information, have poor scalability and are slow to compute in real time. Our proposed method is divided into two steps-categorization and automation. We categorize the urban area in terms of informal and formal spaces and take the surrounding environment into account. 50 km × 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert and consequently a map was drawn. The categorization is based broadly on two dimensions-the state of urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four categories: 1) highly informal area; 2) moderately informal area; 3) moderately formal area; and 4) highly formal area. In total, sixteen sub-categories were identified. For semantic segmentation and automatic categorization, Google’s DeeplabV3+ model was used. The model uses Atrous convolution operation to analyze different layers of texture and shape. This allows us to enlarge the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used to train the model, and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean Intersection over Union (mIoU). In this paper, we propose a pragmatic categorization method that is readily applicable for automatic use in both developing and developed world context. The method can be augmented for real-time socio-economic comparative analysis among cities. It can be an essential tool for the policy makers to plan future sustainable urban spaces.

Keywords: semantic segmentation, urban environment, deep learning, urban building, classification

Procedia PDF Downloads 150
59 Application of Aerogeomagnetic and Ground Magnetic Surveys for Deep-Seated Kimberlite Pipes in Central India

Authors: Utkarsh Tripathi, Bikalp C. Mandal, Ravi Kumar Umrao, Sirsha Das, M. K. Bhowmic, Joyesh Bagchi, Hemant Kumar

Abstract:

The Central India Diamond Province (CIDP) is known for the occurrences of primary and secondary sources for diamonds from the Vindhyan platformal sediments, which host several kimberlites, with one operating mine. The known kimberlites are Neo-Proterozoic in age and intrude into the Kaimur Group of rocks. Based on the interpretation of areo-geomagnetic data, three potential zones were demarcated in parts of Chitrakoot and Banda districts, Uttar Pradesh, and Satna district, Madhya Pradesh, India. To validate the aero-geomagnetic interpretation, ground magnetic coupled with a gravity survey was conducted to validate the anomaly and explore the possibility of some pipes concealed beneath the Vindhyan sedimentary cover. Geologically the area exposes the milky white to buff-colored arkosic and arenitic sandstone belonging to the Dhandraul Formation of the Kaimur Group, which are undeformed and unmetamorphosed providing almost transparent media for geophysical exploration. There is neither surface nor any geophysical indication of intersections of linear structures, but the joint patterns depict three principal joints along NNE-SSW, ENE-WSW, and NW-SE directions with vertical to sub-vertical dips. Aeromagnetic data interpretation brings out three promising zones with the bi-polar magnetic anomaly (69-602nT) that represent potential kimberlite intrusive concealed below at an approximate depth of 150-170m. The ground magnetic survey has brought out the above-mentioned anomalies in zone-I, which is congruent with the available aero-geophysical data. The magnetic anomaly map shows a total variation of 741 nT over the area. Two very high magnetic zones (H1 and H2) have been observed with around 500 nT and 400 nT magnitudes, respectively. Anomaly zone H1 is located in the west-central part of the area, south of Madulihai village, while anomaly zone H2 is located 2km apart in the north-eastern direction. The Euler 3D solution map indicates the possible existence of the ultramafic body in both the magnetic highs (H1 and H2). The H2 high shows the shallow depth, and H1 shows a deeper depth solution. In the reduced-to-pole (RTP) method, the bipolar anomaly disappears and indicates the existence of one causative source for both anomalies, which is, in all probabilities, an ultramafic suite of rock. The H1 magnetic high represents the main body, which persists up to depths of ~500m, as depicted through the upward continuation derivative map. Radially Averaged Power Spectrum (RAPS) shows the thickness of loose sediments up to 25m with a cumulative depth of 154m for sandstone overlying the ultramafic body. The average depth range of the shallower body (H2) is 60.5-86 meters, as estimated through the Peters half slope method. Magnetic (TF) anomaly with BA contour also shows high BA value around the high zones of magnetic anomaly (H1 and H2), which suggests that the causative body is with higher density and susceptibility for the surrounding host rock. The ground magnetic survey coupled with the gravity confirms a potential target for further exploration as the findings are co-relatable with the presence of the known diamondiferous kimberlites in this region, which post-date the rocks of the Kaimur Group.

Keywords: Kaimur, kimberlite, Euler 3D solution, magnetic

Procedia PDF Downloads 41
58 Multilocus Phylogenetic Approach Reveals Informative DNA Barcodes for Studying Evolution and Taxonomy of Fusarium Fungi

Authors: Alexander A. Stakheev, Larisa V. Samokhvalova, Sergey K. Zavriev

Abstract:

Fusarium fungi are among the most devastating plant pathogens distributed all over the world. Significant reduction of grain yield and quality caused by Fusarium leads to multi-billion dollar annual losses to the world agricultural production. These organisms can also cause infections in immunocompromised persons and produce the wide range of mycotoxins, such as trichothecenes, fumonisins, and zearalenone, which are hazardous to human and animal health. Identification of Fusarium fungi based on the morphology of spores and spore-forming structures, colony color and appearance on specific culture media is often very complicated due to the high similarity of these features for closely related species. Modern Fusarium taxonomy increasingly uses data of crossing experiments (biological species concept) and genetic polymorphism analysis (phylogenetic species concept). A number of novel Fusarium sibling species has been established using DNA barcoding techniques. Species recognition is best made with the combined phylogeny of intron-rich protein coding genes and ribosomal DNA sequences. However, the internal transcribed spacer of (ITS), which is considered to be universal DNA barcode for Fungi, is not suitable for genus Fusarium, because of its insufficient variability between closely related species and the presence of non-orthologous copies in the genome. Nowadays, the translation elongation factor 1 alpha (TEF1α) gene is the “gold standard” of Fusarium taxonomy, but the search for novel informative markers is still needed. In this study, we used two novel DNA markers, frataxin (FXN) and heat shock protein 90 (HSP90) to discover phylogenetic relationships between Fusarium species. Multilocus phylogenetic analysis based on partial sequences of TEF1α, FXN, HSP90, as well as intergenic spacer of ribosomal DNA (IGS), beta-tubulin (β-TUB) and phosphate permease (PHO) genes has been conducted for 120 isolates of 19 Fusarium species from different climatic zones of Russia and neighboring countries using maximum likelihood (ML) and maximum parsimony (MP) algorithms. Our analyses revealed that FXN and HSP90 genes could be considered as informative phylogenetic markers, suitable for evolutionary and taxonomic studies of Fusarium genus. It has been shown that PHO gene possesses more variable (22 %) and parsimony informative (19 %) characters than other markers, including TEF1α (12 % and 9 %, correspondingly) when used for elucidating phylogenetic relationships between F. avenaceum and its closest relatives – F. tricinctum, F. acuminatum, F. torulosum. Application of novel DNA barcodes confirmed the fact that F. arthrosporioides do not represent a separate species but only a subspecies of F. avenaceum. Phylogeny based on partial PHO and FXN sequences revealed the presence of separate cluster of four F. avenaceum strains which were closer to F. torulosum than to major F. avenaceum clade. The strain F-846 from Moldova, morphologically identified as F. poae, formed a separate lineage in all the constructed dendrograms, and could potentially be considered as a separate species, but more information is needed to confirm this conclusion. Variable sites in PHO sequences were used for the first-time development of specific qPCR-based diagnostic assays for F. acuminatum and F. torulosum. This work was supported by Russian Foundation for Basic Research (grant № 15-29-02527).

