Search results for: validation testing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4094

Search results for: validation testing

314 Bacteriological Spectrum and Resistance Patterns of Common Clinical Isolates from Infections in Cancer Patients

Authors: Vivek Bhat, Rohini Kelkar, Sanjay Biswas

Abstract:

Introduction: Cancer patients are at increased risk of bacterial infections. This may due to the disease process itself, the effect of chemotherapeutic drugs or invasive procedures such as catheterization. A wide variety of bacteria including some emerging pathogens are increasingly being reported from these patients. The incidence of multidrug-resistant organisms particularly in the Gram negative group is also increasing, with higher resistance rates seen to cephalosporins, β-lactam/β-lactam inhibitor combinations, and the carbapenems. This study documents the bacteriological spectrum of infections and their resistance patterns in cancer patients. Methods: This study includes all bacterial isolates recovered from infections cancer patients over a period of 18 months. Samples included Blood cultures, Pus/wound swabs, urine, tissue biopsies, body fluids, catheter tips and respiratory specimens such as sputum and bronchoalveolar lavage (BAL). All samples were processed in the microbiology laboratory as per standard laboratory protocols. Organisms were identified to species level and antimicrobial susceptibility testing was performed manually by the disc diffusion technique or in the Vitek-2 (Biomereux, France) instrument. Interpretations were as per Clinical laboratory Standards Institute (CLSI) guidelines. Results: A total of 1150 bacterial isolates were cultured from 884 test samples during the study period. Of these 227 were Gram-positive and 923 were Gram-negative organisms. Staphylococcus aureus (99 isolates) was the commonest Gram-positive isolate followed by Enterococcus (79) and Gr A Streptococcus (30). Among the Gram negatives, E. coli (304), Pseudomonas aeruginosa (201) and Klebsiella pneumoniae (190) were the most common. Of the Staphylococcus aureus isolates 27.2% were methicillin resistant. Only 5.06% enterococci were vancomycin resistant. High rates of resistance to cefotaxime and ciprofloxacin were seen amongst E. coli (84.8% & 83.55%) and Klebsiella pneumoniae (71 & 62.1%) respectively. Resistance to carbapenems (meropenem) was high at 70% in Acinetobacter spp.; however all isolates were sensitive to colistin. Among the aminoglycosides, amikacin retained good efficacy against Escherichia coli (82.9%) and Pseudomonas aeruginosa (78.1%). Occasional isolates of emerging pathogens such as Chryseobacterium indologens, Roseomonas, and Achromobacter xyloxidans were also recovered. Conclusion: The common infections in cancer patients include respiratory, wound, tract infections and sepsis. The commonest isolates include Staphylococcus aureus, Enterococci, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. There is a high level of resistance to the commonly used antibiotics among Gram-negative organisms.

Keywords: bacteria, resistance, infection, cancer

Procedia PDF Downloads 275
313 Outcomes of Pregnancy in Women with TPO Positive Status after Appropriate Dose Adjustments of Thyroxin: A Prospective Cohort Study

Authors: Revathi S. Rajan, Pratibha Malik, Nupur Garg, Smitha Avula, Kamini A. Rao

Abstract:

This study aimed to analyse the pregnancy outcomes in patients with TPO positivity after appropriate L-Thyroxin supplementation with close surveillance. All pregnant women attending the antenatal clinic at Milann-The Fertility Center, Bangalore, India- from Aug 2013 to Oct 2014 whose booking TSH was more than 2.5 mIU/L were included along with those pregnant women with prior hypothyroidism who were TPO positive. Those with TPO positive status were vigorously managed with appropriate thyroxin supplementation and the doses were readjusted every 3 to 4 weeks until delivery. Women with recurrent pregnancy loss were also tested for TPO positivity and if tested positive, were monitored serially with TSH and fT4 levels every 3 to 4 weeks and appropriately supplemented with thyroxin when the levels fluctuated. The testing was done after an informed consent in all these women. The statistical software namely SAS 9.2, SPSS 15.0, Stata 10.1, MedCalc 9.0.1, Systat 12.0 and R environment ver.2.11.1 were used for the analysis of the data. 460 pregnant women were screened for thyroid dysfunction at booking of which 52% were hypothyroid. Majority of them (31.08%) were subclinically hypothyroid and the remaining were overt. 25% of the total no. of patients screened were TPO positive. The various pregnancy complications that were observed in the TPO positive women were gestational glucose intolerance [60%], threatened abortion [21%], midtrimester abortion [4.3%], premature rupture of membranes [4.3%], cervical funneling [4.3%] and fetal growth restriction [3.5%]. 95.6% of the patients who followed up till the end delivered beyond 30 weeks. 42.6% of these patients had previous history of recurrent abortions or adverse obstetric outcome and 21.7% of the delivered babies required NICU admission. Obstetric outcomes in our study in terms of midtrimester abortions, placental abruption, and preterm delivery improved for the better after close monitoring of the thyroid hormone [TSH and fT4] levels every 3 to 4 weeks with appropriate dose adjustment throughout pregnancy. Euthyroid women with TPO positive status enrolled in the study incidentally were those with recurrent abortions/infertility and required thyroxin supplements due to elevated Thyroid hormone (TSH, fT4) levels during the course of their pregnancy. Significant associations were found with age>30 years and Hyperhomocysteinemia [p=0.017], recurrent pregnancy loss or previous adverse obstetric outcomes [p=0.067] and APLA [p=0.029]. TPO antibody levels >600 I U/ml were significantly associated with development of gestational hypertension [p=0.041] and fetal growth restriction [p=0.082]. Euthyroid women with TPO positivity were also screened periodically to counter fluctuations of the thyroid hormone levels with appropriate thyroxin supplementation. Thus, early identification along with aggressive management of thyroid dysfunction and stratification of these patients based on their TPO status with appropriate thyroxin supplementation beginning in the first trimester will aid risk modulation and also help avert complications.

Keywords: TPO antibody, subclinical hypothyroidism, anti nuclear antibody, thyroxin

Procedia PDF Downloads 300
312 Reagentless Detection of Urea Based on ZnO-CuO Composite Thin Film

Authors: Neha Batra Bali, Monika Tomar, Vinay Gupta

Abstract:

A reagentless biosensor for detection of urea based on ZnO-CuO composite thin film is presented in following work. Biosensors have immense potential for varied applications ranging from environmental to clinical testing, health care, and cell analysis. Immense growth in the field of biosensors is due to the huge requirement in today’s world to develop techniques which are both cost effective and accurate for prevention of disease manifestation. The human body comprises of numerous biomolecules which in their optimum levels are essential for functioning. However mismanaged levels of these biomolecules result in major health issues. Urea is one of the key biomolecules of interest. Its estimation is of paramount significance not only for healthcare sector but also from environmental perspectives. If level of urea in human blood/serum is abnormal, i.e., above or below physiological range (15-40mg/dl)), it may lead to diseases like renal failure, hepatic failure, nephritic syndrome, cachexia, urinary tract obstruction, dehydration, shock, burns and gastrointestinal, etc. Various metal nanoparticles, conducting polymer, metal oxide thin films, etc. have been exploited to act as matrix to immobilize urease to fabricate urea biosensor. Amongst them, Zinc Oxide (ZnO), a semiconductor metal oxide with a wide band gap is of immense interest as an efficient matrix in biosensors by virtue of its natural abundance, biocompatibility, good electron communication feature and high isoelectric point (9.5). In spite of being such an attractive candidate, ZnO does not possess a redox couple of its own which necessitates the use of electroactive mediators for electron transfer between the enzyme and the electrode, thereby causing hindrance in realization of integrated and implantable biosensor. In the present work, an effort has been made to fabricate a matrix based on ZnO-CuO composite prepared by pulsed laser deposition (PLD) technique in order to incorporate redox properties in ZnO matrix and to utilize the same for reagentless biosensing applications. The prepared bioelectrode Urs/(ZnO-CuO)/ITO/glass exhibits high sensitivity (70µAmM⁻¹cm⁻²) for detection of urea (5-200 mg/dl) with high stability (shelf life ˃ 10 weeks) and good selectivity (interference ˂ 4%). The enhanced sensing response obtained for composite matrix is attributed to the efficient electron exchange between ZnO-CuO matrix and immobilized enzymes, and subsequently fast transfer of generated electrons to the electrode via matrix. The response is encouraging for fabricating reagentless urea biosensor based on ZnO-CuO matrix.

Keywords: biosensor, reagentless, urea, ZnO-CuO composite

Procedia PDF Downloads 269
311 Hybrid Manufacturing System to Produce 3D Structures for Osteochondral Tissue Regeneration

Authors: Pedro G. Morouço

Abstract:

One utmost challenge in Tissue Engineering is the production of 3D constructs capable of mimicking the functional hierarchy of native tissues. This is well stated for osteochondral tissue due to the complex mechanical functional unit based on the junction of articular cartilage and bone. Thus, the aim of the present study was to develop a new additive manufacturing system coupling micro-extrusion with hydrogels printing. An integrated system was developed with 2 main features: (i) the printing of up to three distinct hydrogels; (ii) in coordination with the printing of a thermoplastic structural support. The hydrogel printing module was projected with a ‘revolver-like’ system, where the hydrogel selection was made by a rotating mechanism. The hydrogel deposition was then controlled by pressured air input. The use of specific components approved for medical use was incorporated in the material dispensing system (Nordson EDF Optimum® fluid dispensing system). The thermoplastic extrusion modulus enabled the control of required extrusion temperature through electric resistances in the polymer reservoir and the extrusion system. After testing and upgrades, a hydrogel modulus with 3 syringes (3cm3 capacity each), with a pressure range of 0-2.5bar, a rotational speed of 0-5rpm, and working with needles from 200-800µm was obtained. This modulus was successfully coupled to the extrusion system that presented a temperature up to 300˚C, a pressure range of 0-12bar, and working with nozzles from 200-500µm. The applied motor could provide a velocity range 0-2000mm/min. Although, there are distinct printing requirements for hydrogels and polymers, the novel system could develop hybrid scaffolds, combining the 2 moduli. The morphological analysis showed high reliability (n=5) between the theoretical and obtained filament and pore size (350µm and 300µm vs. 342±4µm and 302±3µm, p>0.05, respectively) of the polymer; and multi-material 3D constructs were successfully obtained. Human tissues present very distinct and complex structures regarding their mechanical properties, organization, composition and dimensions. For osteochondral regenerative medicine, a multiphasic scaffold is required as subchondral bone and overlying cartilage must regenerate at the same time. Thus, a scaffold with 3 layers (bone, intermediate and cartilage parts) can be a promising approach. The developed system may give a suitable solution to construct those hybrid scaffolds with enhanced properties. The present novel system is a step-forward regarding osteochondral tissue engineering due to its ability to generate layered mechanically stable implants through the double-printing of hydrogels with thermoplastics.

Keywords: 3D bioprinting, bone regeneration, cartilage regeneration, regenerative medicine, tissue engineering

Procedia PDF Downloads 137
310 Vagal Nerve Stimulator as a Treatment Approach in CHARGE Syndrome: A Case Report

Authors: Roya Vakili, Lekaa Elhajjmoussa, Barzin Omidi-Shal, Kim Blake

Abstract:

Objective: The purpose of this case report is to highlight the successful treatment of a patient with Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness, (CHARGE syndrome) using a vagal nerve stimulator (VNS). Background: This is the first documented case report, to the authors' best knowledge, for a patient with CHARGE syndrome, epilepsy, autism, and postural orthostatic tachycardia syndrome (POTS) that was successfully treated with an implanted VNS therapeutic device. Methodology: The study is a case report. Results: This is the case of a 24-year-old female patient with CHARGE syndrome (non-random association of anomalies Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness) and several other comorbidities including refractory epilepsy, Patent Ductus Arteriosus (PDA) and POTS who had significant improvement of her symptoms after VNS implantation. She was a VNS candidate given her longstanding history of drug-resistant epilepsy and current disposition secondary to CHARGE syndrome. Prior to VNS implantation, she experienced three generalized seizures a year and daily POTS-related symptoms. She was having frequent lightheadedness and syncope spells due to a rapid heart rate and low blood pressure. The VNS device was set to detect a rapid heart rate and send appropriate stimulation anytime the heart rate exceeded 20% of the patient’s normal baseline. The VNS device demonstrated frequent elevated heart rates and concurrent VNS release every 8 minutes in addition to the programmed events. Following VNS installation, the patient became more active, alert, and communicative and was able to verbally communicate with words she was unable to say prior. Her GI symptoms also improved, as she was able to tolerate food better orally in addition to her G and J tube, likely another result of the vagal nerve stimulation. Additionally, the patient’s seizures and POTS-related cardiac events appeared to be well controlled. She had prolonged electroencephalogram (EEG) testing, showing no significant change in epileptiform activity. Improvements in the patient’s disposition are believed to be secondary to parasympathetic stimulation, adequate heart rate control, and GI stimulation, in addition to behavioral changes and other benefits via her implanted VNS. Conclusion: VNS showed promising results in improving the patient's quality of life and managing her diverse symptoms, including dysautonomia, POTs, gastrointestinal mobility, cognitive functioning as well seizure control.

Keywords: autism, POTs, CHARGE, VNS

Procedia PDF Downloads 45
309 Retrofitting Insulation to Historic Masonry Buildings: Improving Thermal Performance and Maintaining Moisture Movement to Minimize Condensation Risk

Authors: Moses Jenkins

Abstract:

Much of the focus when improving energy efficiency in buildings fall on the raising of standards within new build dwellings. However, as a significant proportion of the building stock across Europe is of historic or traditional construction, there is also a pressing need to improve the thermal performance of structures of this sort. On average, around twenty percent of buildings across Europe are built of historic masonry construction. In order to meet carbon reduction targets, these buildings will require to be retrofitted with insulation to improve their thermal performance. At the same time, there is also a need to balance this with maintaining the ability of historic masonry construction to allow moisture movement through building fabric to take place. This moisture transfer, often referred to as 'breathable construction', is critical to the success, or otherwise, of retrofit projects. The significance of this paper is to demonstrate that substantial thermal improvements can be made to historic buildings whilst avoiding damage to building fabric through surface or interstitial condensation. The paper will analyze the results of a wide range of retrofit measures installed to twenty buildings as part of Historic Environment Scotland's technical research program. This program has been active for fourteen years and has seen interventions across a wide range of building types, using over thirty different methods and materials to improve the thermal performance of historic buildings. The first part of the paper will present the range of interventions which have been made. This includes insulating mass masonry walls both internally and externally, warm and cold roof insulation and improvements to floors. The second part of the paper will present the results of monitoring work which has taken place to these buildings after being retrofitted. This will be in terms of both thermal improvement, expressed as a U-value as defined in BS EN ISO 7345:1987, and also, crucially, will present the results of moisture monitoring both on the surface of masonry walls the following retrofit and also within the masonry itself. The aim of this moisture monitoring is to establish if there are any problems with interstitial condensation. This monitoring utilizes Interstitial Hygrothermal Gradient Monitoring (IHGM) and similar methods to establish relative humidity on the surface of and within the masonry. The results of the testing are clear and significant for retrofit projects across Europe. Where a building is of historic construction the use of materials for wall, roof and floor insulation which are permeable to moisture vapor provides both significant thermal improvements (achieving a u-value as low as 0.2 Wm²K) whilst avoiding problems of both surface and intestinal condensation. As the evidence which will be presented in the paper comes from monitoring work in buildings rather than theoretical modeling, there are many important lessons which can be learned and which can inform retrofit projects to historic buildings throughout Europe.

Keywords: insulation, condensation, masonry, historic

Procedia PDF Downloads 136
308 The Impact of Supporting Productive Struggle in Learning Mathematics: A Quasi-Experimental Study in High School Algebra Classes

Authors: Sumeyra Karatas, Veysel Karatas, Reyhan Safak, Gamze Bulut-Ozturk, Ozgul Kartal

Abstract:

Productive struggle entails a student's cognitive exertion to comprehend mathematical concepts and uncover solutions not immediately apparent. The significance of productive struggle in learning mathematics is accentuated by influential educational theorists, emphasizing its necessity for learning mathematics with understanding. Consequently, supporting productive struggle in learning mathematics is recognized as a high-leverage and effective mathematics teaching practice. In this study, the investigation into the role of productive struggle in learning mathematics led to the development of a comprehensive rubric for productive struggle pedagogy through an exhaustive literature review. The rubric consists of eight primary criteria and 37 sub-criteria, providing a detailed description of teacher actions and pedagogical choices that foster students' productive struggles. These criteria encompass various pedagogical aspects, including task design, tool implementation, allowing time for struggle, posing questions, scaffolding, handling mistakes, acknowledging efforts, and facilitating discussion/feedback. Utilizing this rubric, a team of researchers and teachers designed eight 90-minute lesson plans, employing a productive struggle pedagogy, for a two-week unit on solving systems of linear equations. Simultaneously, another set of eight lesson plans on the same topic, featuring identical content and problems but employing a traditional lecture-and-practice model, was designed by the same team. The objective was to assess the impact of supporting productive struggle on students' mathematics learning, defined by the strands of mathematical proficiency. This quasi-experimental study compares the control group, which received traditional lecture- and practice instruction, with the treatment group, which experienced a productive struggle in pedagogy. Sixty-six 10th and 11th-grade students from two algebra classes, taught by the same teacher at a high school, underwent either the productive struggle pedagogy or lecture-and-practice approach over two-week eight 90-minute class sessions. To measure students' learning, an assessment was created and validated by a team of researchers and teachers. It comprised seven open-response problems assessing the strands of mathematical proficiency: procedural and conceptual understanding, strategic competence, and adaptive reasoning on the topic. The test was administered at the beginning and end of the two weeks as pre-and post-test. Students' solutions underwent scoring using an established rubric, subjected to expert validation and an inter-rater reliability process involving multiple criteria for each problem based on their steps and procedures. An analysis of covariance (ANCOVA) was conducted to examine the differences between the control group, which received traditional pedagogy, and the treatment group, exposed to the productive struggle pedagogy, on the post-test scores while controlling for the pre-test. The results indicated a significant effect of treatment on post-test scores for procedural understanding (F(2, 63) = 10.47, p < .001), strategic competence (F(2, 63) = 9.92, p < .001), adaptive reasoning (F(2, 63) = 10.69, p < .001), and conceptual understanding (F(2, 63) = 10.06, p < .001), controlling for pre-test scores. This demonstrates the positive impact of supporting productive struggle in learning mathematics. In conclusion, the results revealed the significance of the role of productive struggle in learning mathematics. The study further explored the practical application of productive struggle through the development of a comprehensive rubric describing the pedagogy of supporting productive struggle.