Keywords: DNA barcode, fusarium, identification, phylogenetics, taxonomy

Procedia PDF Downloads 292
57 Poly(Trimethylene Carbonate)/Poly(ε-Caprolactone) Phase-Separated Triblock Copolymers with Advanced Properties

Authors: Nikola Toshikj, Michel Ramonda, Sylvain Catrouillet, Jean-Jacques Robin, Sebastien Blanquer

Abstract:

Biodegradable and biocompatible block copolymers have risen as the golden materials in both medical and environmental applications. Moreover, if their architecture is of controlled manner, higher applications can be foreseen. In the meantime, organocatalytic ROP has been promoted as more rapid and immaculate route, compared to the traditional organometallic catalysis, towards efficient synthesis of block copolymer architectures. Therefore, herein we report novel organocatalytic pathway with guanidine molecules (TBD) for supported synthesis of trimethylene carbonate initiated by poly(caprolactone) as pre-polymer. Pristine PTMC-b-PCL-b-PTMC block copolymer structure, without any residual products and clear desired block proportions, was achieved under 1.5 hours at room temperature and verified by NMR spectroscopies and size-exclusion chromatography. Besides, when elaborating block copolymer films, further stability and amelioration of mechanical properties can be achieved via additional reticulation step of precedently methacrylated block copolymers. Subsequently, stimulated by the insufficient studies on the phase-separation/crystallinity relationship in these semi-crystalline block copolymer systems, their intrinsic thermal and morphology properties were investigated by differential scanning calorimetry and atomic force microscopy. Firstly, by DSC measurements, the block copolymers with χABN values superior to 20 presented two distinct glass transition temperatures, close to the ones of the respecting homopolymers, demonstrating an initial indication of a phase-separated system. In the interim, the existence of the crystalline phase was supported by the presence of melting temperature. As expected, the crystallinity driven phase-separated morphology predominated in the AFM analysis of the block copolymers. Neither crosslinking at melted state, hence creation of a dense polymer network, disturbed the crystallinity phenomena. However, the later revealed as sensible to rapid liquid nitrogen quenching directly from the melted state. Therefore, AFM analysis of liquid nitrogen quenched and crosslinked block copolymer films demonstrated a thermodynamically driven phase-separation clearly predominating over the originally crystalline one. These AFM films remained stable with their morphology unchanged even after 4 months at room temperature. However, as demonstrated by DSC analysis once rising the temperature above the melting temperature of the PCL block, neither the crosslinking nor the liquid nitrogen quenching shattered the semi-crystalline network, while the access to thermodynamical phase-separated structures was possible for temperatures under the poly (caprolactone) melting point. Precisely this coexistence of dual crosslinked/crystalline networks in the same copolymer structure allowed us to establish, for the first time, the shape-memory properties in such materials, as verified by thermomechanical analysis. Moreover, the response temperature to the material original shape depended on the block copolymer emplacement, hence PTMC or PCL as end-block. Therefore, it has been possible to reach a block copolymer with transition temperature around 40°C thus opening potential real-life medical applications. In conclusion, the initial study of phase-separation/crystallinity relationship in PTMC-b-PCL-b-PTMC block copolymers lead to the discovery of novel shape memory materials with superior properties, widely demanded in modern-life applications.

Keywords: biodegradable block copolymers, organocatalytic ROP, self-assembly, shape-memory

Procedia PDF Downloads 102
56 Residential Building Facade Retrofit

Authors: Galit Shiff, Yael Gilad

Abstract:

The need to retrofit old buildings lies in the fact that buildings are responsible for the main energy use and CO₂ emission. Existing old structures are more dominant in their effect than new energy-efficient buildings. Nevertheless not every case of urban renewal that aims to replace old buildings with new neighbourhoods necessarily has a financial or sustainable justification. Façade design plays a vital role in the building's energy performance and the unit's comfort conditions. A retrofit façade residential methodology and feasibility applicative study has been carried out for the past four years, with two projects already fully renovated. The intention of this study is to serve as a case study for limited budget façade retrofit in Mediterranean climate urban areas. The two case study buildings are set in Israel. However, they are set in different local climatic conditions. One is in 'Sderot' in the south of the country, and one is in' Migdal Hahemek' in the north of the country. The building typology is similar. The budget of the projects is around $14,000 per unit and includes interventions at the buildings' envelope while tenants are living in. Extensive research and analysis of the existing conditions have been done. The building's components, materials and envelope sections were mapped, examined and compared to relevant updated standards. Solar radiation simulations for the buildings in their surroundings during winter and summer days were done. The energy rate of each unit, as well as the building as a whole, was calculated according to the Israeli Energy Code. The buildings’ facades were documented with the use of a thermal camera during different hours of the day. This information was superimposed with data about the electricity use and the thermal comfort that was collected from the residential units. Later in the process, similar tools were further used in order to compare the effectiveness of different design options and to evaluate the chosen solutions. Both projects showed that the most problematic units were the ones below the roof and the ones on top of the elevated entrance floor (pilotis). Old buildings tend to have poor insulation on those two horizontal surfaces which require treatment. Different radiation levels and wall sections in the two projects influenced the design strategies: In the southern project, there was an extreme difference in solar radiations levels between the main façade and the back elevation. Eventually, it was decided to invest in insulating the main south-west façade and the side façades, leaving the back north-east façade almost untouched. Lower levels of radiation in the northern project led to a different tactic: a combination of basic insulation on all façades, together with intense treatment on areas with problematic thermal behavior. While poor execution of construction details and bad installation of windows in the northern project required replacing them all, in the southern project it was found that it is more essential to shade the windows than replace them. Although the buildings and the construction typology was chosen for this study are similar, the research shows that there are large differences due to the location in different climatic zones and variation in local conditions. Therefore, in order to reach a systematic and cost-effective method of work, a more extensive catalogue database is needed. Such a catalogue will enable public housing companies in the Mediterranean climate to promote massive projects of renovating existing old buildings, drawing on minimal analysis and planning processes.

Keywords: facade, low budget, residential, retrofit

Procedia PDF Downloads 173
55 Numerical Analysis of Mandible Fracture Stabilization System

Authors: Piotr Wadolowski, Grzegorz Krzesinski, Piotr Gutowski

Abstract:

The aim of the presented work is to recognize the impact of mini-plate application approach on the stress and displacement within the stabilization devices and surrounding bones. The mini-plate osteosynthesis technique is widely used by craniofacial surgeons as an improved replacement of wire connection approach. Many different types of metal plates and screws are used to the physical connection of fractured bones. Below investigation is based on a clinical observation of patient hospitalized with mini-plate stabilization system. Analysis was conducted on a solid mandible geometry, which was modeled basis on the computed tomography scan of the hospitalized patient. In order to achieve most realistic connected system behavior, the cortical and cancellous bone layers were assumed. The temporomandibular joint was simplified to the elastic element to allow physiological movement of loaded bone. The muscles of mastication system were reduced to three pairs, modeled as shell structures. Finite element grid was created by the ANSYS software, where hexahedral and tetrahedral variants of SOLID185 element were used. A set of nonlinear contact conditions were applied on connecting devices and bone common surfaces. Properties of particular contact pair depend on screw - mini-plate connection type and possible gaps between fractured bone around osteosynthesis region. Some of the investigated cases contain prestress introduced to the mini-plate during the application, what responds the initial bending of the connecting device to fit the retromolar fossa region. Assumed bone fracture occurs within the mandible angle zone. Due to the significant deformation of the connecting plate in some of the assembly cases the elastic-plastic model of titanium alloy was assumed. The bone tissues were covered by the orthotropic material. As a loading were used the gauge force of magnitude of 100N applied in three different locations. Conducted analysis shows significant impact of mini-plate application methodology on the stress distribution within the miniplate. Prestress effect introduces additional loading, which leads to locally exceed the titanium alloy yield limit. Stress in surrounding bone increases rapidly around the screws application region, exceeding assumed bone yield limit, what indicate the local bone destruction. Approach with the doubled mini-plate shows increased stress within the connector due to the too rigid connection, where the main path of loading leads through the mini-plates instead of plates and connected bones. Clinical observations confirm more frequent plate destruction of stiffer connections. Some of them could be an effect of decreased low cyclic fatigue capability caused by the overloading. The executed analysis prove that the mini-plate system provides sufficient support to mandible fracture treatment, however, many applicable solutions shifts the entire system to the allowable material limits. The results show that connector application with the initial loading needs to be carefully established due to the small material capability tolerances. Comparison to the clinical observations allows optimizing entire connection to prevent future incidents.