Keywords: effective mathematics teaching practice, high school algebra, learning mathematics, productive struggle

Procedia PDF Downloads 25
307 Differentials of Motor Fitness Components among the School Children of Rural and Urban Areas of the Jammu Region

Authors: Sukhdev Singh, Baljinder Singh Bal, Amandeep Singh, Kanchan Thappa

Abstract:

A nation's future almost certainly rests on the future of its children, and a nation's wellbeing can be greatly improved by providing for the right upbringing of its children. Participating in physical education and sports programmes is crucial for reaching one's full potential. As we are all aware, sports have recently become incredibly popular on a global scale. Sports are continually becoming more and more popular, and this positive trend is probably going to last for some time to come. Motor abilities will provide more accurate information on the developmental process of children. Motor fitness is a component of physical fitness that includes strength, speed, flexibility, and agility, and is related to enhanced performance and the development of motor skills. In recent years, there has been increased interest in the differences in child growth between urban and rural environments. Differences in student growth, body dimensions, body composition, and fitness levels due to urban and rural environmental disparities have come into focus in recent years. The main aim of this study is to know the differentials of motor fitness components among the school children of rural and urban areas of the Jammu region. Material and Methods: In total, sixty male subjects (mean ± SD; age, 16.475 ± 1.0124 yrs.; height, 172.8 ± 2.0153 cm; Weight, 59.75 ± 3.628 kg) from the Jammu region took part in the study. A minimum sample size of 40 subjects was obtained and was derived from Rural (N1=20) and Urban (N2=20) school-going children. Statistical Applications: The Statistical Package for the Social Sciences (SPSS) version 14.0 was used for all analyses. The differences in the mean of each group for the selected variable were tested for the significance of difference by an independent samples t-test. For testing the hypotheses, the level of significance was set at 0.05. Results: Results revealed that there were significant differences of leg explosive strength (p=0.0040*), dynamic balance (p=0.0056*), and Agility (p=0.0176*) among the School Children of the rural and urban areas of the Jammu region. However, Results further revealed that there were not significant differences of cardio respiratory endurance (p=0.8612), speed (p=0.2231), Low Back/Hamstring Flexibility (p=0.6478), and Two Hand Coordination. (p= 0.0953) among the School Children of the rural and urban areas of the Jammu region. Conclusion: The results of study showed that there is significance difference between Rural and Urban School children of the Jammu region with regards to a variable," leg explosive strength, dynamic balance, Agility” and the there is no significance difference between Rural and Urban School children of the Jammu region with regards variable “cardio-respiratory endurance, speed, Low Back/Hamstring Flexibility, Two Hand Coordination”.

Keywords: motor fitness, rural areas, school children, urban areas

Procedia PDF Downloads 55
306 Direct Assessment of Cellular Immune Responses to Ovalbumin with a Secreted Luciferase Transgenic Reporter Mouse Strain IFNγ-Lucia

Authors: Martyna Chotomska, Aleksandra Studzinska, Marta Lisowska, Justyna Szubert, Aleksandra Tabis, Jacek Bania, Arkadiusz Miazek

Abstract:

Objectives: Assessing antigen-specific T cell responses is of utmost importance for the pre-clinical testing of prototype vaccines against intracellular pathogens and tumor antigens. Mainly two types of in vitro assays are used for this purpose 1) enzyme-linked immunospot (ELISpot) and 2) intracellular cytokine staining (ICS). Both are time-consuming, relatively expensive, and require manual dexterity. Here, we assess if a straightforward detection of luciferase activity in blood samples of transgenic reporter mice expressing a secreted Lucia luciferase under the transcriptional control of IFN-γ promoter parallels the sensitivity of IFNγ ELISpot assay. Methods: IFN-γ-LUCIA mouse strain carrying multiple copies of Lucia luciferase transgene under the transcriptional control of IFNγ minimal promoter were generated by pronuclear injection of linear DNA. The specificity of transgene expression and mobilization was assessed in vitro using transgenic splenocytes exposed to various mitogens. The IFN-γ-LUCIA mice were immunized with 50mg of ovalbumin (OVA) emulsified in incomplete Freund’s adjuvant three times every two weeks by subcutaneous injections. Blood samples were collected before and five days after each immunization. Luciferase activity was assessed in blood serum. Peripheral blood mononuclear cells were separated and assessed for frequencies of OVA-specific IFNγ-secreting T cells. Results: We show that in vitro cultured splenocytes of IFN-γ-LUCIA mice respond by 2 and 3 fold increase in secreted luciferase activity to T cell mitogens concanavalin A and phorbol myristate acetate, respectively but fail to respond to B cell-stimulating E.coli lipopolysaccharide. Immunization of IFN-γ-LUCIA mice with OVA leads to over 4 fold increase in luciferase activity in blood serum five days post-immunization with a barely detectable increase in OVA-specific, IFNγ-secreting T cells by ELISpot. Second and third immunizations, further increase the luciferase activity and coincidently also increase the frequencies of OVA-specific T cells by ELISpot. Conclusions: We conclude that minimally invasive monitoring of luciferase secretions in blood serum of IFN-γ-LUCIA mice constitutes a sensitive method for evaluating primary and memory Th1 responses to protein antigens. As such, this method may complement existing methods for rapid immunogenicity assessment of prototype vaccines.

Keywords: ELISpot, immunogenicity, interferon-gamma, reporter mice, vaccines

Procedia PDF Downloads 143
305 Damage Tolerance of Composites Containing Hybrid, Carbon-Innegra, Fibre Reinforcements

Authors: Armin Solemanifar, Arthur Wilkinson, Kinjalkumar Patel

Abstract:

Carbon fibre (CF) - polymer laminate composites have very low densities (approximately 40% lower than aluminium), high strength and high stiffness but in terms of toughness properties they often require modifications. For example, adding rubbers or thermoplastics toughening agents are common ways of improving the interlaminar fracture toughness of initially brittle thermoset composite matrices. The main aim of this project was to toughen CF-epoxy resin laminate composites using hybrid CF-fabrics incorporating Innegra™ a commercial highly-oriented polypropylene (PP) fibre, in which more than 90% of its crystal orientation is parallel to the fibre axis. In this study, the damage tolerance of hybrid (carbon-Innegra, CI) composites was investigated. Laminate composites were produced by resin-infusion using: pure CF fabric; fabrics with different ratios of commingled CI, and two different types of pure Innegra fabrics (Innegra 1 and Innegra 2). Dynamic mechanical thermal analysis (DMTA) was used to measure the glass transition temperature (Tg) of the composite matrix and values of flexural storage modulus versus temperature. Mechanical testing included drop-weight impact, compression-after-impact (CAI), and interlaminar (short-beam) shear strength (ILSS). Ultrasonic C-Scan imaging was used to determine the impact damage area and scanning electron microscopy (SEM) to observe the fracture mechanisms that occur during failure of the composites. For all composites, 8 layers of fabrics were used with a quasi-isotropic sequence of [-45°, 0°, +45°, 90°]s. DMTA showed the Tg of all composites to be approximately same (123 ±3°C) and that flexural storage modulus (before the onset of Tg) was the highest for the pure CF composite while the lowest were for the Innegra 1 and 2 composites. Short-beam shear strength of the commingled composites was higher than other composites, while for Innegra 1 and 2 composites only inelastic deformation failure was observed during the short-beam test. During impact, the Innegra 1 composite withstood up to 40 J without any perforation while for the CF perforation occurred at 10 J. The rate of reduction in compression strength upon increasing the impact energy was lowest for the Innegra 1 and 2 composites, while CF showed the highest rate. On the other hand, the compressive strength of the CF composite was highest of all the composites at all impacted energy levels. The predominant failure modes for Innegra composites observed in cross-sections of fractured specimens were fibre pull-out, micro-buckling, and fibre plastic deformation; while fibre breakage and matrix delamination were a major failure observed in the commingled composites due to the more brittle behaviour of CF. Thus, Innegra fibres toughened the CF composites but only at the expense of reducing compressive strength.

Keywords: hybrid composite, thermoplastic fibre, compression strength, damage tolerance

Procedia PDF Downloads 273
304 A Risk-Based Comprehensive Framework for the Assessment of the Security of Multi-Modal Transport Systems

Authors: Mireille Elhajj, Washington Ochieng, Deeph Chana

Abstract:

The challenges of the rapid growth in the demand for transport has traditionally been seen within the context of the problems of congestion, air quality, climate change, safety, and affordability. However, there are increasing threats including those related to crime such as cyber-attacks that threaten the security of the transport of people and goods. To the best of the authors’ knowledge, this paper presents for the first time, a comprehensive framework for the assessment of the current and future security issues of multi-modal transport systems. The approach or method proposed is based on a structured framework starting with a detailed specification of the transport asset map (transport system architecture), followed by the identification of vulnerabilities. The asset map and vulnerabilities are used to identify the various approaches for exploitation of the vulnerabilities, leading to the creation of a set of threat scenarios. The threat scenarios are then transformed into risks and their categories, and include insights for their mitigation. The consideration of the mitigation space is holistic and includes the formulation of appropriate policies and tactics and/or technical interventions. The quality of the framework is ensured through a structured and logical process that identifies the stakeholders, reviews the relevant documents including policies and identifies gaps, incorporates targeted surveys to augment the reviews, and uses subject matter experts for validation. The approach to categorising security risks is an extension of the current methods that are typically employed. Specifically, the partitioning of risks into either physical or cyber categories is too limited for developing mitigation policies and tactics/interventions for transport systems where an interplay between physical and cyber processes is very often the norm. This interplay is rapidly taking on increasing significance for security as the emergence of cyber-physical technologies, are shaping the future of all transport modes. Examples include: Connected Autonomous Vehicles (CAVs) in road transport; the European Rail Traffic Management System (ERTMS) in rail transport; Automatic Identification System (AIS) in maritime transport; advanced Communications, Navigation and Surveillance (CNS) technologies in air transport; and the Internet of Things (IoT). The framework adopts a risk categorisation scheme that considers risks as falling within the following threat→impact relationships: Physical→Physical, Cyber→Cyber, Cyber→Physical, and Physical→Cyber). Thus the framework enables a more complete risk picture to be developed for today’s transport systems and, more importantly, is readily extendable to account for emerging trends in the sector that will define future transport systems. The framework facilitates the audit and retro-fitting of mitigations in current transport operations and the analysis of security management options for the next generation of Transport enabling strategic aspirations such as systems with security-by-design and co-design of safety and security to be achieved. An initial application of the framework to transport systems has shown that intra-modal consideration of security measures is sub-optimal and that a holistic and multi-modal approach that also addresses the intersections/transition points of such networks is required as their vulnerability is high. This is in-line with traveler-centric transport service provision, widely accepted as the future of mobility services. In summary, a risk-based framework is proposed for use by the stakeholders to comprehensively and holistically assess the security of transport systems. It requires a detailed understanding of the transport architecture to enable a detailed vulnerabilities analysis to be undertaken, creates threat scenarios and transforms them into risks which form the basis for the formulation of interventions.

Keywords: mitigations, risk, transport, security, vulnerabilities

Procedia PDF Downloads 133
303 Design, Simulation and Construction of 2.4GHz Microstrip Patch Antenna for Improved Wi-Fi Reception

Authors: Gabriel Ugalahi, Dominic S. Nyitamen

Abstract:

This project seeks to improve Wi-Fi reception by utilizing the properties of directional microstrip patch antennae. Where there is a dense population of Wi-Fi signal, several signal sources transmitting on the same frequency band and indeed channel constitutes interference to each other. The time it takes for request to be received, resolved and response given between a user and the resource provider is increased considerably. By deploying a directional patch antenna with a narrow bandwidth, the range of frequency received is reduced and should help in limiting the reception of signal from unwanted sources. A rectangular microstrip patch antenna (RMPA) is designed to operate at the Industrial Scientific and Medical (ISM) band (2.4GHz) commonly used in Wi-Fi network deployment. The dimensions of the antenna are calculated and these dimensions are used to generate a model on Advanced Design System (ADS), a microwave simulator. Simulation results are then analyzed and necessary optimization is carried out to further enhance the radiation quality so as to achieve desired results. Impedance matching at 50Ω is also obtained by using the inset feed method. Final antenna dimensions obtained after simulation and optimization are then used to implement practical construction on an FR-4 double sided copper clad printed circuit board (PCB) through a chemical etching process using ferric chloride (Fe2Cl). Simulation results show an RMPA operating at a centre frequency of 2.4GHz with a bandwidth of 40MHz. A voltage standing wave ratio (VSWR) of 1.0725 is recorded on a return loss of -29.112dB at input port showing an appreciable match in impedance to a source of 50Ω. In addition, a gain of 3.23dBi and directivity of 6.4dBi is observed during far-field analysis. On deployment, signal reception from wireless devices is improved due to antenna gain. A test source with a received signal strength indication (RSSI) of -80dBm without antenna installed on the receiver was improved to an RSSI of -61dBm. In addition, the directional radiation property of the RMPA prioritizes signals by pointing in the direction of a preferred signal source thus, reducing interference from undesired signal sources. This was observed during testing as rotation of the antenna on its axis resulted to the gain of signal in-front of the patch and fading of signals away from the front.

Keywords: advanced design system (ADS), inset feed, received signal strength indicator (RSSI), rectangular microstrip patch antenna (RMPA), voltage standing wave ratio (VSWR), wireless fidelity (Wi-Fi)

Procedia PDF Downloads 191
302 Comparison of Titanium and Aluminum Functions as Spoilers for Dose Uniformity Achievement in Abutting Oblique Electron Fields: A Monte Carlo Simulation Study

Authors: Faranak Felfeliyan, Parvaneh Shokrani, Maryam Atarod

Abstract:

Introduction Using electron beam is widespread in radiotherapy. The main criteria in radiation therapy is to irradiate the tumor volume with maximum prescribed dose and minimum dose to vital organs around it. Using abutting fields is common in radiotherapy. The main problem in using abutting fields is dose inhomogeneity in the junction region. Electron beam divergence and lateral scattering may lead to hot and cold spots in the junction region. One solution for this problem is using of a spoiler to broaden the penumbra and uniform dose in the junction region. The goal of this research was to compare titanium and aluminum effects as a spoiler for dose uniformity achievement in the junction region of oblique electron fields with Monte Carlo simulation. Dose uniformity in the junction region depends on density, scattering power, thickness of the spoiler and the angle between two fields. Materials and Methods In this study, Monte Carlo model of Siemens Primus linear accelerator was simulated for a 5 MeV nominal energy electron beam using manufacture provided specifications. BEAMnrc and EGSnrc user code were used to simulate the treatment head in electron mode (simulation of beam model). The resulting phase space file was used as a source for dose calculations for 10×10 cm2 field size at SSD=100 cm in a 30×30×45 cm3 water phantom using DOSXYZnrc user code (dose calculations). An automatic MP3-M water phantom tank, MEPHYSTO mc2 software platform and a Semi-Flex Chamber-31010 with sensitive vol­ume of 0.125 cm3 (PTW, Freiburg, Germany) were used for dose distribution measurements. Moreover, the electron field size was 10×10 cm2 and SSD=100 cm. Validation of devel­oped beam model was done by comparing the measured and calculated depth and lateral dose distributions (verification of electron beam model). Simulation of spoilers (using SLAB compo­nent module) placed at the end of the electron applicator, was done using previously vali­dated phase space file for a 5 MeV nominal energy and 10×10 cm2 field size (simulation of spoiler). An in-house routine was developed in order to calculate the combined isodose curves re­sulting from the two simulated abutting fields (calculation of dose distribution in abutting electron fields). Results Verification of the developed 5.9 MeV elec­tron beam model was done by comparing the calculated and measured dose distributions. The maximum percentage difference between calculated and measured PDD was 1%, except for the build-up region in which the difference was 2%. The difference between calculated and measured profile was 2% at the edges of the field and less than 1% in other regions. The effect of PMMA, aluminum, titanium and chromium in dose uniformity achievement in abutting normal electron fields with equivalent thicknesses to 5mm PMMA was evaluated. Comparing R90 and uniformity index of different materials, aluminum was chosen as the optimum spoiler. Titanium has the maximum surface dose. Thus, aluminum and titanium had been chosen to use for dose uniformity achievement in oblique electron fields. Using the optimum beam spoiler, junction dose decreased from 160% to 110% for 15 degrees, from 180% to 120% for 30 degrees, from 160% to 120% for 45 degrees and from 180% to 100% for 60 degrees oblique abutting fields. Using Titanium spoiler, junction dose decreased from 160% to 120% for 15 degrees, 180% to 120% for 30 degrees, 160% to 120% for 45 degrees and 180% to 110% for 60 degrees. In addition, penumbra width for 15 degrees, without spoiler in the surface was 10 mm and was increased to 15.5 mm with titanium spoiler. For 30 degrees, from 9 mm to 15 mm, for 45 degrees from 4 mm to 6 mm and for 60 degrees, from 5 mm to 8 mm. Conclusion Using spoilers, penumbra width at the surface increased, size and depth of hot spots was decreased and dose homogeneity improved at the junc­tion of abutting electron fields. Dose at the junction region of abutting oblique fields was improved significantly by using spoiler. Maximum dose at the junction region for 15⁰, 30⁰, 45⁰ and 60⁰ was decreased about 40%, 60%, 40% and 70% respectively for Titanium and about 50%, 60%, 40% and 80% for Aluminum. Considering significantly decrease in maximum dose using titanium spoiler, unfortunately, dose distribution in the junction region was not decreased less than 110%.

Keywords: abutting fields, electron beam, radiation therapy, spoilers

Procedia PDF Downloads 144
301 Experimental and Numerical Investigation of Fracture Behavior of Foamed Concrete Based on Three-Point Bending Test of Beams with Initial Notch

Authors: M. Kozłowski, M. Kadela

Abstract:

Foamed concrete is known for its low self-weight and excellent thermal and acoustic properties. For many years, it has been used worldwide for insulation to foundations and roof tiles, as backfill to retaining walls, sound insulation, etc. However, in the last years it has become a promising material also for structural purposes e.g. for stabilization of weak soils. Due to favorable properties of foamed concrete, many interests and studies were involved to analyze its strength, mechanical, thermal and acoustic properties. However, these studies do not cover the investigation of fracture energy which is the core factor governing the damage and fracture mechanisms. Only limited number of publications can be found in literature. The paper presents the results of experimental investigation and numerical campaign of foamed concrete based on three-point bending test of beams with initial notch. First part of the paper presents the results of a series of static loading tests performed to investigate the fracture properties of foamed concrete of varying density. Beam specimens with dimensions of 100×100×840 mm with a central notch were tested in three-point bending. Subsequently, remaining halves of the specimens with dimensions of 100×100×420 mm were tested again as un-notched beams in the same set-up with reduced distance between supports. The tests were performed in a hydraulic displacement controlled testing machine with a load capacity of 5 kN. Apart from measuring the loading and mid-span displacement, a crack mouth opening displacement (CMOD) was monitored. Based on the load – displacement curves of notched beams the values of fracture energy and tensile stress at failure were calculated. The flexural tensile strength was obtained on un-notched beams with dimensions of 100×100×420 mm. Moreover, cube specimens 150×150×150 mm were tested in compression to determine the compressive strength. Second part of the paper deals with numerical investigation of the fracture behavior of beams with initial notch presented in the first part of the paper. Extended Finite Element Method (XFEM) was used to simulate and analyze the damage and fracture process. The influence of meshing and variation of mechanical properties on results was investigated. Numerical models simulate correctly the behavior of beams observed during three-point bending. The numerical results show that XFEM can be used to simulate different fracture toughness of foamed concrete and fracture types. Using the XFEM and computer simulation technology allow for reliable approximation of load–bearing capacity and damage mechanisms of beams made of foamed concrete, which provides some foundations for realistic structural applications.

Keywords: foamed concrete, fracture energy, three-point bending, XFEM

Procedia PDF Downloads 273
300 Polypyrrole as Bifunctional Materials for Advanced Li-S Batteries

Authors: Fang Li, Jiazhao Wang, Jianmin Ma

Abstract:

The practical application of Li-S batteries is hampered due to poor cycling stability caused by electrolyte-dissolved lithium polysulfides. Dual functionalities such as strong chemical adsorption stability and high conductivity are highly desired for an ideal host material for a sulfur-based cathode. Polypyrrole (PPy), as a conductive polymer, was widely studied as matrixes for sulfur cathode due to its high conductivity and strong chemical interaction with soluble polysulfides. Thus, a novel cathode structure consisting of a free-standing sulfur-polypyrrole cathode and a polypyrrole coated separator was designed for flexible Li-S batteries. The PPy materials show strong interaction with dissoluble polysulfides, which could suppress the shuttle effect and improve the cycling stability. In addition, the synthesized PPy film with a rough surface acts as a current collector, which improves the adhesion of sulfur materials and restrain the volume expansion, enhancing the structural stability during the cycling process. For further enhancing the cycling stability, a PPy coated separator was also applied, which could make polysulfides into the cathode side to alleviate the shuttle effect. Moreover, the PPy layer coated on commercial separator is much lighter than other reported interlayers. A soft-packaged flexible Li-S battery has been designed and fabricated for testing the practical application of the designed cathode and separator, which could power a device consisting of 24 light-emitting diode (LED) lights. Moreover, the soft-packaged flexible battery can still show relatively stable cycling performance after repeated bending, indicating the potential application in flexible batteries. A novel vapor phase deposition method was also applied to prepare uniform polypyrrole layer coated sulfur/graphene aerogel composite. The polypyrrole layer simultaneously acts as host and adsorbent for efficient suppression of polysulfides dissolution through strong chemical interaction. The density functional theory (DFT) calculations reveal that the polypyrrole could trap lithium polysulfides through stronger bonding energy. In addition, the deflation of sulfur/graphene hydrogel during the vapor phase deposition process enhances the contact of sulfur with matrixes, resulting in high sulfur utilization and good rate capability. As a result, the synthesized polypyrrole coated sulfur/graphene aerogel composite delivers a specific discharge capacity of 1167 mAh g⁻¹ and 409.1 mAh g⁻¹ at 0.2 C and 5 C respectively. The capacity can maintain at 698 mAh g⁻¹ at 0.5 C after 500 cycles, showing an ultra-slow decay rate of 0.03% per cycle.