Keywords: mandible fracture, mini-plate connection, numerical analysis, osteosynthesis

Procedia PDF Downloads 242
54 The Perspective of British Politicians on English Identity: Qualitative Study of Parliamentary Debates, Blogs, and Interviews

Authors: Victoria Crynes

Abstract:

The question of England’s role in Britain is increasingly relevant due to the ongoing rise in citizens identifying as English. Furthermore, the Brexit Referendum was predominantly supported by constituents identifying as English. Few politicians appear to comprehend how Englishness is politically manifested. Politics and the media have depicted English identity as a negative and extremist problem - an inaccurate representation that ignores the breadth of English identifying citizens. This environment prompts the question, 'How are British Politicians Addressing the Modern English Identity Question?' Parliamentary debates, political blogs, and interviews are synthesized to establish a more coherent understanding of the current political attitudes towards English identity, the perceived nature of English identity, and the political manifestation of English representation and governance. Analyzed parliamentary debates addressed the democratic structure of English governance through topics such as English votes for English laws, devolution, and the union. The blogs examined include party-based, multi-author style blogs, and independently authored blogs by politicians, which provide a dynamic and up-to-date representation of party and politician viewpoints. Lastly, fourteen semi-structured interviews of British politicians provide a nuanced perspective on how politicians conceptualize Englishness. Interviewee selection was based on three criteria: (i) Members of Parliament (MP) known for discussing English identity politics, (ii) MPs of strongly English identifying constituencies, (iii) MPs with minimal English identity affiliation. Analysis of parliamentary debates reveals the discussion of English representation has gained little momentum. Many politicians fail to comprehend who the English are, why they desire greater representation and believe that increased recognition of the English would disrupt the unity of the UK. These debates highlight the disconnect of parliament from the disenfranchised English towns. A failure to recognize the legitimacy of English identity politics generates an inability for solution-focused debates to occur. Political blogs demonstrate cross-party recognition of growing English disenfranchisement. The dissatisfaction with British politics derives from multiple factors, including economic decline, shifting community structures, and the delay of Brexit. The left-behind communities have seen little response from Westminster, which is often contrasted to the devolved and louder voices of the other UK nations. Many blogs recognize the need for a political response to the English and lament the lack of party-level initiatives. In comparison, interviews depict an array of local-level initiatives reconnecting MPs to community members. Local efforts include town trips to Westminster, multi-cultural cooking classes, and English language courses. These efforts begin to rebuild positive, local narratives, promote engagement across community sectors, and acknowledge the English voices. These interviewees called for large-scale, political action. Meanwhile, several interviewees denied the saliency of English identity. For them, the term held only extremist narratives. The multi-level analysis reveals continued uncertainty on Englishness within British politics, contrasted with increased recognition of its saliency by politicians. It is paramount that politicians increase discussions on English identity politics to avoid increased alienation of English citizens and to rebuild trust in the abilities of Westminster.

Keywords: British politics, contemporary identity politics and its impacts, English identity, English nationalism, identity politics

Procedia PDF Downloads 86
53 Organization Structure of Towns and Villages System in County Area Based on Fractal Theory and Gravity Model: A Case Study of Suning, Hebei Province, China

Authors: Liuhui Zhu, Peng Zeng

Abstract:

With the rapid development in China, the urbanization has entered the transformation and promotion stage, and its direction of development has shifted to overall regional synergy. China has a large number of towns and villages, with comparative small scale and scattered distribution, which always support and provide resources to cities leading to urban-rural opposition, so it is difficult to achieve common development in a single town or village. In this context, the regional development should focus more on towns and villages to form a synergetic system, joining the regional association with cities. Thus, the paper raises the question about how to effectively organize towns and villages system to regulate the resource allocation and improve the comprehensive value of the regional area. To answer the question, it is necessary to find a suitable research unit and analysis of its present situation of towns and villages system for optimal development. By combing relevant researches and theoretical models, the county is the most basic administrative unit in China, which can directly guide and regulate the development of towns and villages, so the paper takes county as the research unit. Following the theoretical concept of ‘three structures and one network’, the paper concludes the research framework to analyse the present situation of towns and villages system, including scale structure, functional structure, spatial structure, and organization network. The analytical methods refer to the fractal theory and gravity model, using statistics and spatial data. The scale structure analyzes rank-size dimensions and uses the principal component method to calculate the comprehensive scale of towns and villages. The functional structure analyzes the functional types and industrial development of towns and villages. The spatial structure analyzes the aggregation dimension, network dimension, and correlation dimension of spatial elements to represent the overall spatial relationships. In terms of organization network, from the perspective of entity and ono-entity, the paper analyzes the transportation network and gravitational network. Based on the present situation analysis, the optimization strategies are proposed in order to achieve a synergetic relationship between towns and villages in the county area. The paper uses Suning county in the Beijing-Tianjin-Hebei region as a case study to apply the research framework and methods and then proposes the optimization orientations. The analysis results indicate that: (1) The Suning county is lack of medium-scale towns to transfer effect from towns to villages. (2) The distribution of gravitational centers is uneven, and the effect of gravity is limited only for nearby towns and villages. The gravitational network is not complete, leading to economic activities scattered and isolated. (3) The overall development of towns and villages system is immature, staying at ‘single heart and multi-core’ stage, and some specific optimization strategies are proposed. This study provides a regional view for the development of towns and villages and concludes the research framework and methods of towns and villages system for forming an effective synergetic relationship between them, contributing to organize resources and stimulate endogenous motivation, and form counter magnets to join the urban-rural integration.

Keywords: towns and villages system, organization structure, county area, fractal theory, gravity model

Procedia PDF Downloads 109
52 Mapping Iron Content in the Brain with Magnetic Resonance Imaging and Machine Learning

Authors: Gabrielle Robertson, Matthew Downs, Joseph Dagher

Abstract:

Iron deposition in the brain has been linked with a host of neurological disorders such as Alzheimer’s, Parkinson’s, and Multiple Sclerosis. While some treatment options exist, there are no objective measurement tools that allow for the monitoring of iron levels in the brain in vivo. An emerging Magnetic Resonance Imaging (MRI) method has been recently proposed to deduce iron concentration through quantitative measurement of magnetic susceptibility. This is a multi-step process that involves repeated modeling of physical processes via approximate numerical solutions. For example, the last two steps of this Quantitative Susceptibility Mapping (QSM) method involve I) mapping magnetic field into magnetic susceptibility and II) mapping magnetic susceptibility into iron concentration. Process I involves solving an ill-posed inverse problem by using regularization via injection of prior belief. The end result from Process II highly depends on the model used to describe the molecular content of each voxel (type of iron, water fraction, etc.) Due to these factors, the accuracy and repeatability of QSM have been an active area of research in the MRI and medical imaging community. This work aims to estimate iron concentration in the brain via a single step. A synthetic numerical model of the human head was created by automatically and manually segmenting the human head on a high-resolution grid (640x640x640, 0.4mm³) yielding detailed structures such as microvasculature and subcortical regions as well as bone, soft tissue, Cerebral Spinal Fluid, sinuses, arteries, and eyes. Each segmented region was then assigned tissue properties such as relaxation rates, proton density, electromagnetic tissue properties and iron concentration. These tissue property values were randomly selected from a Probability Distribution Function derived from a thorough literature review. In addition to having unique tissue property values, different synthetic head realizations also possess unique structural geometry created by morphing the boundary regions of different areas within normal physical constraints. This model of the human brain is then used to create synthetic MRI measurements. This is repeated thousands of times, for different head shapes, volume, tissue properties and noise realizations. Collectively, this constitutes a training-set that is similar to in vivo data, but larger than datasets available from clinical measurements. This 3D convolutional U-Net neural network architecture was used to train data-driven Deep Learning models to solve for iron concentrations from raw MRI measurements. The performance was then tested on both synthetic data not used in training as well as real in vivo data. Results showed that the model trained on synthetic MRI measurements is able to directly learn iron concentrations in areas of interest more effectively than other existing QSM reconstruction methods. For comparison, models trained on random geometric shapes (as proposed in the Deep QSM method) are less effective than models trained on realistic synthetic head models. Such an accurate method for the quantitative measurement of iron deposits in the brain would be of important value in clinical studies aiming to understand the role of iron in neurological disease.