Keywords: polypyrrole, strong chemical interaction, long-term stability, Li-S batteries

Procedia PDF Downloads 104
299 Schema Therapy as Treatment for Adults with Autism Spectrum Disorder and Comorbid Personality Disorder: A Multiple Baseline Case Series Study Testing Cognitive-Behavioral and Experiential Interventions

Authors: Richard Vuijk, Arnoud Arntz

Abstract:

Rationale: To our knowledge treatment of personality disorder comorbidity in adults with autism spectrum disorder (ASD) is understudied and is still in its infancy: We do not know if treatment of personality disorders may be applicable to adults with ASD. In particular, it is unknown whether patients with ASD benefit from experiential techniques that are part of schema therapy developed for the treatment of personality disorders. Objective: The aim of the study is to investigate the efficacy of a schema mode focused treatment with adult clients with ASD and comorbid personality pathology (i.e. at least one personality disorder). Specifically, we investigate if they can benefit from both cognitive-behavioral, and experiential interventions. Study design: A multiple baseline case series study. Study population: Adult individuals (age > 21 years) with ASD and at least one personality disorder. Participants will be recruited from Sarr expertise center for autism in Rotterdam. The study requires 12 participants. Intervention: The treatment protocol consists of 35 weekly offered sessions, followed by 10 monthly booster sessions. A multiple baseline design will be used with baseline varying from 5 to 10 weeks, with weekly supportive sessions. After baseline, a 5-week exploration phase follows with weekly sessions during which current and past functioning, psychological symptoms, schema modes are explored, and information about the treatment will be given. Then 15 weekly sessions with cognitive-behavioral interventions and 15 weekly sessions with experiential interventions will be given. Finally, there will be a 10-month follow-up phase with monthly booster sessions. Participants are randomly assigned to baseline length, and respond weekly during treatment and monthly at follow-up on Belief Strength of negative core beliefs (by VAS), and fill out SMI, SCL-90 and SRS-A 7 times during screening procedure (i.e. before baseline), after baseline, after exploration, after cognitive and behavioral interventions, after experiential interventions, and after 5- and 10- month follow-up. The SCID-II will be administered during screening procedure (i.e. before baseline), at 5- and at 10-month follow-up. Main study parameters: The primary study parameter is negative core beliefs. Secondary study parameters include schema modes, personality disorder manifestations, psychological symptoms, and social interaction and communication. Discussion: To the best of author’s knowledge so far no study has been published on the application of schema mode focused interventions in adult patients with ASD and comorbid PD(s). This study offers the first systematic test of application of schema therapy for adults with ASD. The results of this study will provide initial evidence for the effectiveness of schema therapy in treating adults with both ASD and PD(s). The study intends to provide valuable information for future development and implementation of therapeutic interventions for adults with both ASD and PD(s).

Keywords: adults, autism spectrum disorder, personality disorder, schema therapy

Procedia PDF Downloads 207
298 Learning and Teaching Strategies in Association with EXE Program for Master Course Students of Yerevan Brusov State University of Languages and Social Sciences

Authors: Susanna Asatryan

Abstract:

The author will introduce a single module related to English teaching methodology for master course students getting specialization “A Foreign Language Teacher of High Schools And Professional Educational Institutions” of Yerevan Brusov State University of Languages and Social Sciences. The overall aim of the presentation is to introduce learning and teaching strategies within EXE Computer program for Mastery student-teachers of the University. The author will display the advantages of the use of this program. The learners interact with the teacher in the classroom as well as they are provided an opportunity for virtual domain to carry out their learning procedures in association with assessment and self-assessment. So they get integrated into blended learning. As this strategy is in its piloting stage, the author has elaborated a single module, embracing 3 main sections: -Teaching English vocabulary at high school, -Teaching English grammar at high school, and -Teaching English pronunciation at high school. The author will present the above mentioned topics with corresponding sections and subsections. The strong point is that preparing this module we have planned to display it on the blended learning landscape. So for this account working with EXE program is highly effective. As it allows the users to operate several tools for self-learning and self-testing/assessment. The author elaborated 3 single EXE files for each topic. Each file starts with the section’s subject-specific description: - Objectives and Pre-knowledge, followed by the theoretical part. The author associated and flavored her observations with appropriate samples of charts, drawings, diagrams, recordings, video-clips, photos, pictures, etc. to make learning process more effective and enjoyable. Before or after the article the author has downloaded a video clip, related to the current topic. EXE offers a wide range of tools to work out or prepare different activities and exercises for the learners: 'Interactive/non-interactive' and 'Textual/non-textual'. So with the use of these tools Multi-Select, Multi-Choice, Cloze, Drop-Down, Case Study, Gap-Filling, Matching and different other types of activities have been elaborated and submitted to the appropriate sections. The learners task is to prepare themselves for the coming module or seminar, related to teaching methodology of English vocabulary, grammar, and pronunciation. The point is that the teacher has an opportunity for face to face communication, as well as to connect with the learners through the Moodle, or as a single EXE file offer it to the learners for their self-study and self-assessment. As for the students’ feedback –EXE environment also makes it available.

Keywords: blended learning, EXE program, learning/teaching strategies, self-study/assessment, virtual domain,

Procedia PDF Downloads 449
297 Modeling Geogenic Groundwater Contamination Risk with the Groundwater Assessment Platform (GAP)

Authors: Joel Podgorski, Manouchehr Amini, Annette Johnson, Michael Berg

Abstract:

One-third of the world’s population relies on groundwater for its drinking water. Natural geogenic arsenic and fluoride contaminate ~10% of wells. Prolonged exposure to high levels of arsenic can result in various internal cancers, while high levels of fluoride are responsible for the development of dental and crippling skeletal fluorosis. In poor urban and rural settings, the provision of drinking water free of geogenic contamination can be a major challenge. In order to efficiently apply limited resources in the testing of wells, water resource managers need to know where geogenically contaminated groundwater is likely to occur. The Groundwater Assessment Platform (GAP) fulfills this need by providing state-of-the-art global arsenic and fluoride contamination hazard maps as well as enabling users to create their own groundwater quality models. The global risk models were produced by logistic regression of arsenic and fluoride measurements using predictor variables of various soil, geological and climate parameters. The maps display the probability of encountering concentrations of arsenic or fluoride exceeding the World Health Organization’s (WHO) stipulated concentration limits of 10 µg/L or 1.5 mg/L, respectively. In addition to a reconsideration of the relevant geochemical settings, these second-generation maps represent a great improvement over the previous risk maps due to a significant increase in data quantity and resolution. For example, there is a 10-fold increase in the number of measured data points, and the resolution of predictor variables is generally 60 times greater. These same predictor variable datasets are available on the GAP platform for visualization as well as for use with a modeling tool. The latter requires that users upload their own concentration measurements and select the predictor variables that they wish to incorporate in their models. In addition, users can upload additional predictor variable datasets either as features or coverages. Such models can represent an improvement over the global models already supplied, since (a) users may be able to use their own, more detailed datasets of measured concentrations and (b) the various processes leading to arsenic and fluoride groundwater contamination can be isolated more effectively on a smaller scale, thereby resulting in a more accurate model. All maps, including user-created risk models, can be downloaded as PDFs. There is also the option to share data in a secure environment as well as the possibility to collaborate in a secure environment through the creation of communities. In summary, GAP provides users with the means to reliably and efficiently produce models specific to their region of interest by making available the latest datasets of predictor variables along with the necessary modeling infrastructure.

Keywords: arsenic, fluoride, groundwater contamination, logistic regression

Procedia PDF Downloads 316
296 An Artificially Intelligent Teaching-Agent to Enhance Learning Interactions in Virtual Settings

Authors: Abdulwakeel B. Raji

Abstract:

This paper introduces a concept of an intelligent virtual learning environment that involves communication between learners and an artificially intelligent teaching agent in an attempt to replicate classroom learning interactions. The benefits of this technology over current e-learning practices is that it creates a virtual classroom where real time adaptive learning interactions are made possible. This is a move away from the static learning practices currently being adopted by e-learning systems. Over the years, artificial intelligence has been applied to various fields, including and not limited to medicine, military applications, psychology, marketing etc. The purpose of e-learning applications is to ensure users are able to learn outside of the classroom, but a major limitation has been the inability to fully replicate classroom interactions between teacher and students. This study used comparative surveys to gain information and understanding of the current learning practices in Nigerian universities and how they compare to these practices compare to the use of a developed e-learning system. The study was conducted by attending several lectures and noting the interactions between lecturers and tutors and as an aftermath, a software has been developed that deploys the use of an artificial intelligent teaching-agent alongside an e-learning system to enhance user learning experience and attempt to create the similar learning interactions to those found in classroom and lecture hall settings. Dialogflow has been used to implement a teaching-agent, which has been developed using JSON, which serves as a virtual teacher. Course content has been created using HTML, CSS, PHP and JAVASCRIPT as a web-based application. This technology can run on handheld devices and Google based home technologies to give learners an access to the teaching agent at any time. This technology also implements the use of definite clause grammars and natural language processing to match user inputs and requests with defined rules to replicate learning interactions. This technology developed covers familiar classroom scenarios such as answering users’ questions, asking ‘do you understand’ at regular intervals and answering subsequent requests, taking advanced user queries to give feedbacks at other periods. This software technology uses deep learning techniques to learn user interactions and patterns to subsequently enhance user learning experience. A system testing has been undergone by undergraduate students in the UK and Nigeria on the course ‘Introduction to Database Development’. Test results and feedback from users shows that this study and developed software is a significant improvement on existing e-learning systems. Further experiments are to be run using the software with different students and more course contents.

Keywords: virtual learning, natural language processing, definite clause grammars, deep learning, artificial intelligence

Procedia PDF Downloads 112
295 Growing Pains and Organizational Development in Growing Enterprises: Conceptual Model and Its Empirical Examination

Authors: Maciej Czarnecki

Abstract:

Even though growth is one of the most important strategic objectives for many enterprises, we know relatively little about this phenomenon. This research contributes to broaden our knowledge of managerial consequences of growth. Scales for measuring organizational development and growing pains were developed. Conceptual model of connections among growth, organizational development, growing pains, selected development factors and financial performance were examined. The research process contained literature review, 20 interviews with managers, examination of 12 raters’ opinions, pilot research and 7 point Likert scale questionnaire research on 138 Polish enterprises employing 50-249 people which increased their employment at least by 50% within last three years. Factor analysis, Pearson product-moment correlation coefficient, student’s t-test and chi-squared test were used to develop scales. High Cronbach’s alpha coefficients were obtained. The verification of correlations among the constructs was carried out with factor correlations, multiple regressions and path analysis. When the enterprise grows, it is necessary to implement changes in its structure, management practices etc. (organizational development) to meet challenges of growing complexity. In this paper, organizational development was defined as internal changes aiming to improve the quality of existing or to introduce new elements in the areas of processes, organizational structure and culture, operational and management systems. Thus; H1: Growth has positive effects on organizational development. The main thesis of the research is that if organizational development does not catch up with growing complexity of growing enterprise, growing pains will arise (lower work comfort, conflicts, lack of control etc.). They will exert a negative influence on the financial performance and may result in serious organizational crisis or even bankruptcy. Thus; H2: Growth has positive effects on growing pains, H3: Organizational development has negative effects on growing pains, H4: Growing pains have negative effects on financial performance, H5: Organizational development has positive effects on financial performance. Scholars considered long lists of factors having potential influence on organizational development. The development of comprehensive model taking into account all possible variables may be beyond the capacity of any researcher or even statistical software used. After literature review, it was decided to increase the level of abstraction and to include following constructs in the conceptual model: organizational learning (OL), positive organization (PO) and high performance factors (HPF). H1a/b/c: OL/PO/HPF has positive effect on organizational development, H2a/b/c: OL/PO/HPF has negative effect on growing pains. The results of hypothesis testing: H1: partly supported, H1a/b/c: supported/not supported/supported, H2: not supported, H2a/b/c: not supported/partly supported/not supported, H3: supported, H4: partly supported, H5: supported. The research seems to be of a great value for both scholars and practitioners. It proved that OL and HPO matter for organizational development. Scales for measuring organizational development and growing pains were developed. Its main finding, though, is that organizational development is a good way of improving financial performance.

Keywords: organizational development, growth, growing pains, financial performance

Procedia PDF Downloads 186
294 Getting It Right Before Implementation: Using Simulation to Optimize Recommendations and Interventions After Adverse Event Review

Authors: Melissa Langevin, Natalie Ward, Colleen Fitzgibbons, Christa Ramsey, Melanie Hogue, Anna Theresa Lobos

Abstract:

Description: Root Cause Analysis (RCA) is used by health care teams to examine adverse events (AEs) to identify causes which then leads to recommendations for prevention Despite widespread use, RCA has limitations. Best practices have not been established for implementing recommendations or tracking the impact of interventions after AEs. During phase 1 of this study, we used simulation to analyze two fictionalized AEs that occurred in hospitalized paediatric patients to identify and understand how the errors occurred and generated recommendations to mitigate and prevent recurrences. Scenario A involved an error of commission (inpatient drug error), and Scenario B involved detecting an error that already occurred (critical care drug infusion error). Recommendations generated were: improved drug labeling, specialized drug kids, alert signs and clinical checklists. Aim: Use simulation to optimize interventions recommended post critical event analysis prior to implementation in the clinical environment. Methods: Suggested interventions from Phase 1 were designed and tested through scenario simulation in the clinical environment (medicine ward or pediatric intensive care unit). Each scenario was simulated 8 times. Recommendations were tested using different, voluntary teams and each scenario was debriefed to understand why the error was repeated despite interventions and how interventions could be improved. Interventions were modified with subsequent simulations until recommendations were felt to have an optimal effect and data saturation was achieved. Along with concrete suggestions for design and process change, qualitative data pertaining to employee communication and hospital standard work was collected and analyzed. Results: Each scenario had a total of three interventions to test. In, scenario 1, the error was reproduced in the initial two iterations and mitigated following key intervention changes. In scenario 2, the error was identified immediately in all cases where the intervention checklist was utilized properly. Independently of intervention changes and improvements, the simulation was beneficial to identify which of these should be prioritized for implementation and highlighted that even the potential solutions most frequently suggested by participants did not always translate into error prevention in the clinical environment. Conclusion: We conclude that interventions that help to change process (epinephrine kit or mandatory checklist) were more successful at preventing errors than passive interventions (signage, change in memory aids). Given that even the most successful interventions needed modifications and subsequent re-testing, simulation is key to optimizing suggested changes. Simulation is a safe, practice changing modality for institutions to use prior to implementing recommendations from RCA following AE reviews.

Keywords: adverse events, patient safety, pediatrics, root cause analysis, simulation

Procedia PDF Downloads 124
293 Biotechnological Methods for the Grouting of the Tunneling Space

Authors: V. Ivanov, J. Chu, V. Stabnikov

Abstract:

Different biotechnological methods for the production of construction materials and for the performance of construction processes in situ are developing within a new scientific discipline of Construction Biotechnology. The aim of this research was to develop and test new biotechnologies and biotechnological grouts for the minimization of the hydraulic conductivity of the fractured rocks and porous soil. This problem is essential to minimize flow rate of groundwater into the construction sites, the tunneling space before and after excavation, inside levies, as well as to stop water seepage from the aquaculture ponds, agricultural channels, radioactive waste or toxic chemicals storage sites, from the landfills or from the soil-polluted sites. The conventional fine or ultrafine cement grouts or chemical grouts have such restrictions as high cost, viscosity, sometime toxicity but the biogrouts, which are based on microbial or enzymatic activities and some not expensive inorganic reagents, could be more suitable in many cases because of lower cost and low or zero toxicity. Due to these advantages, development of biotechnologies for biogrouting is going exponentially. However, most popular at present biogrout, which is based on activity of urease- producing bacteria initiating crystallization of calcium carbonate from calcium salt has such disadvantages as production of toxic ammonium/ammonia and development of high pH. Therefore, the aim of our studies was development and testing of new biogrouts that are environmentally friendly and have low cost suitable for large scale geotechnical, construction, and environmental applications. New microbial biotechnologies have been studied and tested in the sand columns, fissured rock samples, in 1 m3 tank with sand, and in the pack of stone sheets that were the models of the porous soil and fractured rocks. Several biotechnological methods showed positive results: 1) biogrouting using sequential desaturation of sand by injection of denitrifying bacteria and medium following with biocementation using urease-producing bacteria, urea and calcium salt decreased hydraulic conductivity of sand to 2×10-7 ms-1 after 17 days of treatment and consumed almost three times less reagents than conventional calcium-and urea-based biogrouting; 2) biogrouting using slime-producing bacteria decreased hydraulic conductivity of sand to 1x10-6 ms-1 after 15 days of treatment; 3) biogrouting of the rocks with the width of the fissures 65×10-6 m using calcium bicarbonate solution, that was produced from CaCO3 and CO2 under 30 bars pressure, decreased hydraulic conductivity of the fissured rocks to 2×10-7 ms-1 after 5 days of treatment. These bioclogging technologies could have a lot of advantages over conventional construction materials and processes and can be used in geotechnical engineering, agriculture and aquaculture, and for the environmental protection.

Keywords: biocementation, bioclogging, biogrouting, fractured rocks, porous soil, tunneling space

Procedia PDF Downloads 186
292 A Clinical Cutoff to Identify Metabolically Unhealthy Obese and Normal-Weight Phenotype in Young Adults

Authors: Lívia Pinheiro Carvalho, Luciana Di Thommazo-Luporini, Rafael Luís Luporini, José Carlos Bonjorno Junior, Renata Pedrolongo Basso Vanelli, Manoel Carneiro de Oliveira Junior, Rodolfo de Paula Vieira, Renata Trimer, Renata G. Mendes, Mylène Aubertin-Leheudre, Audrey Borghi-Silva

Abstract:

Rationale: Cardiorespiratory fitness (CRF) and functional capacity in young obese and normal-weight people are associated with metabolic and cardiovascular diseases and mortality. However, it remains unclear whether their metabolically healthy (MH) or at risk (AR) phenotype influences cardiorespiratory fitness in this vulnerable population such as obese adults but also in normal-weight people. HOMA insulin resistance index (HI) and leptin-adiponectin ratio (LA) are strong markers for characterizing those phenotypes that we hypothesized to be associated with physical fitness. We also hypothesized that an easy and feasible exercise test could identify a subpopulation at risk to develop metabolic and related disorders. Methods: Thirty-nine sedentary men and women (20-45y; 18.530 kg.m-2) underwent a clinical evaluation, including the six-minute step test (ST), a well-validated and reliable test for young people. Body composition assessment was done by a tetrapolar bioimpedance in a fasting state and in the folicular phase for women. A maximal cardiopulmonary exercise testing, as well as the ST, evaluated the oxygen uptake at the peak of the test (VO2peak) by an ergospirometer Oxycon Mobile. Lipids, glucose, insulin were analysed and the ELISA method quantified the serum leptin and adiponectin from blood samples. Volunteers were divided in two groups: AR or MH according to a HI cutoff of 1.95, which was previously determined in the literature. T-test for comparison between groups, Pearson´s test to correlate main variables and ROC analysis for discriminating AR from up-and-down cycles in ST (SC) were applied (p<0.05). Results: Higher LA, fat mass (FM) and lower HDL, SC, leg lean mass (LM) and VO2peak were found in AR than in MH. Significant correlations were found between VO2peak and SC (r= 0.80) as well as between LA and FM (r=0.87), VO2peak (r=-0.73), and SC (r=-0.65). Area under de curve showed moderate accuracy (0.75) of SC <173 to discriminate AR phenotype. Conclusion: Our study found that at risk obese and normal-weight subjects showed an unhealthy metabolism as well as a poor CRF and functional daily activity capacity. Additionally, a simple and less costly functional test associated with above-mentioned aspects is able to identify ‘at risk’ subjects for primary intervention with important clinical and health implications.