Keywords: magnetic resonance imaging, MRI, iron deposition, machine learning, quantitative susceptibility mapping

Procedia PDF Downloads 93
51 Made on Land, Ends Up in the Water "I-Clare" Intelligent Remediation System for Removal of Harmful Contaminants in Water using Modified Reticulated Vitreous Carbon Foam

Authors: Sabina Żołędowska, Tadeusz Ossowski, Robert Bogdanowicz, Jacek Ryl, Paweł Rostkowski, Michał Kruczkowski, Michał Sobaszek, Zofia Cebula, Grzegorz Skowierzak, Paweł Jakóbczyk, Lilit Hovhannisyan, Paweł Ślepski, Iwona Kaczmarczyk, Mattia Pierpaoli, Bartłomiej Dec, Dawid Nidzworski

Abstract:

The circular economy of water presents a pressing environmental challenge in our society. Water contains various harmful substances, such as drugs, antibiotics, hormones, and dioxides, which can pose silent threats. Water pollution has severe consequences for aquatic ecosystems. It disrupts the balance of ecosystems by harming aquatic plants, animals, and microorganisms. Water pollution poses significant risks to human health. Exposure to toxic chemicals through contaminated water can have long-term health effects, such as cancer, developmental disorders, and hormonal imbalances. However, effective remediation systems can be implemented to remove these contaminants using electrocatalytic processes, which offer an environmentally friendly alternative to other treatment methods, and one of them is the innovative iCLARE system. The project's primary focus revolves around a few main topics: Reactor design and construction, selection of a specific type of reticulated vitreous carbon foams (RVC), analytical studies of harmful contaminants parameters and AI implementation. This high-performance electrochemical reactor will be build based on a novel type of electrode material. The proposed approach utilizes the application of reticulated vitreous carbon foams (RVC) with deposited modified metal oxides (MMO) and diamond thin films. The following setup is characterized by high surface area development and satisfactory mechanical and electrochemical properties, designed for high electrocatalytic process efficiency. The consortium validated electrode modification methods that are the base of the iCLARE product and established the procedures for the detection of chemicals detection: - deposition of metal oxides WO3 and V2O5-deposition of boron-doped diamond/nanowalls structures by CVD process. The chosen electrodes (porous Ferroterm electrodes) were stress tested for various parameters that might occur inside the iCLARE machine–corosis, the long-term structure of the electrode surface during electrochemical processes, and energetic efficacy using cyclic polarization and electrochemical impedance spectroscopy (before and after electrolysis) and dynamic electrochemical impedance spectroscopy (DEIS). This tool allows real-time monitoring of the changes at the electrode/electrolyte interphase. On the other hand, the toxicity of iCLARE chemicals and products of electrolysis are evaluated before and after the treatment using MARA examination (IBMM) and HPLC-MS-MS (NILU), giving us information about the harmfulness of using electrode material and the efficiency of iClare system in the disposal of pollutants. Implementation of data into the system that uses artificial intelligence and the possibility of practical application is in progress (SensDx).

Keywords: waste water treatement, RVC, electrocatalysis, paracetamol

Procedia PDF Downloads 46
50 Complete Genome Sequence Analysis of Pasteurella multocida Subspecies multocida Serotype A Strain PMTB2.1

Authors: Shagufta Jabeen, Faez J. Firdaus Abdullah, Zunita Zakaria, Nurulfiza M. Isa, Yung C. Tan, Wai Y. Yee, Abdul R. Omar

Abstract:

Pasteurella multocida (PM) is an important veterinary opportunistic pathogen particularly associated with septicemic pasteurellosis, pneumonic pasteurellosis and hemorrhagic septicemia in cattle and buffaloes. P. multocida serotype A has been reported to cause fatal pneumonia and septicemia. Pasteurella multocida subspecies multocida of serotype A Malaysian isolate PMTB2.1 was first isolated from buffaloes died of septicemia. In this study, the genome of P. multocida strain PMTB2.1 was sequenced using third-generation sequencing technology, PacBio RS2 system and analyzed bioinformatically via de novo analysis followed by in-depth analysis based on comparative genomics. Bioinformatics analysis based on de novo assembly of PacBio raw reads generated 3 contigs followed by gap filling of aligned contigs with PCR sequencing, generated a single contiguous circular chromosome with a genomic size of 2,315,138 bp and a GC content of approximately 40.32% (Accession number CP007205). The PMTB2.1 genome comprised of 2,176 protein-coding sequences, 6 rRNA operons and 56 tRNA and 4 ncRNAs sequences. The comparative genome sequence analysis of PMTB2.1 with nine complete genomes which include Actinobacillus pleuropneumoniae, Haemophilus parasuis, Escherichia coli and five P. multocida complete genome sequences including, PM70, PM36950, PMHN06, PM3480, PMHB01 and PMTB2.1 was carried out based on OrthoMCL analysis and Venn diagram. The analysis showed that 282 CDs (13%) are unique to PMTB2.1and 1,125 CDs with orthologs in all. This reflects overall close relationship of these bacteria and supports the classification in the Gamma subdivision of the Proteobacteria. In addition, genomic distance analysis among all nine genomes indicated that PMTB2.1 is closely related with other five Pasteurella species with genomic distance less than 0.13. Synteny analysis shows subtle differences in genetic structures among different P.multocida indicating the dynamics of frequent gene transfer events among different P. multocida strains. However, PM3480 and PM70 exhibited exceptionally large structural variation since they were swine and chicken isolates. Furthermore, genomic structure of PMTB2.1 is more resembling that of PM36950 with a genomic size difference of approximately 34,380 kb (smaller than PM36950) and strain-specific Integrative and Conjugative Elements (ICE) which was found only in PM36950 is absent in PMTB2.1. Meanwhile, two intact prophages sequences of approximately 62 kb were found to be present only in PMTB2.1. One of phage is similar to transposable phage SfMu. The phylogenomic tree was constructed and rooted with E. coli, A. pleuropneumoniae and H. parasuis based on OrthoMCL analysis. The genomes of P. multocida strain PMTB2.1 were clustered with bovine isolates of P. multocida strain PM36950 and PMHB01 and were separated from avian isolate PM70 and swine isolates PM3480 and PMHN06 and are distant from Actinobacillus and Haemophilus. Previous studies based on Single Nucleotide Polymorphism (SNPs) and Multilocus Sequence Typing (MLST) unable to show a clear phylogenetic relatedness between Pasteurella multocida and the different host. In conclusion, this study has provided insight on the genomic structure of PMTB2.1 in terms of potential genes that can function as virulence factors for future study in elucidating the mechanisms behind the ability of the bacteria in causing diseases in susceptible animals.