Keywords: aerobic capacity, exercise, fitness, metabolism, obesity, 6MST

Procedia PDF Downloads 325
291 Managed Aquifer Recharge (MAR) for the Management of Stormwater on the Cape Flats, Cape Town

Authors: Benjamin Mauck, Kevin Winter

Abstract:

The city of Cape Town in South Africa, has shown consistent economic and population growth in the last few decades and that growth is expected to continue to increase into the future. These projected economic and population growth rates are set to place additional pressure on the city’s already strained water supply system. Thus, given Cape Town’s water scarcity, increasing water demands and stressed water supply system, coupled with global awareness around the issues of sustainable development, environmental protection and climate change, alternative water management strategies are required to ensure water is sustainably managed. Water Sensitive Urban Design (WSUD) is an approach to sustainable urban water management that attempts to assign a resource value to all forms of water in the urban context, viz. stormwater, wastewater, potable water and groundwater. WSUD employs a wide range of strategies to improve the sustainable management of urban water such as the water reuse, developing alternative available supply sources, sustainable stormwater management and enhancing the aesthetic and recreational value of urban water. Managed Aquifer Recharge (MAR) is one WSUD strategy which has proven to be a successful reuse strategy in a number of places around the world. MAR is the process where an aquifer is intentionally or artificially recharged, which provides a valuable means of water storage while enhancing the aquifers supply potential. This paper investigates the feasibility of implementing MAR in the sandy, unconfined Cape Flats Aquifer (CFA) in Cape Town. The main objective of the study is to assess if MAR is a viable strategy for stormwater management on the Cape Flats, aiding the prevention or mitigation of the seasonal flooding that occurs on the Cape Flats, while also improving the supply potential of the aquifer. This involves the infiltration of stormwater into the CFA during the wet winter months and in turn, abstracting from the CFA during the dry summer months for fit-for-purpose uses in order to optimise the recharge and storage capacity of the CFA. The fully-integrated MIKE SHE model is used in this study to simulate both surface water and groundwater hydrology. This modelling approach enables the testing of various potential recharge and abstraction scenarios required for implementation of MAR on the Cape Flats. Further MIKE SHE scenario analysis under projected future climate scenarios provides insight into the performance of MAR as a stormwater management strategy under climate change conditions. The scenario analysis using an integrated model such as MIKE SHE is a valuable tool for evaluating the feasibility of the MAR as a stormwater management strategy and its potential to contribute towards improving Cape Town’s water security into the future.

Keywords: managed aquifer recharge, stormwater management, cape flats aquifer, MIKE SHE

Procedia PDF Downloads 226
290 Serological Evidence of Brucella spp, Coxiella burnetti, Chlamydophila abortus, and Toxoplasma gondii Infections in Sheep and Goat Herds in the United Arab Emirates

Authors: Nabeeha Hassan Abdel Jalil, Robert Barigye, Hamda Al Alawi, Afra Al Dhaheri, Fatma Graiban Al Muhairi, Maryam Al Khateri, Nouf Al Alalawi, Susan Olet, Khaja Mohteshamuddin, Ahmad Al Aiyan, Mohamed Elfatih Hamad

Abstract:

A serological survey was carried out to determine the seroprevalence of Brucella spp, Coxiella burnetii, Chlamydophila abortus, and Toxoplasma gondii in sheep and goat herds in the UAE. A total of 915 blood samples [n= 222, [sheep]; n= 215, [goats]) were collected from livestock farms in the Emirates of Abu Dhabi, Dubai, Sharjah and Ras Al-Khaimah (RAK). An additional 478 samples (n= 244, [sheep]; n= 234, (goats]) were collected from the Al Ain livestock central market and tested by indirect ELISA for pathogen-specific antibodies with the Brucella antibodies being further corroborated by the Rose-Bengal agglutination test. Seropositivity for the four pathogens is variably documented in sheep and goats from the study area. Respectively, the overall livestock farm prevalence rates for Brucella spp, C. burnetii, C. abortus, and T. gondii were 2.7%, 27.9%, 8.1%, and 16.7% for sheep, and 0.0%, 31.6%, 9.3%, and 5.1% for goats. Additionally, the seroprevalence rates Brucella spp, C. burnetii, C. abortus, and T. gondii in samples from the livestock market were 7.4%, 21.7%, 16.4%, and 7.0% for sheep, and 0.9%, 32.5%, 19.2%, and 11.1% for goats respectively. Overall, sheep had 12.59 more chances than goats of testing seropositive for Brucella spp (OR, 12.59 [95% CI 2.96-53.6]) but less likely to be positive for C. burnetii-antibodies (OR, 0.73 [95% CI 0.54-0.97]). Notably, the differences in the seroprevalence rates of C. abortus and T. gondii in sheep and goats were not statistically significant (p > 0.0500). The present data indicate that all the four study pathogens are present in sheep and goat populations in the UAE where coxiellosis is apparently the most seroprevalent followed by chlamydophilosis, toxoplasmosis, and brucellosis. While sheep from the livestock market were more likely than those from farms to be Brucella-seropositive than those, the overall exposure risk of C. burnetii appears to be greater for goats than sheep. As more animals from the livestock market were more likely to be seropositive to Chlamydophila spp, it is possible that under the UAE animal production conditions, at least, coxiellosis and chlamydophilosis are more likely to increase the culling rate of domesticated small ruminants than toxoplasmosis and brucellosis. While anecdotal reports have previously insinuated that brucellosis may be a significant animal health risk in the UAE, the present data suggest C. burnetii, C. abortus and T. gondii to be more significant pathogens of sheep and goats in the country. Despite this possibility, the extent to which these pathogens may nationally be contributing to reproductive failure in sheep and goat herds is not known and needs to be investigated. Potentially, these agents may also carry a potentially zoonotic risk that needs to be investigated in risk groups like farm workers, and slaughter house personnel. An ongoing study is evaluating the seroprevalence of bovine coxiellosis in the Emirate of Abu Dhabi and the data thereof will further elucidate on the broader epidemiological dynamics of the disease in the national herd.

Keywords: Brucella spp, Chlamydophila abortus, goat, sheep, Toxoplasma gondii, UAE

Procedia PDF Downloads 159
289 The Effect of Disseminating Basic Knowledge on Radiation in Emergency Distance Learning of COVID-19

Authors: Satoko Yamasaki, Hiromi Kawasaki, Kotomi Yamashita, Susumu Fukita, Kei Sounai

Abstract:

People are susceptible to rumors when the cause of their health problems is unknown or invisible. In order for individuals to be unaffected by rumors, they need basic knowledge and correct information. Community health nursing classes use cases where basic knowledge of radiation can be utilized on a regular basis, thereby teaching that basic knowledge is important in preventing anxiety caused by rumors. Nursing students need to learn that preventive activities are essential for public health nursing care. This is the same methodology used to reduce COVID-19 anxiety among individuals. This study verifies the learning effect concerning the basic knowledge of radiation necessary for case consultation by emergency distance learning. Sixty third-year nursing college students agreed to participate in this research. The knowledge tests conducted before and after classes were compared, with the chi-square test used for testing. There were five knowledge questions regarding distance lessons. This was considered to be 5% significant. The students’ reports which describe the results of responding to health consultations, were analyzed qualitatively and descriptively. In this case study, a person living in an area not affected by radiation was anxious about drinking water and, thus, consulted with a student. The contents of the lecture were selected the minimum amount of knowledge used for the answers of the consultant; specifically hot spots, internal exposure risk, food safety, characteristics of cesium-137, and precautions for counselors. Before taking the class, the most correctly answered question by students concerned daily behavior at risk of internal exposure (52.2%). The question with the fewest correct answers was the selection of places that are likely to be hot spots (3.4%). All responses increased significantly after taking the class (p < 0.001). The answers to the counselors, as written by the students, were 'Cesium is strongly bound to the soil, so it is difficult to transfer to water' and 'Water quality test results of tap water are posted on the city's website.' These were concrete answers obtained by using specialized knowledge. Even in emergency distance learning, the students gained basic knowledge regarding radiation and created a document to utilize said knowledge while assuming the situation concretely. It was thought that the flipped classroom method, even if conducted remotely, could maintain students' learning. It was thought that setting specific knowledge and scenes to be used would enhance the learning effect. By changing the case to concern that of the anxiety caused by infectious diseases, students may be able to effectively gain the basic knowledge to decrease the anxiety of residents due to infectious diseases.