Keywords: comparative genomics, DNA sequencing, phage, phylogenomics

Procedia PDF Downloads 152
49 Dynamic Facades: A Literature Review on Double-Skin Façade with Lightweight Materials

Authors: Victor Mantilla, Romeu Vicente, António Figueiredo, Victor Ferreira, Sandra Sorte

Abstract:

Integrating dynamic facades into contemporary building design is shaping a new era of energy efficiency and user comfort. These innovative facades, often constructed using lightweight construction systems and materials, offer an opportunity to have a responsive and adaptive nature to the dynamic behavior of the outdoor climate. Therefore, in regions characterized by high fluctuations in daily temperatures, the ability to adapt to environmental changes is of paramount importance and a challenge. This paper presents a thorough review of the state of the art on double-skin facades (DSF), focusing on lightweight solutions for the external envelope. Dynamic facades featuring elements like movable shading devices, phase change materials, and advanced control systems have revolutionized the built environment. They offer a promising path for reducing energy consumption while enhancing occupant well-being. Lightweight construction systems are increasingly becoming the choice for the constitution of these facade solutions, offering benefits such as reduced structural loads and reduced construction waste, improving overall sustainability. However, the performance of dynamic facades based on low thermal inertia solutions in climatic contexts with high thermal amplitude is still in need of research since their ability to adapt is traduced in variability/manipulation of the thermal transmittance coefficient (U-value). Emerging technologies can enable such a dynamic thermal behavior through innovative materials, changes in geometry and control to optimize the facade performance. These innovations will allow a facade system to respond to shifting outdoor temperature, relative humidity, wind, and solar radiation conditions, ensuring that energy efficiency and occupant comfort are both met/coupled. This review addresses the potential configuration of double-skin facades, particularly concerning their responsiveness to seasonal variations in temperature, with a specific focus on addressing the challenges posed by winter and summer conditions. Notably, the design of a dynamic facade is significantly shaped by several pivotal factors, including the choice of materials, geometric considerations, and the implementation of effective monitoring systems. Within the realm of double skin facades, various configurations are explored, encompassing exhaust air, supply air, and thermal buffering mechanisms. According to the review places a specific emphasis on the thermal dynamics at play, closely examining the impact of factors such as the color of the facade, the slat angle's dimensions, and the positioning and type of shading devices employed in these innovative architectural structures.This paper will synthesize the current research trends in this field, with the presentation of case studies and technological innovations with a comprehensive understanding of the cutting-edge solutions propelling the evolution of building envelopes in the face of climate change, namely focusing on double-skin lightweight solutions to create sustainable, adaptable, and responsive building envelopes. As indicated in the review, flexible and lightweight systems have broad applicability across all building sectors, and there is a growing recognition that retrofitting existing buildings may emerge as the predominant approach.

Keywords: adaptive, control systems, dynamic facades, energy efficiency, responsive, thermal comfort, thermal transmittance

Procedia PDF Downloads 38
48 Microstructural Characterization of Bitumen/Montmorillonite/Isocyanate Composites by Atomic Force Microscopy

Authors: Francisco J. Ortega, Claudia Roman, Moisés García-Morales, Francisco J. Navarro

Abstract:

Asphaltic bitumen has been largely used in both industrial and civil engineering, mostly in pavement construction and roofing membrane manufacture. However, bitumen as such is greatly susceptible to temperature variations, and dramatically changes its in-service behavior from a viscoelastic liquid, at medium-high temperatures, to a brittle solid at low temperatures. Bitumen modification prevents these problems and imparts improved performance. Isocyanates like polymeric MDI (mixture of 4,4′-diphenylmethane di-isocyanate, 2,4’ and 2,2’ isomers, and higher homologues) have shown to remarkably enhance bitumen properties at the highest in-service temperatures expected. This comes from the reaction between the –NCO pendant groups of the oligomer and the most polar groups of asphaltenes and resins in bitumen. In addition, oxygen diffusion and/or UV radiation may provoke bitumen hardening and ageing. With the purpose of minimizing these effects, nano-layered-silicates (nanoclays) are increasingly being added to bitumen formulations. Montmorillonites, a type of naturally occurring mineral, may produce a nanometer scale dispersion which improves bitumen thermal, mechanical and barrier properties. In order to increase their lipophilicity, these nanoclays are normally treated so that organic cations substitute the inorganic cations located in their intergallery spacing. In the present work, the combined effect of polymeric MDI and the commercial montmorillonite Cloisite® 20A was evaluated. A selected bitumen with penetration within the range 160/220 was modified with 10 wt.% Cloisite® 20A and 2 wt.% polymeric MDI, and the resulting ternary composites were characterized by linear rheology, X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). The rheological tests evidenced a notable solid-like behavior at the highest temperatures studied when bitumen was just loaded with 10 wt.% Cloisite® 20A and high-shear blended for 20 minutes. However, if polymeric MDI was involved, the sequence of addition exerted a decisive control on the linear rheology of the final ternary composites. Hence, in bitumen/Cloisite® 20A/polymeric MDI formulations, the previous solid-like behavior disappeared. By contrast, an inversion in the order of addition (bitumen/polymeric MDI/ Cloisite® 20A) enhanced further the solid-like behavior imparted by the nanoclay. In order to gain a better understanding of the factors that govern the linear rheology of these ternary composites, a morphological and microstructural characterization based on XRD and AFM was conducted. XRD demonstrated the existence of clay stacks intercalated by bitumen molecules to some degree. However, the XRD technique cannot provide detailed information on the extent of nanoclay delamination, unless the entire fraction has effectively been fully delaminated (situation in which no peak is observed). Furthermore, XRD was unable to provide precise knowledge neither about the spatial distribution of the intercalated/exfoliated platelets nor about the presence of other structures at larger length scales. In contrast, AFM proved its power at providing conclusive information on the morphology of the composites at the nanometer scale and at revealing the structural modification that yielded the rheological properties observed. It was concluded that high-shear blending brought about a nanoclay-reinforced network. As for the bitumen/Cloisite® 20A/polymeric MDI formulations, the solid-like behavior was destroyed as a result of the agglomeration of the nanoclay platelets promoted by chemical reactions.

Keywords: Atomic Force Microscopy, bitumen, composite, isocyanate, montmorillonite.

Procedia PDF Downloads 231
47 Benchmarking of Petroleum Tanker Discharge Operations at a Nigerian Coastal Terminal and Jetty Facilitates Optimization of the Ship–Shore Interface

Authors: Bassey O. Bassey

Abstract:

Benchmarking has progressively become entrenched as a requisite activity for process improvement and enhancing service delivery at petroleum jetties and terminals, most especially during tanker discharge operations at the ship – shore interface, as avoidable delays result in extra operating costs, non-productive time, high demurrage payments and ultimate product scarcity. The jetty and terminal in focus had been operational for 3 and 8 years respectively, with proper operational and logistic records maintained to evaluate their progress over time in order to plan and implement modifications and review of procedures for greater technical and economic efficiency. Regular and emergency staff meetings were held on a team, departmental and company-wide basis to progressively address major challenges that were encountered during each operation. The process and outcome of the resultant collectively planned changes carried out within the past two years forms the basis of this paper, which mirrors the initiatives effected to enhance operational and maintenance excellence at the affected facilities. Operational modifications included a second cargo receipt line designated for gasoline, product loss control at jetty and shore ends, enhanced product recovery and quality control, and revival of terminal–jetty backloading operations. Logistic improvements were the incorporation of an internal logistics firm and shipping agency, fast tracking of discharge procedures for tankers, optimization of tank vessel selection process, and third party product receipt and throughput. Maintenance excellence was achieved through construction of two new lay barges and refurbishment of the existing one; revamping of existing booster pump and purchasing of a modern one as reserve capacity; extension of Phase 1 of the jetty to accommodate two vessels and construction of Phase 2 for two more vessels; regular inspection, draining, drying and replacement of cargo hoses; corrosion management program for all process facilities; and an improved, properly planned and documented maintenance culture. Safety, environmental and security compliance were enhanced by installing state-of-the-art fire fighting facilities and equipment, seawater intake line construction as backup for borehole at the terminal, remediation of the shoreline and marine structures, modern spill containment equipment, improved housekeeping and accident prevention practices, and installation of hi-technology security enhancements, among others. The end result has been observed over the past two years to include improved tanker turnaround time, higher turnover on product sales, consistent product availability, greater indigenous human capacity utilisation by way of direct hires and contracts, as well as customer loyalty. The lessons learnt from this exercise would, therefore, serve as a model to be adapted by other operators of similar facilities, contractors, academics and consultants in a bid to deliver greater sustainability and profitability of operations at the ship – shore interface to this strategic industry.

Keywords: benchmarking, optimisation, petroleum jetty, petroleum terminal

Procedia PDF Downloads 331
46 Numerical Prediction of Width Crack of Concrete Dapped-End Beams

Authors: Jatziri Y. Moreno-Martinez, Arturo Galvan, Xavier Chavez Cardenas, Hiram Arroyo

Abstract:

Several methods have been utilized to study the prediction of cracking of concrete structural under loading. The finite element analysis is an alternative that shows good results. The aim of this work was the numerical study of the width crack in reinforced concrete beams with dapped ends, these are frequently found in bridge girders and precast concrete construction. Properly restricting cracking is an important aspect of the design in dapped ends, it has been observed that the cracks that exceed the allowable widths are unacceptable in an aggressive environment for reinforcing steel. For simulating the crack width, the discrete crack approach was considered by means of a Cohesive Zone (CZM) Model using a function to represent the crack opening. Two cases of dapped-end were constructed and tested in the laboratory of Structures and Materials of Engineering Institute of UNAM. The first case considers a reinforcement based on hangers as well as on vertical and horizontal ring, the second case considers 50% of the vertical stirrups in the dapped end to the main part of the beam were replaced by an equivalent area (vertically projected) of diagonal bars under. The loading protocol consisted on applying symmetrical loading to reach the service load. The models were performed using the software package ANSYS v. 16.2. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The reinforcement was introduced with smeared approach. Interface delamination was modeled by traditional fracture mechanics methods such as the nodal release technique adopting softening relationships between tractions and the separations, which in turn introduce a critical fracture energy that is also the energy required to break apart the interface surfaces. This technique is called CZM. The interface surfaces of the materials are represented by a contact elements Surface-to-Surface (CONTA173) with bonded (initial contact). The Mode I dominated bilinear CZM model assumes that the separation of the material interface is dominated by the displacement jump normal to the interface. Furthermore, the opening crack was taken into consideration according to the maximum normal contact stress, the contact gap at the completion of debonding, and the maximum equivalent tangential contact stress. The contact elements were placed in the crack re-entrant corner. To validate the proposed approach, the results obtained with the previous procedure are compared with experimental test. A good correlation between the experimental and numerical Load-Displacement curves was presented, the numerical models also allowed to obtain the load-crack width curves. In these two cases, the proposed model confirms the capability of predicting the maximum crack width, with an error of ± 30 %. Finally, the orientation of the crack is a fundamental for the prediction of crack width. The results regarding the crack width can be considered as good from the practical point view. Load-Displacement curve of the test and the location of the crack were able to obtain favorable results.

Keywords: cohesive zone model, dapped-end beams, discrete crack approach, finite element analysis

Procedia PDF Downloads 136
45 Large-Scale Simulations of Turbulence Using Discontinuous Spectral Element Method

Authors: A. Peyvan, D. Li, J. Komperda, F. Mashayek

Abstract:

Turbulence can be observed in a variety fluid motions in nature and industrial applications. Recent investment in high-speed aircraft and propulsion systems has revitalized fundamental research on turbulent flows. In these systems, capturing chaotic fluid structures with different length and time scales is accomplished through the Direct Numerical Simulation (DNS) approach since it accurately simulates flows down to smallest dissipative scales, i.e., Kolmogorov’s scales. The discontinuous spectral element method (DSEM) is a high-order technique that uses spectral functions for approximating the solution. The DSEM code has been developed by our research group over the course of more than two decades. Recently, the code has been improved to run large cases in the order of billions of solution points. Running big simulations requires a considerable amount of RAM. Therefore, the DSEM code must be highly parallelized and able to start on multiple computational nodes on an HPC cluster with distributed memory. However, some pre-processing procedures, such as determining global element information, creating a global face list, and assigning global partitioning and element connection information of the domain for communication, must be done sequentially with a single processing core. A separate code has been written to perform the pre-processing procedures on a local machine. It stores the minimum amount of information that is required for the DSEM code to start in parallel, extracted from the mesh file, into text files (pre-files). It packs integer type information with a Stream Binary format in pre-files that are portable between machines. The files are generated to ensure fast read performance on different file-systems, such as Lustre and General Parallel File System (GPFS). A new subroutine has been added to the DSEM code to read the startup files using parallel MPI I/O, for Lustre, in a way that each MPI rank acquires its information from the file in parallel. In case of GPFS, in each computational node, a single MPI rank reads data from the file, which is specifically generated for the computational node, and send them to other ranks on the node using point to point non-blocking MPI communication. This way, communication takes place locally on each node and signals do not cross the switches of the cluster. The read subroutine has been tested on Argonne National Laboratory’s Mira (GPFS), National Center for Supercomputing Application’s Blue Waters (Lustre), San Diego Supercomputer Center’s Comet (Lustre), and UIC’s Extreme (Lustre). The tests showed that one file per node is suited for GPFS and parallel MPI I/O is the best choice for Lustre file system. The DSEM code relies on heavily optimized linear algebra operation such as matrix-matrix and matrix-vector products for calculation of the solution in every time-step. For this, the code can either make use of its matrix math library, BLAS, Intel MKL, or ATLAS. This fact and the discontinuous nature of the method makes the DSEM code run efficiently in parallel. The results of weak scaling tests performed on Blue Waters showed a scalable and efficient performance of the code in parallel computing.

Keywords: computational fluid dynamics, direct numerical simulation, spectral element, turbulent flow

Procedia PDF Downloads 104
44 A Study of Seismic Design Approaches for Steel Sheet Piles: Hydrodynamic Pressures and Reduction Factors Using CFD and Dynamic Calculations

Authors: Helena Pera, Arcadi Sanmartin, Albert Falques, Rafael Rebolo, Xavier Ametller, Heiko Zillgen, Cecile Prum, Boris Even, Eric Kapornyai

Abstract:

Sheet piles system can be an interesting solution when dealing with harbors or quays designs. However, current design methods lead to conservative approaches due to the lack of specific basis of design. For instance, some design features still deal with pseudo-static approaches, although being a dynamic problem. Under this concern, the study particularly focuses on hydrodynamic water pressure definition and stability analysis of sheet pile system under seismic loads. During a seismic event, seawater produces hydrodynamic pressures on structures. Currently, design methods introduce hydrodynamic forces by means of Westergaard formulation and Eurocodes recommendations. They apply constant hydrodynamic pressure on the front sheet pile during the entire earthquake. As a result, the hydrodynamic load may represent 20% of the total forces produced on the sheet pile. Nonetheless, some studies question that approach. Hence, this study assesses the soil-structure-fluid interaction of sheet piles under seismic action in order to evaluate if current design strategies overestimate hydrodynamic pressures. For that purpose, this study performs various simulations by Plaxis 2D, a well-known geotechnical software, and CFD models, which treat fluid dynamic behaviours. Knowing that neither Plaxis nor CFD can resolve a soil-fluid coupled problem, the investigation imposes sheet pile displacements from Plaxis as input data for the CFD model. Then, it provides hydrodynamic pressures under seismic action, which fit theoretical Westergaard pressures if calculated using the acceleration at each moment of the earthquake. Thus, hydrodynamic pressures fluctuate during seismic action instead of remaining constant, as design recommendations propose. Additionally, these findings detect that hydrodynamic pressure contributes a 5% to the total load applied on sheet pile due to its instantaneous nature. These results are in line with other studies that use added masses methods for hydrodynamic pressures. Another important feature in sheet pile design is the assessment of the geotechnical overall stability. It uses pseudo-static analysis since the dynamic analysis cannot provide a safety calculation. Consequently, it estimates the seismic action. One of its relevant factors is the selection of the seismic reduction factor. A huge amount of studies discusses the importance of it but also about all its uncertainties. Moreover, current European standards do not propose a clear statement on that, and they recommend using a reduction factor equal to 1. This leads to conservative requirements when compared with more advanced methods. Under this situation, the study calibrates seismic reduction factor by fitting results from pseudo-static to dynamic analysis. The investigation concludes that pseudo-static analyses could reduce seismic action by 40-50%. These results are in line with some studies from Japanese and European working groups. In addition, it seems suitable to account for the flexibility of the sheet pile-soil system. Nevertheless, the calibrated reduction factor is subjected to particular conditions of each design case. Further research would contribute to specifying recommendations for selecting reduction factor values in the early stages of the design. In conclusion, sheet pile design still has chances for improving its design methodologies and approaches. Consequently, design could propose better seismic solutions thanks to advanced methods such as findings of this study.

Keywords: computational fluid dynamics, hydrodynamic pressures, pseudo-static analysis, quays, seismic design, steel sheet pile

Procedia PDF Downloads 116
43 Biodeterioration and Biodegradation of Historic Parks of UK by Algae

Authors: Syeda Fatima Manzelat

Abstract:

The present study aims to study the groups of algal genera that are responsible for the biodeterioration, biodegradation, and biological pollution of the structures and features of the two historic parks of the UK. Different sites of Campbell Park and Great Linford Manor Park in Milton Keynes are selected to study the morphological, aesthetic, and physical effects of the algal growth. Specimens and swabs were collected mechanically from selected sites. Algal specimens are preserved in Lugol’s solution and labelled with standard information. Photomicrograph analysis of slides using taxonomic keys and visual observation identified algal species that are homogenously and non-homogenously mixed in the aerial, terrestrial, and aquatic habitats. A qualitative study revealed seven classes of Algae. Most of the algal genera isolated have proven records of potential biodegradation, discoloration, and biological pollution. Chlorophyceae was predominantly represented by eleven genera: Chlorella, Chlorococcum Cladophora, Coenochloris Cylindrocapsa, Microspora, Prasiola, Spirogyra, Trentepholia, Ulothrix and Zygnema. Charophyceae is represented by four genera: Cosmarium, Klebsormidium, Mesotaenium, and Mougeotia. Xanthophyceae with two genera, Tribonema and Vaucheria. Bacillariophyceae (Diatoms) are represented by six genera: Acnanthes, Bacillaria, Fragilaria, Gomphonema, Synedra, and Tabellaria, Dinophyceae with a Dinoflagellate. Rhodophyceae included Bangia and Batrachospermum, Cyanophyceae with five genera, Chroococcus, Gloeocapsa, Scytonema, Stigonema and Oscillatoria. The quantitative analysis by statistical method revealed that Chlorophyceae was the predominant class, with eleven genera isolated from different sites of the two parks. Coenochloris of Chlorophyceae was isolated from thirteen sites during the study, followed by Gloeocapsa of Cyanophyceae, which is isolated from 12 sites. These two algae impart varying shades of green colour on the surfaces on which they form biofilms. Prasiola, Vaucheria, and Trentepholia were isolated only from Great Linford Park. Trentepholia imparted a significant orange colour to the walls and trees of the sites. The compounds present in algae that are responsible for discoloration are the green pigment chlorophyll, orange pigment β-carotene, and yellow pigment quinone. Mesotaenium, Dinoflagellate, Gomphonema, Fragilaria, Tabellaria and two unidentified genera were isolated from Campbell Park only. Largest number of algal genera (25) were isolated from the canal of Campbell Park followed by (21) from the canal at Great Linford Manor Park. The Algae were found to grow on surfaces of walls, wooden fencings, metal sculptures, and railings. The Algae are reported to induce surface erosion, natural weathering, and cracking, leading to technical and mechanical instability and extensive damage to building materials. The algal biofilms secrete different organic acids, which are responsible for biosolubilization and biodeterioration of the building materials. The aquatic algal blooms isolated during the study release toxins which are responsible for allergy, skin rashes, vomiting, diarrhea, fever, muscle spasms, and lung and throat infections. The study identifies the places and locations at the historic sites which need to be paid attention. It provides an insight to the conservation strategies to overcome the negative impacts of bio colonization by algae. Prevention measures by different treatments need to be regularly monitored.

Keywords: algae, biodegradation, historic gardens, UK

Procedia PDF Downloads 17
42 Biostabilisation of Sediments for the Protection of Marine Infrastructure from Scour

Authors: Rob Schindler

Abstract:

Industry-standard methods of mitigating erosion of seabed sediments rely on ‘hard engineering’ approaches which have numerous environmental shortcomings: (1) direct loss of habitat by smothering of benthic species, (2) disruption of sediment transport processes, damaging geomorphic and ecosystem functionality (3) generation of secondary erosion problems, (4) introduction of material that may propagate non-local species, and (5) provision of pathways for the spread of invasive species. Recent studies have also revealed the importance of biological cohesion, the result of naturally occurring extra-cellular polymeric substances (EPS), in stabilizing natural sediments. Mimicking the strong bonding kinetics through the deliberate addition of EPS to sediments – henceforth termed ‘biostabilisation’ - offers a means in which to mitigate against erosion induced by structures or episodic increases in hydrodynamic forcing (e.g. storms and floods) whilst avoiding, or reducing, hard engineering. Here we present unique experiments that systematically examine how biostabilisation reduces scour around a monopile in a current, a first step to realizing the potential of this new method of scouring reduction for a wide range of engineering purposes in aquatic substrates. Experiments were performed in Plymouth University’s recirculating sediment flume which includes a recessed scour pit. The model monopile was 0.048 m in diameter, D. Assuming a prototype monopile diameter of 2.0 m yields a geometric ratio of 41.67. When applied to a 10 m prototype water depth this yields a model depth, d, of 0.24 m. The sediment pit containing the monopile was filled with different biostabilised substrata prepared using a mixture of fine sand (D50 = 230 μm) and EPS (Xanthan gum). Nine sand-EPS mixtures were examined spanning EPS contents of 0.0% < b0 < 0.50%. Scour development was measured using a laser point gauge along a 530 mm centreline at 10 mm increments at regular periods over 5 h. Maximum scour depth and excavated area were determined at different time steps and plotted against time to yield equilibrium values. After 5 hours the current was stopped and a detailed scan of the final scour morphology was taken. Results show that increasing EPS content causes a progressive reduction in the equilibrium depth and lateral extent of scour, and hence excavated material. Very small amounts equating to natural communities (< 0.1% by mass) reduce scour rate, depth and extent of scour around monopiles. Furthermore, the strong linear relationships between EPS content, equilibrium scour depth, excavation area and timescales of scouring offer a simple index on which to modify existing scour prediction methods. We conclude that the biostabilisation of sediments with EPS may offer a simple, cost-effective and ecologically sensitive means of reducing scour in a range of contexts including OWFs, bridge piers, pipeline installation, and void filling in rock armour. Biostabilisation may also reduce economic costs through (1) Use of existing site sediments, or waste dredged sediments (2) Reduced fabrication of materials, (3) Lower transport costs, (4) Less dependence on specialist vessels and precise sub-sea assembly. Further, its potential environmental credentials may allow sensitive use of the seabed in marine protection zones across the globe.