Keywords: effect of class, emergency distance learning, nursing student, radiation

Procedia PDF Downloads 91
288 A Lightweight Interlock Block from Foamed Concrete with Construction and Agriculture Waste in Malaysia

Authors: Nor Azian Binti Aziz, Muhammad Afiq Bin Tambichik, Zamri Bin Hashim

Abstract:

The rapid development of the construction industry has contributed to increased construction waste, with concrete waste being among the most abundant. This waste is generated from ready-mix batching plants after the concrete cube testing process is completed and disposed of in landfills, leading to increased solid waste management costs. This study aims to evaluate the engineering characteristics of foamed concrete with waste mixtures construction and agricultural waste to determine the usability of recycled materials in the construction of non-load-bearing walls. This study involves the collection of construction wastes, such as recycled aggregates (RCA) obtained from the remains of finished concrete cubes, which are then tested in the laboratory. Additionally, agricultural waste, such as rice husk ash, is mixed into foamed concrete interlock blocks to enhance their strength. The optimal density of foamed concrete for this study was determined by mixing mortar and foam-backed agents to achieve the minimum targeted compressive strength required for non-load-bearing walls. The tests conducted in this study involved two phases. In Phase 1, elemental analysis using an X-ray fluorescence spectrometer (XRF) was conducted on the materials used in the production of interlock blocks such as sand, recycled aggregate/recycled concrete aggregate (RCA), and husk ash paddy/rice husk ash (RHA), Phase 2 involved physical and thermal tests, such as compressive strength test, heat conductivity test, and fire resistance test, on foamed concrete mixtures. The results showed that foamed concrete can produce lightweight interlock blocks. X-ray fluorescence spectrometry plays a crucial role in the characterization, quality control, and optimization of foamed concrete mixes containing construction and agriculture waste. The unique composition mixer of foamed concrete and the resulting chemical and physical properties, as well as the nature of replacement (either as cement or fine aggregate replacement), the waste contributes differently to the performance of foamed concrete. Interlocking blocks made from foamed concrete can be advantageous due to their reduced weight, which makes them easier to handle and transport compared to traditional concrete blocks. Additionally, foamed concrete typically offers good thermal and acoustic insulation properties, making it suitable for a variety of building projects. Using foamed concrete to produce lightweight interlock blocks could contribute to more efficient and sustainable construction practices. Additionally, RCA derived from concrete cube waste can serve as a substitute for sand in producing lightweight interlock blocks.

Keywords: construction waste, recycled aggregates (RCA), sustainable concrete, structure material

Procedia PDF Downloads 24
287 Nano-MFC (Nano Microbial Fuel Cell): Utilization of Carbon Nano Tube to Increase Efficiency of Microbial Fuel Cell Power as an Effective, Efficient and Environmentally Friendly Alternative Energy Sources

Authors: Annisa Ulfah Pristya, Andi Setiawan

Abstract:

Electricity is the primary requirement today's world, including Indonesia. This is because electricity is a source of electrical energy that is flexible to use. Fossil energy sources are the major energy source that is used as a source of energy power plants. Unfortunately, this conversion process impacts on the depletion of fossil fuel reserves and causes an increase in the amount of CO2 in the atmosphere, disrupting health, ozone depletion, and the greenhouse effect. Solutions have been applied are solar cells, ocean wave power, the wind, water, and so forth. However, low efficiency and complicated treatment led to most people and industry in Indonesia still using fossil fuels. Referring to this Fuel Cell was developed. Fuel Cells are electrochemical technology that continuously converts chemical energy into electrical energy for the fuel and oxidizer are the efficiency is considerably higher than the previous natural source of electrical energy, which is 40-60%. However, Fuel Cells still have some weaknesses in terms of the use of an expensive platinum catalyst which is limited and not environmentally friendly. Because of it, required the simultaneous source of electrical energy and environmentally friendly. On the other hand, Indonesia is a rich country in marine sediments and organic content that is never exhausted. Stacking the organic component can be an alternative energy source continued development of fuel cell is A Microbial Fuel Cell. Microbial Fuel Cells (MFC) is a tool that uses bacteria to generate electricity from organic and non-organic compounds. MFC same tools as usual fuel cell composed of an anode, cathode and electrolyte. Its main advantage is the catalyst in the microbial fuel cell is a microorganism and working conditions carried out in neutral solution, low temperatures, and environmentally friendly than previous fuel cells (Chemistry Fuel Cell). However, when compared to Chemistry Fuel Cell, MFC only have an efficiency of 40%. Therefore, the authors provide a solution in the form of Nano-MFC (Nano Microbial Fuel Cell): Utilization of Carbon Nano Tube to Increase Efficiency of Microbial Fuel Cell Power as an Effective, Efficient and Environmentally Friendly Alternative Energy Source. Nano-MFC has the advantage of an effective, high efficiency, cheap and environmental friendly. Related stakeholders that helped are government ministers, especially Energy Minister, the Institute for Research, as well as the industry as a production executive facilitator. strategic steps undertaken to achieve that begin from conduct preliminary research, then lab scale testing, and dissemination and build cooperation with related parties (MOU), conduct last research and its applications in the field, then do the licensing and production of Nano-MFC on an industrial scale and publications to the public.

Keywords: CNT, efficiency, electric, microorganisms, sediment

Procedia PDF Downloads 384
286 Experimental Investigation on Tensile Durability of Glass Fiber Reinforced Polymer (GFRP) Rebar Embedded in High Performance Concrete

Authors: Yuan Yue, Wen-Wei Wang

Abstract:

The objective of this research is to comprehensively evaluate the impact of alkaline environments on the durability of Glass Fiber Reinforced Polymer (GFRP) reinforcements in concrete structures and further explore their potential value within the construction industry. Specifically, we investigate the effects of two widely used high-performance concrete (HPC) materials on the durability of GFRP bars when embedded within them under varying temperature conditions. A total of 279 GFRP bar specimens were manufactured for microcosmic and mechanical performance tests. Among them, 270 specimens were used to test the residual tensile strength after 120 days of immersion, while 9 specimens were utilized for microscopic testing to analyze degradation damage. SEM techniques were employed to examine the microstructure of GFRP and cover concrete. Unidirectional tensile strength experiments were conducted to determine the remaining tensile strength after corrosion. The experimental variables consisted of four types of concrete (engineering cementitious composite (ECC), ultra-high-performance concrete (UHPC), and two types of ordinary concrete with different compressive strengths) as well as three acceleration temperatures (20, 40, and 60℃). The experimental results demonstrate that high-performance concrete (HPC) offers superior protection for GFRP bars compared to ordinary concrete. Two types of HPC enhance durability through different mechanisms: one by reducing the pH of the concrete pore fluid and the other by decreasing permeability. For instance, ECC improves embedded GFRP's durability by lowering the pH of the pore fluid. After 120 days of immersion at 60°C under accelerated conditions, ECC (pH=11.5) retained 68.99% of its strength, while PC1 (pH=13.5) retained 54.88%. On the other hand, UHPC enhances FRP steel's durability by increasing porosity and compactness in its protective layer to reinforce FRP reinforcement's longevity. Due to fillers present in UHPC, it typically exhibits lower porosity, higher densities, and greater resistance to permeation compared to PC2 with similar pore fluid pH levels, resulting in varying degrees of durability for GFRP bars embedded in UHPC and PC2 after 120 days of immersion at a temperature of 60°C - with residual strengths being 66.32% and 60.89%, respectively. Furthermore, SEM analysis revealed no noticeable evidence indicating fiber deterioration in any examined specimens, thus suggesting that uneven stress distribution resulting from interface segregation and matrix damage emerges as a primary causative factor for tensile strength reduction in GFRP rather than fiber corrosion. Moreover, long-term prediction models were utilized to calculate residual strength values over time for reinforcement embedded in HPC under high temperature and high humidity conditions - demonstrating that approximately 75% of its initial strength was retained by reinforcement embedded in HPC after 100 years of service.

Keywords: GFRP bars, HPC, degeneration, durability, residual tensile strength.

Procedia PDF Downloads 28
285 Influence of Footing Offset over Stability of Geosynthetic Reinforced Soil Abutments with Variable Facing under Lateral Excitation

Authors: Ashutosh Verma, Satyendra MIttal

Abstract:

The loss of strength at the facing-reinforcement interface brought on by the seasonal thermal expansion/contraction of the bridge deck has been responsible for several geosynthetic reinforced soil abutment failures over the years. This results in excessive settlement below the bridge seat, which results in bridge bumps along the approach road and shortens abutment's design life. There are surely a wide variety of facing configurations available to designers when choosing the sort of facade. These layouts can generally be categorised into three groups: continuous, full height rigid (FHR) and modular (panels/block). The current work aims to experimentally explore the behavior of these three facing categories using 1g physical model testing under serviceable cyclic lateral displacements. With configurable facing arrangements to represent these three facing categories, a field instrumented GRS abutment prototype was modelled into a N scaled down 1g physical model (N = 5) to reproduce field behavior. Peak earth pressure coefficient (K) on the facing and vertical settlement of the footing (s/B) for footing offset (x/H) as 0.1, 0.2, 0.3, 0.4 and 0.5 at 100 cycles have been measured for cyclic lateral displacement of top of facing at loading rate of 1mm/min. Three types of cyclic displacements have been carried out to replicate active condition (CA), passive condition (CP), and active-passive condition (CAP) for each footing offset. The results demonstrated that a significant decrease in the earth pressure over the facing occurs when footing offset increases. It is worth noticing that the highest rate of increment in earth pressure and footing settlement were observed for each facing configuration at the nearest footing offset. Interestingly, for the farthest footing offset, similar responses of each facing type were observed, which indicates that the upon reaching a critical offset point presumably beyond the active region in the backfill, the lateral responses become independent of the stresses from the external footing load. Evidently, the footing load complements the stresses developed due to lateral excitation resulting in significant footing settlements for nearer footing offsets. The modular facing proved inefficient in resisting footing settlement due to significant buckling along the depth of facing. Instead of relative displacement along the depth of facing, continuous facing rotates around the base when it fails, especially for nearer footing offset causing significant depressions in the backfill area surrounding the footing. FHR facing, on the other hand, have been successful in confining the stresses in the soil domain itself reducing the footing settlement. It may be suitably concluded that increasing the footing offset may render stability to the GRS abutment with any facing configuration even for higher cycles of excitation.

Keywords: GRS abutments, 1g physical model, footing offset, cyclic lateral displacement

Procedia PDF Downloads 59