Keywords: biostabilisation, EPS, marine, scour

Procedia PDF Downloads 141
41 Effects of Transcutaneous Electrical Pelvic Floor Muscle Stimulation on Peri-Vulva Area on Stress Urinary Incontinence: A Preliminary Study

Authors: Kim Ji-Hyun, Jeon Hye-Seon, Kwon Oh-Yun, Park Eun-Young, Hwang Ui-Jae, Gwak Gyeong-Tae, Yoon Hyeo-Bin

Abstract:

Stress urinary incontinence (SUI), a common women health problem, is an involuntary leakage of urine while sneezing, coughing, or physical exertion caused by insufficient strength of the pelvic floor and sphincter muscles. SUI also leads to decrease in quality of life and limits sexual activities. SUI is related to the increased bladder neck angle, bladder neck movement, funneling index, urethral width, and decreased urethral length. Various pelvic floor muscle electrical stimulation (ES) interventions have been applied to improve the symptoms of the people with SUI. ES activates afferent fibers of pudendal nerve and smoothly induces contractions of the pelvic floor muscles such as striated periurethral muscles and striated pelvic floor muscles. ES via intravaginal electrodes are the most frequently used types of the pelvic floor muscle ES for the female SUI. However, inserted electrode is uncomfortable and it increases the risks of infection. The purpose of this preliminary study was to determine if the 8-week transcutaneous pelvic floor ES would be effective to improve the symptoms and satisfaction of the females with SUI. Easy-K, specially designed ES equipment for the people with SUI, was used in this study. The oval shape stimulator can be placed on a toilet seat, and the surface has invaded electrode fit to contact with the entire vulva area while users are sitting on the stimulator. Five women with SUI were included in this experiment. Prior to the participation, subjects were instructed about procedures and precautions in using the ES. They have used the stimulator once a day for 20 minutes for each session at home. Outcome data was collected 3 times at the baseline, 4 weeks and 8 weeks after the intervention. Intravaginal sonography was used to measure the bladder neck angle, bladder neck movement, funneling index, thickness of an anterior rhabdosphincter and a posterior rhabdosphincter, urethral length, and urethral width. Leavator ani muscle (LAM) contraction strength was assessed by manual palpation according to the oxford scoring system. In addition, incontinence quality of life (IQOL) and female sexual function index (FSFI) questionnaires were used to obtain addition subjective information. Friedman test, a nonparametric statistical test, was used to determine the effectiveness of the ES. The Wilcoxon test was used for the post-hoc analysis and the significance level was set at .05. The bladder neck angle, funneling index and urethral width were significantly decreased after 8-weeks of intervention (p<.05). LAM contraction score, urethral length and anterior and posterior rhabdosphicter thickness were statistically increased by the intervention (p<.05). However, no significant change was found in the bladder neck movement. Although total score of the IQOL did not improve, the score of the ‘avoidance’ subscale of IQOL had significant improved (p<.05). FSFI had statistical difference in FSFI total score and ‘desire’ subscale (p<.05). In conclusion, 8-week use of a transcutaneous ES on peri-vulva area improved dynamic mechanical structures of the pelvic floor musculature as well as IQOL and conjugal relationship.

Keywords: electrical stimulation, Pelvic floor muscle, sonography, stress urinary incontinence, women health

Procedia PDF Downloads 121
40 Hybrid Materials on the Basis of Magnetite and Magnetite-Gold Nanoparticles for Biomedical Application

Authors: Mariia V. Efremova, Iana O. Tcareva, Anastasia D. Blokhina, Ivan S. Grebennikov, Anastasia S. Garanina, Maxim A. Abakumov, Yury I. Golovin, Alexander G. Savchenko, Alexander G. Majouga, Natalya L. Klyachko

Abstract:

During last decades magnetite nanoparticles (NPs) attract a deep interest of scientists due to their potential application in therapy and diagnostics. However, magnetite nanoparticles are toxic and non-stable in physiological conditions. To solve these problems, we decided to create two types of hybrid systems based on magnetite and gold which is inert and biocompatible: gold as a shell material (first type) and gold as separate NPs interfacially bond to magnetite NPs (second type). The synthesis of the first type hybrid nanoparticles was carried out as follows: Magnetite nanoparticles with an average diameter of 9±2 nm were obtained by co-precipitation of iron (II, III) chlorides then they were covered with gold shell by iterative reduction of hydrogen tetrachloroaurate with hydroxylamine hydrochloride. According to the TEM, ICP MS and EDX data, final nanoparticles had an average diameter of 31±4 nm and contained iron even after hydrochloric acid treatment. However, iron signals (K-line, 7,1 keV) were not localized so we can’t speak about one single magnetic core. Described nanoparticles covered with mercapto-PEG acid were non-toxic for human prostate cancer PC-3/ LNCaP cell lines (more than 90% survived cells as compared to control) and had high R2-relaxivity rates (>190 mМ-1s-1) that exceed the transverse relaxation rate of commercial MRI-contrasting agents. These nanoparticles were also used for chymotrypsin enzyme immobilization. The effect of alternating magnetic field on catalytic properties of chymotrypsin immobilized on magnetite nanoparticles, notably the slowdown of catalyzed reaction at the level of 35-40 % was found. The synthesis of the second type hybrid nanoparticles also involved two steps. Firstly, spherical gold nanoparticles with an average diameter of 9±2 nm were synthesized by the reduction of hydrogen tetrachloroaurate with oleylamine; secondly, they were used as seeds during magnetite synthesis by thermal decomposition of iron pentacarbonyl in octadecene. As a result, so-called dumbbell-like structures were obtained where magnetite (cubes with 25±6 nm diagonal) and gold nanoparticles were connected together pairwise. By HRTEM method (first time for this type of structure) an epitaxial growth of magnetite nanoparticles on gold surface with co-orientation of (111) planes was discovered. These nanoparticles were transferred into water by means of block-copolymer Pluronic F127 then loaded with anti-cancer drug doxorubicin and also PSMA-vector specific for LNCaP cell line. Obtained nanoparticles were found to have moderate toxicity for human prostate cancer cells and got into the intracellular space after 45 minutes of incubation (according to fluorescence microscopy data). These materials are also perspective from MRI point of view (R2-relaxivity rates >70 mМ-1s-1). Thereby, in this work magnetite-gold hybrid nanoparticles, which have a strong potential for biomedical application, particularly in targeted drug delivery and magnetic resonance imaging, were synthesized and characterized. That paves the way to the development of special medicine types – theranostics. The authors knowledge financial support from Ministry of Education and Science of the Russian Federation (14.607.21.0132, RFMEFI60715X0132). This work was also supported by Grant of Ministry of Education and Science of the Russian Federation К1-2014-022, Grant of Russian Scientific Foundation 14-13-00731 and MSU development program 5.13.

Keywords: drug delivery, magnetite-gold, MRI contrast agents, nanoparticles, toxicity

Procedia PDF Downloads 351